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Young tableaux and (non-Hermitian) Young projection operators were introduced by
Young [21] in 1933 (Tung monograph [20] is a standard exposition). In 1937 R. Bra-
uer [4] introduced diagrammatic notation for δij in order to represent “Brauer algebra”
permutations, index contractions, and matrix multiplication diagrammatically. R. Pen-
rose’s papers were the first to cast the Young projection operators into a diagrammatic
form. In 1971 monograph [14] Penrose introduced diagrammatic notation for sym-
metrization operators, Levi-Civita tensors [16], and “strand networks” [13]. Penrose
credits Aitken [2] with introducing this notation in 1939, but inspection of Aitken’s
book reveals a few Brauer diagrams for permutations, and no (anti)symmetrizers. Pen-
rose’s [15] 1952 initial ways of drawing symmetrizers and antisymmetrizers are very
aesthetical, but the subsequent developments gave them a distinctly ostrich flavor [15].
In 1974 G. ’t Hooft introduced a double-line notation for U(n) gluon group-theory
weights [1]. In 1976 Cvitanović [8] introduced analogous notation for SU(N), SO(n)
and Sp(n). For several specific, few-index tensor examples, diagrammatic Young pro-
jection operators were constructed by Canning [6], Mandula [12], and Stedman [18].

The 1975–2008 Cvitanović diagrammatic formulation of the theory of all semi-
simple Lie groups [9] as a way to compute group theoretic wights without any recourse
to symbols goes conceptually and profoundly beyond the Penrose notation (indeed,
Cvitanović “birdtracks” bear no resemblance to Penrose’s “fornicating ostriches” [15]).

A chapter in Cvitanović 2008 monograph [9] sketches how birdtrack (diagram-
matic) Young projection operators for arbitrary irreducible representation of SU(N)
could be constructed (this text is augmented by a 2005 appendix by Elvang, Cvi-
tanović and Kennedy [10] which, however, contains a significant error). Keppeler and
Sjödahl [11] systematized the construction by offering a simple method to construct
Hermitian Young projection operators in the birdtrack formalism. Their iteration is
easy to understand, and the proofs of Hermiticity are simple. However, in practice, the
algorithm is inefficient - the expression balloon quickly, the Young projection operators
soon become unwieldy and impractical, if not impossible to implement.

The Alcock-Zeilinger algorithm, based on the simplification rules of ref. [3], leads
to explicitly Hermitian and drastically more compact expressions for the projection op-
erators than the Keppeler-Sjödahl algorithm [11]. Alcock-Zeilinger fully supersedes
Cvitanović’s formulation, and any future full exposition of reduction of SU(N) ten-
sor products into irreducible representations should be based on the Alcock-Zeilinger
algorithm.
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16.1 Literature

We noted in sect. 2.1 that a practically-minded physicist always has been, and continues
to be resistant to gruppenpest. Apparently already in 1910 James Jeans wrote, while
discussing what should a physics syllabus contain: “We may as well cut out the group
theory. That is a subject that will never be of any use in physics.”

Voit writes here about the “The Stormy Onset of Group Theory in the New Quan-
tum Mechanics,” citing Bonolis [3] From the rise of the group concept to the stormy
onset of group theory in the New Quantum Mechanics. A saga of the invariant charac-
terization of physical objects, events and theories.

Chayut [4] From the periphery: the genesis of Eugene P. Wigner’s application of
group theory to quantum mechanics traces the origins of Wigner’s application of group
theory to quantum physics to his early work as a chemical engineer, in chemistry and
crystallography. “In the early 1920s, crystallography was the only discipline in which
symmetry groups were routinely used. Wigner’s early training in chemistry exposed
him to conceptual tools which were absent from the pedagogy available to physicists
for many years to come. This both enabled and pushed him to apply the group theoretic
approach to quantum physics. It took many years for the approach first introduced by
Wigner in the 1920s – and whose reception by the physicists was initially problematical
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13.1 Group theory news
Mathematicians map E8, and it is bigger than the human genome.

Turns out, applications of group theory go way beyond what is covered in this 
course:

Group theory of defamation: The officers argued Sawant’s statements impugned 
them individually even though she only spoke about the police department as a whole. 
The court says suing as individuals and advancing a group theory of defamation takes 
far more than the officers showed in their complaint.

[W]hether proceeding under an individual or group theory, Plaintiffs must
plead that the statements “specifically” identified or singled them out, or
was understood as “referring to [them] in particular.” Sims, 20 Wn. App.
at 236.

http://www.math.columbia.edu/~woit/wordpress/?p=191


– to assume the pivotal place it now holds.” Another historical exposition is given by
Scholz [9] Introducing groups into quantum theory (1926–1930).

So what is group theory good for? By identifying the symmetries, one can apply
group theory to determine good quantum numbers which describe a physical state (i.e.,
the irreps). Group theory then says that many matrix elements vanish, or shows how
are they related to others. While group theory does not determine the actual value of a
matrix element of interest, it vastly simplifies its calculation.

The old fashioned atomic physics, fixated on SO(3) / SU(2), is too explicit, with too
many bras and kets, too many square roots, too many deliriously complicated Clebsch-
Gordan coefficients that you do not need, and way too many labels, way too explicit for
you to notice that all of these are eventually summed over, resulting in a final answer
much simpler than any of the intermediate steps.

I wrote my book [6] Group Theory - Birdtracks, Lie’s, and Exceptional Groups to
teach you how to compute everything you need to compute, without ever writing down
a single explicit matrix element, or a single Clebsch-Gordan coefficient. There are two
versions. There is a particle-physics / Feynman diagrams version that is index free,
graphical and easy to use (at least for the low-dimensional irreps). The key insights are
already in Wigner’s book [11]: the content of symmetry is a set of invariant numbers
that he calls 3n-j’s. Then there are various mathematical flavors (Weyl group on Cartan
lattice, etc.), elegant, but perhaps too elegant to be computationally practical.

But it is nearly impossible to deprogram people from years of indoctrination in
QM and EM classes. The professors have no time to learn new stuff, and students love
manipulating their mu’s and nu’s.
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