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We utilize a diagrammatic notation for invariant tensors to construct the Young
projection operators for the irreducible representations of the unitary group Usnd,
prove their uniqueness, idempotency, and orthogonality, and rederive the formula
for their dimensions. We show that all Usnd invariant scalarss3n− j coefficientsd
can be constructed and evaluated diagrammatically from these Usnd Young projec-
tion operators. We prove that the values of all Usnd 3n− j coefficients are propor-
tional to the dimension of the maximal representation in the coefficient, with the
proportionality factor fully determined by itsSk symmetric group value. We also
derive a family of new sum rules for the 3−j and 6−j coefficients, and discuss
relations that follow from the negative dimensionality theorem. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1832753g

I. INTRODUCTION

Symmetries are beautiful, and theoretical physics is replete with them, but there comes a time
when a calculation must be done. Innumerable calculations in high-energy physics, nuclear phys-
ics, atomic physics, and quantum chemistry require construction of irreducible many-particle
statessirrepsd, decomposition of Kronecker products of such states into irreps, and evaluations of
group theoretical weightssWigner 3n− j symbols, reduced matrix elements, quantum field theory
“vacuum bubbles”d. At such times effective calculational methods gain in appreciation.

In his 1841 fundamental paper1 on the determinants today known as “Jacobians,” Jacobi
initiated the theory of irreps of the symmetric groupSk. Schur used theSk irreps to develop the
representation theory of GLsn;Cd in his 1901 dissertation,2 and already by 1903 the Young
tableaux3,4 came into use as a powerful tool for reduction of bothSk and GLsn;Cd representations.
In quantum theory the group of choice5 is the unitary group Usnd, rather than the general linear
group GLsn;Cd. Today this theory forms the core of the representation theory of both discrete and
continuous groups, described in many excellent textbooks.6–17

Here we transcribe the theory of the Young projection operators into a form particularly well
suited to particle physics calculations, and show that the diagrammatic methods of Ref. 18 can be
profitably employed in explicit construction of Usnd multiparticle states, and evaluation of the
associated 3n− j coefficients.

In diagrammatic notation tensor objects are manipulated without any explicit indices. Dia-
grammatic evaluation rules are intuitive and relations between tensors can often be grasped visu-
ally. Take as an example the reduction of a two-index tensorTij into symmetric and antisymmetric
parts,T=sS+AdT, where

STij = 1
2sI + s12ddTij
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ATij = 1
2sI − s12ddTij ,

andI ands12d denote the identity and the index transposition. Diagrammatically, the two projec-
tion operators are drawn as

s1d

It is clear at a glance thatS symmetrizes andA antisymmetrizes the two tensor indices. Here we
shall construct such projection operator for tensors of any rank.

Penrose’s papers are the firstsknown to the authorsd to cast the Young projection operators
into a diagrammatic form. Here we use Penrose diagrammatic notation for symmetrization
operators,19 Levi–Civita tensors20 and “strand networks.”21 For several specific, few-particle ex-
amples, diagrammatic Young projection operators were constructed by Canning,22 Mandula,23 and
Stedman.24 A diagrammatic construction of the Usnd Young projection operators forany Young
tableau was outlined in Ref. 25, without proofs. Here we present the method in detail, as well as
the proof that the Young projection operators so constructed are unique.26 The other new results
are a proof that every Usnd 3n− j coefficient is proportional to the dimension of the largest irrep
within the 3n− j diagram, and several sum rules for Usnd 3− j and 6−j coefficients.

The paper is organized as follows. The diagrammatic notation for tensors is reviewed in Sec.
II and the Young tableaux in Sec. III. This material is standard and the reader is referred to any of
the above cited monographs for further details. In Sec. IV we construct diagrammatic Young
projection operators for Usnd, and give formulas for the normalizations and the dimensions of
Usnd irreps. In Sec. V we recast the Clebsch–Gordan recoupling relations into a diagrammatic
form, and show that—somewhat surprisingly—the values of all Usnd 3n− j coefficients follow
from the representation theory for the symmetric groupSk alone. The 3n− j coefficients for Usnd
are constructed from the Young projection operators and evaluated by diagrammatic methods in
Sec. V B. We derive a family of new sum rules for Usnd 3n− j coefficients in Sec. V C. In Sec. VI
we briefly discuss the case of SUsnd and mixed multiparticle antiparticle states. In Sec. VII we
state and prove the negative dimensionality theorem for Usnd. Not only does this proof provide an
example of the power of diagrammatic methods, but the theorem also simplifies certain group
theoretic calculations. We summarize our results in Sec. VIII.

The key, but lengthy original result presented in this paper, the proof of the uniqueness,
completeness, and orthogonality of the Young projection operators26 is relegated to the appendix.

II. DIAGRAMMATIC NOTATION

In the diagrammatic notation18 an invariant tensor is drawn as a “blob” with a leg representing
each index. An arrow indicates whether it is an upper or lower index; lower index arrows always
point away from the blob whereas upper index arrows point into the blob. The index legs are
ordered in the counterclockwise direction around the blob, and if the indices are not cyclic there
must be an indication of where to start, for example,

An internal line in a diagram implies a sum over the corresponding index: matrix multiplication is
drawn as
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where the indexb can be omitted, as indeed can all other “dummy” indices. The Kronecker delta
is drawn as

and its trace—the dimension of the representation—is drawn as a closed loop,

s2d

Index permutations can be drawn in terms of Kronecker deltas. For example, the symmetric
groupS2 acting on two indices consists of the identity elementIab

cd=da
ddb

c and the transposition
s12d ab

cd=da
cdb

d. In the diagrammatic notation these operators are drawn as

Symmetrization of p indices is achieved by adding all permutationss of p indices, S
=s1/p! dos[Sp

dssb1
a1 …dsbpd

ap . Similarly, the operatorA=s1/p!dos[Sp
sgnssd dssb1

ap …dsbpd
a1 swith a mi-

nus − for odd permutationsd antisymmetrizesp indices. Combinations of symmetrizersS and
antisymmetrizersA are collectively referred to assymmetry operators.

In the diagrammatic notation we write the symmetrizers and the antisymmetrizers oflength p
as19

s3d

s4d

In order to streamline the notation we shall neglect the arrows whenever this leads to no confu-
sion. Basic properties of the symmetry operators are listed in Fig. 1: A symmetrizer is invariant
under any permutation of its legs, rulesad. The antisymmetrizer changes sign under odd permu-
tations, rulesbd. A symmetrizer connected by more than one line to an antisymmetrizer is zero by
rules sad and sbd,

s5d

Recursive identities for thesantidsymmetrizers are given insA5d and sA4d.

FIG. 1. Properties of the diagrammatic symmetrization and antisymmetrization operators.
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III. YOUNG TABLEAUX

Partitionk identical boxes intoD subsets, and letlm, m=1,2,… ,D, be the number of boxes
in the subsets ordered so thatl1ùl2¯ùlDù1. Then the partitionl=fl1,l2,¯ ,lDg fulfills
om=1

D lm=k. The diagram obtained by drawing theD rows of boxes on top of each other, left
aligned, starting withl1 at the top, is called aYoung diagramY.

Inserting each number from the seth1,… ,kj into a box of a Young diagram Y in such a way
that numbers increase when reading a column from top to bottom and numbers do not decrease
when reading a row from left to right yields aYoung tableauYa. The subscripta labels different
tableaux derived from a given Young diagram, i.e., different admissible ways of inserting the
numbers into the boxes. Astandard tableauis ak-box Young tableau constructed by inserting the
numbers 1,… ,k according to the above rules, but using each number exactly once.

As an example, three distinct standard tableaux,

are obtained from the four-box Young diagram with partitionl=f2,1,1g.

A. Symmetric group Sk

Young diagrams label the irreps of the symmetric groupSk. A k-box Young diagram Y corre-
sponds to an irrep ofSk, andDl, the dimension of the irrepl, is the number of standard tableaux
Ya that can be constructed from the Young diagram Y. From the above example we see that the
irrep l=f2,1,1g of S4 is three dimensional. The formula for the dimensionDY of the irrep ofSk

corresponding to the Young diagram Y is

DY =
k!

uY u
. s6d

The numberuY u is computed using a “hook” rule: Enter into each box of the Young diagram the
number of boxes below and to the left of the box, including the box itself. ThenuY u is the product
of the numbers in all the boxes. For instance,

The hook rules6d was first proved surprisingly late, in 1954, by Frame, de B. Robinson, and
Thrall.27 Various proofs can be found in Refs.15,16,28–31; in particular, see Sagan32 and references
therein.

B. Representations of U „n…

While every Young diagram labels an irrep ofSk, every standard tableau labels an irrep of
Usnd. The dimensiondY of an irrep labeled by the Young diagram Y equals the number of Young
tableaux Ya that can be obtained from Y by inserting numbers from the seth1,2,… ,nj such that
the numbers increase in each column and do not decrease in each row.

043501-4 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!
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IV. YOUNG PROJECTION OPERATORS

We now present a diagrammatic method for construction of Young projection operators. A
combinatorial version of these operators was given by van der Waerden,33 who credited von
Neumann. There are many other versions in the literature, all of them illustrating the fundamental
theorem of ’t Hooft and Veltman:34 combinatorics cannot be taught. What follows might aid those
who think visually.

A. The group algebra

Our goal is to construct the projection operators such ass1d for any irrep ofSk. We need to
construct a basis set of invariant tensors, multiply them by scalars, add and subtract them, and
multiply a tensor by another tensor. The necessary framework is provided by the notion ofgroup
algebra.

The elementss[Sk of the symmetric groupSk form a basis of ak!-dimensional vector space
V of elements

s= o
s[Sk

sss [ V, s7d

wheress are the components of the vectors in the given basis. Ifs, t[V have componentssssd
and stsd, we define the product ofs and t as the vectorst in V with componentssstds

=ot[Sk
sttt−1s. This multiplication is associative because it relies on the associative group opera-

tion. SinceV is closed under the multiplication the elements ofV form an associative algebra—the
group algebraof Sk. Acting on an elements[V with any group element mapss to another
element in the algebra, hence this map gives ak!-dimensional matrix representation of the group
algebra, theregular representation. Note that the matrices of any representationm of the group is
also a basis for representation of the algebra: LetDmssd denote aspossibly reducibled represen-
tation of Sk. The group algebra ofSk in the representationm then consists of elements

Dmssd = o
s[Sk

ssDmssd [ V,

wheres is given bys7d. The minimal left-idealsVl of the group algebrasi.e.,sVl=Vl for all s[V,
andVl has no proper subidealsd are the proper invariant subspaces corresponding to the irreps of
the symmetric groupSk.

The regular representation is reducible and each irrep appearsDl times in the reduction, where
Dl is the dimension of the subspaceVl corresponding to the irrepl. This gives the well-known
relation between the order of the symmetric groupuSku =k! sthe dimension of the regular repre-
sentationd and the dimensions of the irreps,

uSku = o
irrepsl

Dl
2.

Using s6d and the fact that the Young diagrams label the irreps ofSk, we have

043501-5 Diagrammatic Young projection operators for Usnd J. Math. Phys. 46, 043501 ~2005!
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1 = k!o
skd

1

uY u2
, s8d

where the sum is over all Young diagrams withk boxes. We shall use this relation to determine the
normalization of Young projection operators in the Appendix.

The reduction of the regular representation ofSk gives a completeness relation

I = o
skd

PY

into projection operators

PY = o
Ya[Y

PYa
.

The sum is over all Young tableaux derived from the Young diagram Y. EachPYa
. projects onto

the corresponding invariant subspaceVYa
. For each Y there areDY such projection operators

scorresponding to theDY possible standard arrangements of the diagramd and each of these project
onto one of theDY invariant subspacesVY of the reduction of the regular representation. It follows
that the projection operators are orthogonal and that they constitute a complete set.

B. Diagrammatic Young projection operators

We now generalizes1d, theS2 projection operators expressed in terms of Kronecker deltas, to
Young projection operator for anySk.

The Kronecker delta is invariant under unitary transformations,da
b=sU†da

a8da8
b8Ub8

b, U[Usnd,
and so is any combination of Kronecker deltas, such as the symmetrizers of Fig. 1. Since these
operators constitute a complete set, any Usnd invariant tensor built from Kronecker deltas can be
written in terms of symmetrizers and antisymmetrizers. In particular, the invariance of the Kro-
necker delta under Usnd transformations implies that the same symmetry group operators which
project the irreps ofSk also yield the irreps of Usnd.

The simplest examples of Young projection operators are those associated with the Young
tableaux consisting of either one row or one column. The corresponding Young projection opera-
tors are simply the symmetrizerss3d or the antisymmetrizerss4d, respectively. As projection
operators forSk, the symmetrizer projects onto the one-dimensional subspace corresponding to the
fully symmetric representation, and the antisymmetrizer projects onto the alternating representa-
tion.

A Young projection operator for a mixed symmetry Young tableau will here be constructed by
first antisymmetrizing subsets of indices, and then symmetrizing other subsets of indices; which
subsets are dictated by the form of the Young tableau, as will be explained shortly. Schematically,

whereaY is a normalization constantsdefined belowd ensuring that the operators are idempotent,
PYa

PYb
=dabPYa

. This particular form of projection operators is by no means unique—Young
projection operators symmetric under transposition are constructed in Ref. 18—but is particularly
convenient for explicit computations

Let Ya be ak-box standard tableau. Arrange a set of symmetrizers corresponding to the rows
in Ya, and to the right of this arrange a set of antisymmetrizers corresponding to the columns in
Ya. For a Young diagram Y withs rows andt columns we label the rows S1, S2,… ,Ss and to the
columns A1, A2,… ,At. Each symmetry operator inPYa

is associated with a row/column in Ya,
hence we label a symmetry operator after the corresponding row/column, for example

043501-6 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!
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Let the lines numbered 1 tok enter the symmetrizers as described by the numbers in the boxes in
the standard tableau and connect the set of symmetrizers to the set of antisymmetrizers in a
nonvanishing way, avoiding multiple intermediate lines prohibited bys5d. Finally, arrange the
lines coming out of the antisymmetrizers such that if the lines all passed straight through the
symmetry operators, they would exit in the same order as they entered.

We shall denote byDY the dimensions of irreps ofSk, and bydY the dimensions of irreps of
Usnd. Let uSiu or uA iu denote the number of boxes within a row or column, respectively. ThusuA iu
also denotes the number of lines entering the antisymmetrizerAi, and similarly for the symme-
trizers. The normalization constantaY is given by

aY =
Pi=1

s uSiu!P j=1
t uA ju!

uY u
,

where uY u is related throughs6d to DY, the dimension of irrep Y ofSk, and is a hook ruleSk

combinatoric number. The normalization depends only on the shape of the Young diagram, not the
particular tableau. The Young projection operators

s1d are idempotent, PY
2 =PY;

s2d areorthogonal: if Y and Z are two distinct standard tableaux, thenPYPZ=PZPY =0; and
s3d constitute acomplete set, I=oPY, where the sum is over all standard tableaux Ywithk boxes.

The projections are unique up to an overall sign. By construction, the identity element always
appears as a term in the expansion of the symmetry operators of the Young projection operators—
the overall sign is fixed by requiring that the identity element comes with a positive coefficient.
The diagrammatic proof that the above rules indeed assign a unique projection operator to each
standard tableaux is the central result of this paper; as it would impede the flow of our argument
at this point, it is placed in the Appendix.

Example:The Young diagram corresponding to the partitionf3,1g tells us to use one sym-
metrizer of length three, one of length one, one antisymmetrizer of length two, and two of length
one. There are three distinct standard tableaux, each corresponding to a projection operator

whereaY is the normalization constant. The symmetry operators of unit width need not be drawn
explicitly. We haveuY u =8, uS1u =3, uS2u =1, uA1u =2, etc., yielding the normalizationaY =3/2.

C. Dimensions of U „n… irreps

The dimensiondY of a Usnd irrep is computed by taking the trace of the corresponding Young
projection operator,dY =tr PY. The trace can be evaluated by expanding the symmetry operators
using s3d and s4d. By s2d, each closed line is worthn, sodY is a polynomial inn of degreek.

Example:The dimension of a three-index Young projection operator,

043501-7 Diagrammatic Young projection operators for Usnd J. Math. Phys. 46, 043501 ~2005!
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s9d

=
1

3
sn3 + n2 − n2 − nd =

nsn2 − 1d
3

. s10d

Such brute expansion is unnecessarily laborious: The dimension of the irrep labeled by Y is

dY =
fYsnd
uY u

, s11d

where fYsnd is the polynomial inn obtained from the Young diagram Y by multiplying the
numbers written in the boxes of Y, according to the following rules:sAd The upper left box
contains ann. sBd The numbers in a row increase by 1 when reading from left to right.sCd The
numbers in a column decrease by 1 when reading from top to bottom. Hence, ifk is the number
of boxes in Y,fYsnd is a polynomial inn of degreek. The dimension formulas11d is well known,
see for instance Ref. 11.

In the examples10d, we havefYsnd=nsn−1dsn+1d and uY u =3, giving dY =nsn2−1d /3.
Example:For Y=f4,2,1g we have

A diagrammatic proof of the Usnd dimension formulas11d is given in the Appendix.
Diagrammatically, the numberfYsnd is the number ofn-color colorings of the strand network

corresponding to trPY, see, for example, Ref. 18.

D. Examples

We present examples to illustrate decomposition of reducible representation into irreps using
the diagrammatic projection operators.

The Young diagramh corresponds to the fundamentaln-dimensional irrep of Usnd. As we
saw in s1d, the direct product of two of thesen-dimensional representations is an2-dimensional
reducible representation,

s12d

s13d

s14d

Equations12d shows the decomposition of the reducible representation in terms of Young dia-
grams, ands13d gives the corresponding projection operators. Tracings13d yields the dimensions
s14d of the irreps.

The first nontrivial example is the reduction of the three-index tensor Young projection op-
erators, listed in Fig. 2. Further examples can be found in Ref. 18.

043501-8 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.215.22.220 On: Sat, 06 Feb 2016

17:21:00



The four projectors are orthogonal by inspection. In order to verify the completeness, expand
first the two three-index projection operators of mixed symmetry,

s15d

In the sum of the fully symmetric and the fully antisymmetric tensors all the odd permutations
cancel, and we are left with

s16d

Adding s15d and s16d we find

verifying the completeness relation.
Acting with any permutation on the fully symmetric or antisymmetric projection operators

gives61 times the projection operatorssee Fig. 1d. For projection operators of mixed symmetry
the action of a permutation is not as simple, because the permutations will mix the spaces corre-
sponding to the different tableaux. Here we shall need only the action of a permutation within a
3n− j coefficient, and, as we shall show below, in this case the result will again be simple, a factor
61 or 0.

V. RECOUPLING RELATIONS

In the spirit of Feynman diagrams, group theoretic weights with all indices contracted can be
drawn as “vacuum bubbles.” We now show that for Usnd any such vacuum bubble can be evalu-
ated diagrammatically, either directly, as a 3n− j coefficient, or following a reduction to 3−j and
6− j coefficients. The exposition of this section follows closely Ref. 18; the reader can find there
more details, as well as the precise relationship between our 3−j and 6−j coefficients, and the
Wigner 3−j and 6−j symbols.35

The decomposition of a many-particle state can be implemented sequentially, decomposing
two-particle states at each step. The Clebsch–Gordan coefficients for X^ Z→Y can be drawn as
3-vertices,

FIG. 2. Reduction of a three-index tensor. Bottom row; the direct product of three unit tableaux, the sum of dimensions,
and the projection operators completeness sum.

043501-9 Diagrammatic Young projection operators for Usnd J. Math. Phys. 46, 043501 ~2005!
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s17d

where 1/Îa is an sarbitraryd normalization constant. The projection operators for X^ Z→Y
→X ^ Z can be drawn as

The orthogonality of irreps implies W=Y in

s18d

and the completeness relation can be drawn as

s19d

where the sum is over all irreps contained in X^ Z.
The normalization constanta can be computed by tracings18d,

wheredY is the dimension of the representation Y. The vacuum bubble on the left-hand side is
called a 3−j coefficient. More generally, vacuum bubbles withn lines are calledn− j coefficients.

Let particles in representations U and V interact by exchanging a particle in the representation
W, with the final state particles in the representations X and Z,

Applying the completeness relations19d repeatedly yields

By the orthogonality of irreps Y=Y8, and we obtain therecoupling relation

043501-10 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!
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s20d

The “Mercedes” vacuum bubbles in the numerators are called 6−j coefficients.Any arbitrarily
complicated vacuum bubble can be reduced to 3−j and 6−j coefficients by recursive use of the
recoupling relations20d. For instance, a four-vertex loop can be reduced to a two-vertex loop by
repeated application of the recoupling relations as sketched in Fig. 3.

Another, more explicit example of a sequence of recouplings, is the following step-by-step
reduction of a five-particle state:

sfor brevity we omit the normalization factors hered. Taking the trace of both sides leads to
12−j coefficients of the form

s21d

A. U„n… recoupling relations

Due to the overall particle number conservationswe consider no “antiparticle” states hered, for
Usnd the above five-particle recoupling flow takes a very specific form in terms of Young projec-
tion operators,

More generally, we can visualize any sequence of Usnd pairwise Clebsch–Gordan reductions as a
flow with lines joining into thicker and thicker projection operators, always ending in a maximal
PY which spans across all lines.

In the traces21d we can use the idempotency of the projection operators to double the
maximal Young projection operatorPY, and sandwich by it all smaller projection operators,

s22d

From uniqueness of the connection between the symmetry operatorsssee the Appendix Id we have
for any permutations[Sk

s23d

wherems=0, 61. Expressions likes22d can be evaluated by expanding the projection operators

FIG. 3. A reduction of a 4-vertex loop to a sum of “tree” tensors, weighted by products of 3−j and 6−j coefficients.
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PW, PX, PZ and determining the value ofms of s23d for each permutations of the expansion. The
result is

where the factorMsY;W,X,Zd does not dependon n and is determined by a purely symmetric
group calculation. Several examples follow.

B. Evaluation of 3 n-j coefficients

Let X, Y, and Z be irreps of Usnd. In terms of the Young projection operatorsPX, PY, andPZ,
a Usnd three-vertexs17d is obtained by tying together the three Young projection operators,

s24d

The number of particles is conservedsthe multiparticle states constructed here consist only of
particles, no “antiparticles”d: kX +kZ=kY. A 3− j coefficient constructed from the vertexs24d is
then

s25d

As an example, take

Then

s26d

In principle the value of such 3−j coefficient can be computed by expanding out all symmetry
operators, but that is not recommended as the number of terms in such expansions grows combi-
natorially with the total number of boxes in the Young diagram Y. Instead, the answer—in this
casedY =sn2−1dn2sn+1dsn+2d /144— is obtained as follows.

In general, the 3−j coefficientss25d can be evaluated by expanding the projectionsPX andPZ

and determing the value ofms in s23d for each permutations of the expansion.
As an example, consider the 3−j coefficients26d. With PY as in s26d we find

hence
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and the value of the 3−j is dY as claimed ins26d. That the eigenvalue happens to be 1 is an
accident—in tabulations of 3−j coefficients26 it takes a range of values.

The relations23d implies that the value of any Usnd 3− j coefficient s25d is MsY;X,Z ddY,
wheredY is the dimension of the maximal irrep Y.

A 6− j coefficient is composed of the three-vertexs17d and the other three-vertex in the
projection operators24d, with all arrows reversed. A general Usnd 6− j coefficient has the form

s27d

Using the relations23d we immediately see that

s28d

whereM is a pure symmetric groupSkY number, independent of Usnd; it is surprising that the only
vestige of Usnd is the fact that the value of a 6−j coefficient is proportional to the dimensiondY

of its largest projection operator.
Example:Consider the 6−j constructed from the Young tableaux,

Using the idempotency we can double the projectionPY and sandwich the other operators, as in
s22d. Several terms cancel in the expansion of the sandwiched operator, and we left with

We have listed the symmetry factorsms of s23d for each of the permutationss sandwiched
between the projection operatorsPY. We find that in this example the symmetric group factorM
of s28d is

M =
4

24aUaVaWaXaZ =
1

3
,

so the value of the 6−j is

The method generalizes to evaluations of any 3n− j coefficients of Usnd.
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C. Sum rules

Let Y be a standard tableau withkY boxes, and letL be the set of all standard tableaux with
one or more boxessexclude the trivialk=0 representationd. Then the 3−j coefficients obey the
sum rule

s29d

The sum is finite, because the 3−j is nonvanishing only if the number of boxes in X and Z add up
to kY, and this happens only for a finite number of tableaux.

To prove s29d, recall that the Young projection operators constitute a complete set,
oX[Lk

PX =I, whereI is the k3k unit matrix andLk the set of all standard tableaux of Young
diagrams withk boxes. Hence

This sum rule offers a useful cross-check on tabulations of 3−j values, see for instance Ref. 26.
There is a similar sum rule for the 6−j coefficients,

s30d

Referring to the 6−j s27d, let kU be the number of boxes in the Young diagram U,kX be the
number of boxes in X, etc., and letkY be given. Froms27d we see thatkX takes values between 1
andkY −2 andkZ takes values between 2 andkY −1, subject to the constraintkX +kZ=kY. We now
sum over all tableaux U, V, and W keepingkY, kX, andkZ fixed. Note thatkV can take values 1,…,
kZ−1. Using completeness we find

Now sum over all tableaux X and Z to find

verifying the sum rules30d for 6− j coefficients.
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VI. SU„N… AND ITS ADJOINT REPRESENTATION

The SUsnd group elements satisfy det U=1, so SUsnd has an additional invariant, the Levi–
Civita tensor

ea1a2¯an = Ua1

a18Ua2

a28
¯Uan

an8ea18a28¯an8
.

In the diagrammatic notation the Levi–Civita tensors can be drawn as20

They satisfy

s31d

sLevi–Civita projects ann-particle state onto a single, one-dimensional, singlet representationd,
and are correctly normalized,

The Young diagrams for SUsnd cannot contain more thann rows, since at mostn indices can
be antisymmetrized. By contraction with the Levi-Civita tensor, a column withk boxes can be
converted into a column ofn−k boxes: this operation associates to each irrep theconjugateirrep.
The Young diagram corresponding to the irrep is theconjugateYoung diagram constructed from
the missing pieces needed to complete the rectangle ofn rows. For example, the conjugate of the
irrep corresponding to the partitionf4, 2, 2, 1g of SUs6d has the partitionf4, 4, 3, 2, 2g:

The Levi–Civita tensor converts an antisymmetrized collection ofn−1 “in” indices, ansn
−1d-particle state, into 1 “out” index: a single antiparticle stateh̄, the conjugate of the fundamen-
tal representationh single particle state. The corresponding Young diagram is a single column of
n−1 boxes. The product of the fundamental representation and the conjugate representation of
SUsnd decomposes into a singlet and the adjoint representation,

In the notation introduced in Sec. IV, the Young projection operator for the adjoint representation
A is drawn as

UsingPA and the definitions24d of the three-vertex, SUsnd group theory weights involving quarks,
antiquarks, and gluons can be calculated by expansion of the symmetry operators or by application
of the recoupling relation. When the adjoint representation plays a key role, as it does in gauge
theories, it is wisest to abandon the above construction of all irreps by Clebsch–Gordan reductions
of multiparticle states, and build the theory by taking a single particle and a single antiparticle as
the fundamental building blocks. A much richer theory, beyond the scope of this paper follows,
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leading to a diagrammatic construction of representations of all simple Lie groups, the classical as
well as the exceptional. The reader is referred to Ref. 18 for the full exposition.

VII. NEGATIVE DIMENSIONS

We conclude by a brief discussion of implications of then→−n duality18,36of Usnd invariant
scalars.

Any SUsnd invariant tensor is built from Kronecker deltas and Levi–Civita tensors. A scalar is
a tensor object with all indices contracted, so in the diagrammatic notation a scalar is a diagram
with no external legs, a vacuum bubble. Thus, in scalars Levi–Civita tensors can appear only in
pairs sthe lines must end somewhered, and bys31d the Levi–Civita tensors combine to antisym-
metrizers. Consequently both Usnd and SUsnd invariant scalars are all built only from symmetriz-
ers and antisymmetrizers.

Expanding all symmetry operators in a Usnd vacuum bubble gives a sum of entangled loops.
Each loop is worthn, so each term in the sum is a power ofn, and therefore a Usnd invariant scalar
is a polynomial inn.

The negative dimensionality theorem18,36 for Usnd states that interchanging symmetrizers and
antisymmetrizers in Usnd invariant scalar is equivalentsup to an overall signd to substitutingn
→−n in the polynomial, which is the value of the scalar. We write this

Usnd = Us− nd.

The bar symbolizes the interchange of symmetrizers and antisymmetrizers.
The terms in the expansion of all symmetry operators in a Usnd vacuum bubble can be

arranged in pairs that only differ by one crossing,

s32d

with 6 depending on whether the crossing is due to symmetrizations1d or antisymmetrization
s2d. The gray blobs symbolize the tangle of lines common to the two terms.

If the two arcs outside the gray blob of the first term ofs32d belong to separate loops, then in
the second term they will belong to the same loop. The two terms thus differ only by a factor of
n: schematically,

Likewise, if the arcs in the first term belong to the same loop then in the second term they will
belong to two separate loops. In this case the first term is 1/n times the second term. In either case
the ratio of the two terms is an odd power ofn. Interchanging symmetrizers and antisymmetrizers
in a Usnd vacuum bubble changes the sign ins32d. Up to an overall sign the result is the same as
substitutingn→−n. This proves the theorem.

Consider now the implications for the dimension formulas and the values of 3n− j coeffi-
cients. The dimension of an irrep of Usnd is the trace of the Young projection operator, a vacuum
bubble diagram built from symmetrizers and antisymmetrizers. Applying the negative dimension-
ality theorem we getdYtsnd=dYs−nd, where Yt is the transposeY t of the standard Young tableau
Y obtained by interchanging rows and columnssreflection across the diagonald. For instancef3, 1g
is the transpose off2, 1, 1g,

As an example, note then→−n dualities in the dimension formulas of Fig. 2.
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Now for standard tableaux X, Y, and Z, compare the diagram of the 3−j constructed from X,
Y, and Z to that constructed from Xt, Zt, and Yt. The diagrams are related by a reflection in a
vertical line, reversal of all the arrows on the lines, and interchange of symmetrizers and antisym-
metrizers. The first two operations do not change the value of the diagram, hence the values of the
two diagrams are again related byn↔−n sand possibly an overall sign; this sign is fixed by
requiring that the highest power ofn comes with a positive coefficientd. Hence in tabulation it is
sufficient to calculate approximately half of all 3−j ’s. The 3−j sum rules29d provides a cross-
check.

The two 6−j coefficients

are related by a reflection in a vertical line, reversal of all the arrows on the lines, and interchange
of symmetrizers and antisymmetrizers—this can be seen by writing out the 6−j coefficients in
terms of the Young projection operators as ins27d. By the negative dimensionality theorem, the
values of the two 6−j coefficients are therefore again related byn↔−n.

VIII. SUMMARY

We have presented a diagrammatic method for construction of correctly normalized Young
projection operators for Usnd. These projection operators in diagrammatic form are useful for
explicit evaluation of group theoretic quantities such as the 3n− j coefficients. Using the recou-
pling relations, all Usnd invariant scalars can be reduced to expressions involving only terms of
3− j and 6−j coefficients and the dimensionalities of the representations. Our main results are as
follows:

sid Diagrammatic Young projection operators for tensorssmultiparticle statesd with given
symmetry properties; a diagrammatic proof of their uniqueness, completeness, and
orthogonality.

sii d Usnd invariant scalars may be expressed in terms of the Young projection operators, and
their values computed by diagrammatic expansions.

siii d Usnd 3− j and 6−j coefficients constructed from the three-vertex defined ins24d have
simple n-dependencies: they are proportional to the dimension of the maximal irrep pro-
jection operator that spans over all multiparticle indices.

sivd The negative dimensionality theorem applies to all Usnd invariant scalars, in particular the
3n− j coefficients and the dimensions of the irreps of Usnd.

svd The sum ruless29d and s30d for 3− j and 6−j coefficients afford useful cross-checks of
3n− j tabulations.
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APPENDIX: DIAGRAMMATIC YOUNG PROJECTION OPERATORS: THE PROOFS

In this appendix we prove the properties of the Young projection operators stated above in
Sec. IV.

043501-17 Diagrammatic Young projection operators for Usnd J. Math. Phys. 46, 043501 ~2005!

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  143.215.22.220 On: Sat, 06 Feb 2016

17:21:00



Uniqueness

We show that the Young projection operatorsPY are well defined by proving the existence and
uniquenesssup to an overall signd of a nonvanishing connection between the symmetrizers and
antisymmetrizers inPY.

The proof is by induction over the number of columnst in the Young diagram Y; the prin-
ciples are illustrated in Fig. 4. Fort=1 the Young projection operator consists of one antisymme-
trizer of lengths ands symmetrizers of length 1, and clearly the connection can only be made in
one way, up to an overall sign, see Fig. 1sbd.

Assume the result to hold for Young projection operators derived from Young diagrams with
t−1 columns. Let Y be a Young diagram witht columns. The lines from A1 in PY must connect
to different symmetrizers for the connection to be nonzero. Since there are exactlyuA1u symme-
trizers inPY, this can be done in essentially one way, since which line goes to which symmetrizer
is only a matter of an overall sign, and where a line enters a symmetrizer is irrelevant due to Fig.
1sad.

After having connected A1, connecting the symmetry operators in the rest ofPY is the
problem of connecting symmetrizers to antisymmetrizers in the Young projection operatorPY8,
where Y8 is the Young diagram obtained from Y by slicing off the first column. Thus Y8 hask
−1 columns, so by the induction hypothesis the rest of the symmetry operators inPY can be
connected in exactly one nonvanishing waysup to an overall signd.

Orthogonality

If Y a and Yb denote standard tableaux derived from the same Young diagram Y, then
PYa

PYb
=PYb

PYa
=dabPYa

2 , since there is a permutation of the lines connecting the symmetry op-
erators of Y with those of Z and by uniqueness of the nonzero connection the result is eitherPYa

2

sif Y a=Ybd or sif Y aÞYbd.
Next, consider two different Young diagrams Y and Z with the same number of boxes. Since

at least one column must be bigger inssayd Y than in Z and thep lines from the corresponding
antisymmetrizer must connect to different symmetrizers, it is not possible to make a nonzero
connection between the antisymmetrizers ofPYa

to the symmetrizers inPz, where subscriptsa and
b denote any standard tableaux of Y and Z. HencePYa

PZb
=0, and by a similar argument

PZb
PYa

=0.

Normalization and completeness

We now derive the formula for the normalization factoraY such that the Young projection
operators are idempotent,PYa

2 =PYa
. By the normalization of the symmetry operators, Young

projection operators corresponding to fully symmetric or antisymmetric Young tableaux will be
idempotent withaY =1.

DiagrammaticallyPYa
2 is simply PYa

connected toPYa
, hence it may be viewed as a set of

outersymmetry operators connected by a set ofinner symmetry operators. Expanding all the inner
symmetry operators and using the uniqueness of the nonzero connection between the symmetrizers
and antisymmetrizers of the Young projection operators, we find that each term in the expansion is

FIG. 4. There is a uniquesup to an overall signd connection between the symmetrizers and the antisymmetrizers, so the
Young projection operators are well defined by the construction procedure explained in the text. The figure shows the
principles of the proof. The dots on the middle Young diagram mark boxes that correspond to contracted lines.
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either 0 or a copy ofPYa
. For a Young diagram withs rows andt columns there will be a factor

of 1/uSi u !s1/uA j u !d from the expansion of each innersantidsymmetrizer, so we find

where the sum is over permutations from the expansion of the inner symmetry operators. Note
that by the uniqueness of the connection between the symmetrizers and antisymmetrizers, the
constantkY is independent of which tableau gives rise to the projection, and consequently the
normalization constantaY depends only on the Young diagram and not the tableau.

For a givenk, consider the Young projection operatorsPYa
corresponding to all thek-box

Young tableaux. Since the operatorsPYa
are orthogonal and in one-to-one correspondence with the

Young tableaux, it follows from the discussion in Sec. IV A that there are no other operators ofk
lines orthogonal to this set. Hence thePYa

’s form a complete set, so that

I = o
Ya

PYa
. sA1d

Expanding the projections the identity appears only once, so we have

and using this, equationsA1d states

sA2d

since all permutation different from the identity must cancel. When changing the sum from a sum
over the tableaux to a sum over the Young diagrams we use thataY depends only on the diagram
and that there areDY =k! / uY u k-standard tableaux for a given diagram. Choosing

aY =
Pi=1

s uSiu!P j=1
t uA ju!

uY u
, sA3d

the factor on the right-hand side ofsA2d is 1 by s8d.
Since the choice of normalizationsA3d gives the completeness relationsA1d, it follows that it

also gives idempotent operators, multiplying byPZb
on both sides ofsA1d and using orthogonality,

we find PZb
=PZb

2 for any Young tableau Zb.

Dimensionality

To prove the dimension formulas11d we need the identities

sA4d

and

sA5d

given in Ref. 18. For Young tableaux with a single row or column, the dimension formula can be
derived directly using the relationssA4d and sA5d.
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Let Y be a standard tableau withk boxes, and Y8 the standard Young tableau obtained from
it by removing the box containingk. Draw the Young projection operators corresponding to Y and
Y8 and note thatPY with the “last” line traced is proportional toPY8.

Quite generally the contraction of the last line will look like

sA6d

Using sA4d and sA5d we have

Inserting this intosA6d we see that the first term is proportional to the projection operatorPY8
The second term vanishes,

If we ignore the internal structure within the dotted box we see that this is exactly of the form of
PY8, except that the “last” symmetrizers and antisymmetrizers are connected by a line. There is a
unique nonvanishing way of connecting the symmetrizers and antisymmetrizers inPY8, and the
“last” symmetrizer and antisymmetrizer are not connected in this, as they correspond to a row and
column with no common box in the Young tableau. Therefore every term obtained from the
expansion of the dotted box must vanish.

The dimensionality formula follows by induction on the number of boxes in the Young
diagrams with the dimension of a single box Young diagram beingn. Let Y be a Young diagram
with p boxes. We assume that the dimensionality formula is valid for any Young diagram with
p−1 boxes. WithPY8 obtained fromPY as above, we havesusing the above calculation and
writing DY for the diagrammatic part ofPYd

dim PY = aY tr DY =
n − t + s

st
aY tr DY8 = sn − t + sdaY8

uY8u
uY u

tr DY8 = sn − t + sd
fY8

uY u
=

fY

uY u
.

This completes the proof of the dimensionality formulas11d.
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