is QED finite?

Predrag Cvitanović

New Trends in First Quantisation Bad Honnef April 16, 2025

overview

what this is about

- QED finiteness conjecture
- Obye bye, Feynman diagrams
- gitterberechnung, in Bad Honnef verboten

4- and 5-loop contributions to the anomaly

in 2017 Laporta completed the 20-year project : 891 4-loop electron magnetic moment diagrams, analytically¹

here : the quenched set, no lepton loops 4- and 5-loop contributions to the anomaly $a = \frac{1}{2}(g-2)$:

 $a^{(8)} = -2.176866027739540077443259355895893938670$

- = -2.569(237) Kitano² gitterberechnung, in Bad Honnef verboten
- $a^{(10)} = 6.782(113)$ Volkov³, Aoyama *et al.*⁴
 - = 6.979(937) Kitano Gitter darf hier nicht erwähnt werden

awesome, heroic achievements

¹S. Laporta, Phys. Lett. B 772, 232–238 (2017).

²R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).

³S. Volkov, Phys. Rev. D **110**, 036001 (2024).

⁴T. Aoyama et al., Phys. Rev. D **111**, I031902 (2025).

request #1

please always do look at the quenched set separately

renormalons schnormalons, they will go gently into that good night :)

notation : electron-photon vertex Γ_{μ}

out-, in- electron momenta : $p_{\pm} = p \mp q/2$ evaluated on the mass shell $p_{\pm}^2 = m^2 = 1$

Dirac, Pauli form factors $F_1(q^2)$ and $F_2(q^2)$:

$$\overline{u}(p_{+})\Gamma_{\mu}(p,q)u(p_{-})=\overline{u}(p_{+})\left\{F_{1}(q^{2})\gamma_{\mu}-\frac{F_{2}(q^{2})}{2m}\sigma_{\mu\nu}q^{\nu}\right\}u(p_{-}),$$

spinors $\overline{u}(p_+)$ and $u(p_-)$ satisfy the Dirac equation

$$\overline{u}(p_+) \not p_+ = \overline{u}(p_+) m, \qquad \not p_- u(p_-) = m u(p_-).$$

notation : renormalized vertex

 $Z_1 = 1 + L$: vertex renormalization constant Z_2 : electron wave function renormalization constant Ward identity: $Z_1 = Z_2$.

by definition, the renormalized charge form factor $\tilde{F}_1(0) = 1$

The vertex renormalization constant *L* is given by the on-shell value of the unrenormalized charge form factor⁵

$$1 + L = F_1(0) = \frac{1}{4} \text{tr} \left[(\not p + 1) \rho^{\nu} \Gamma^{\nu} \right]_{q=0}$$

(the electron mass set to m = 1 throughout)

⁵S. J. Brodsky and J. D. Sullivan, Phys. Rev. **156**, 1644–1647 (1967).

the anomalous magnetic moment of an electron

$$a = (g - 2)/2$$

is given by the static limit of the magnetic form factor $a = \tilde{F}_2(0) = M/(1 + L)$, where⁶

$$M = \lim_{q \to 0} \frac{1}{4q^2} \operatorname{tr} \left\{ \left[\gamma^{\nu} p^2 - (1 + q^2/2) p^{\nu} \right] (p_+ + 1) \Gamma_{\nu} (p_- + 1) \right\}$$

⁶S. J. Brodsky and J. D. Sullivan, Phys. Rev. **156**, 1644–1647 (1967).

perturbative expansion for the magnetic moment anomaly

$$a = \frac{M(\alpha)}{1+L(\alpha)} = \sum_{n=1}^{\infty} a^{(2n)} \left(\frac{\alpha}{\pi}\right)^n$$

where $1 + L = F_1(0)$, $M = F_2(0)$ are computed from the unrenormalized proper vertex, given by the sum of all one-particle irreducible electron-electron-photon vertex diagrams with internal photons and electron mass counterterms. Expanding *M* and *L* we have

$$\begin{array}{rcl} a^{(2)} & = & M^{(2)} \\ a^{(4)} & = & M^{(4)} - L^{(2)} M^{(2)} \\ a^{(6)} & = & M^{(6)} - L^{(2)} M^{(4)} - (L^{(4)} - (L^{(2)})^2) M^{(2)} \end{array}$$

look at physical, mass-shell observables

4- and 5-loop contributions to the anomaly

4-loop: 518 diagrams

5-loop: 6354 diagrams

each of size $\approx \pm 10$, add them up:

a ⁽²⁾	=	+0.5	
a ⁽⁴⁾	=	-0.33	
a ⁽⁶⁾	=	+0.92	
a ⁽⁸⁾	=	-2.18	
a ⁽¹⁰⁾	=	+6.78	(not random graphs sum $pprox \pm$ 800 !!!)

Q : what is the **Sign** of *n*th contribution?

Q : why are these numbers SO insanely SMall?

as a prelude, you might enjoy the Dunne and Schubert⁷ historical review of ideas about the QED perturbation series

they note:

a point which remains poorly understood

"is the influence of gauge cancellations on the divergence structure of a gauge theory."

⁷G. V. Dunne and C. Schubert, J. Phys. Conf. Ser. **37**, 59–72 (2006).

If gauge invariance of QED guarantees that all UV and on-mass shell IR divergences cancel, could it be that it also enforces cancellations among the finite parts of contributions of different Feynman graphs?

gauge invariance

A gauge change generates a k^{μ} term in a photon propagator, and that affects a photon-electron vertex in a very simple way.

from
$$k = (p + k + m) - (p + m)$$
 it follows that

$$\frac{1}{p + k - m} k \frac{1}{p - m} = \frac{1}{p - m} - \frac{1}{p + k - m},$$

neighbouring photon insertions cancel, leading to

gauge invariant sets

gauge sets

A gauge set *kmm*' consists of all 1-particle irreducible vertex diagrams, with *k* photons crossing the external vertex (cross-photons) and m[m'] photons originating and terminating on the incoming [outgoing] electron leg (leg-photons)

representative 4-loop gauge set graphs

remaining diagrams : permute vertices, mirror diagrams

gauge set	kmm'	Laporta	approx
(1)	130	- 1.9710	- 2
(2)	220	- 0.1424	0
(3)	121	- 0.6219	- 1/2
(4)	211	1.0867	1
(5)	310	- 1.0405	- 1
(6)	400	0.5125	1/2

Laporta⁸ gauge-set contributions $a_{kmm'}^{(8)}$; my approximations Signs are right, and the sets are close to multiples of 1/2

⁸S. Laporta, Phys. Lett. B 772, 232–238 (2017).

there are very few gauge sets

Order	Vertex graphs	Gauge sets	Anomaly	
2 <i>n</i>	Γ_{2n}	G_{2n}	$a^{(2n)}$	
2	1	1	1/2	
4	6	2	0	
6	50	4	1	
8	518	6	0	
10	6354	9	3/2	
12	89 782	12	0	
14	1 429 480	16	2	

Comparison of the number of vertex diagrams without fermion loops, gauge sets, and the "gauge-set approximation"⁹ for the magnetic moment in 2*n*th order.

⁹P. Cvitanović, Nucl. Phys. B **127**, 176–188 (1977).

Is there any method of computing the anomalous moment of the electron which, on first approximation, gives a fair approximation to the α term and a crude one to α^2 ; and when improved, increases the accuracy of the α^2 term, yielding a rough estimate to α^3 and beyond?¹⁰

¹⁰R. P. Feynman, "The present status of Quantum Electrodynamics", in *The Quantum Theory of Fields:* Proceedings of the XII on Physics at the Univ. of Brussels (Interscience, 1962), p. 61.

the unreasonable smallness of gauge sets

When the diagrams are grouped into gauge sets, a surprising thing happens; while the finite part of each Feynman diagram is of order of 10 to 100, and each one is UV and IR divergent, for n = 2,3 every gauge set adds up to approximately

$$\pm \frac{1}{2} \left(\frac{\alpha}{\pi}\right)^n$$

with the sign given by a simple empirical rule

$$a_{kmm'} = (-1)^{m+m'} \frac{1}{2}$$

1977 (slightly wrong) four-loop prediction

new "prediction" : $a^{(8)} = -2$, rather than 0.

2025 five-loop status

2n			(k, m, m')			anomaly	
2	(1,0,0)					40%	
4	(1, 1, 0) $-\frac{1}{2}(65)$	(2, 0, 0) $\frac{1}{2}(.31)$				0 (-33)	
6	(1, 2, 0) $\frac{1}{4}(.56)$ (1, 1, 1) $\frac{1}{2}(.43)$	(2,1,0) -1/2 (-47)	(3,0,0) <u>1</u> (.44)			1 (.93)	
	(1, 3, 0) -14(-1.97)	(2,2,0) 0 (-0.14)	(3,1,0) - 2(-1.04)	(4, 0, 0) $\frac{1}{2}$ (.51)			
8	(1, 2, 1) $-\frac{1}{2}(62)$	(2, 1, 1) $\frac{1}{2} \cdot 2 (1,08)$				0 (-2.17)	
	(1, 4, 0) $\frac{1}{10}$ (6.2)	(2, 3, 0) - ¹ / ₂ (-0.72)	(3,2,0) -0 (-0,40)	(4, 1, 0) - 1/2 (-1.02)	(5,0,0)] 2(1.09)	§-4 (6.78)	
10	(1, 3, 1) $\frac{1}{2}(0.90)$ (1, 2, 2) $\frac{1}{2}(0.30)$	(2, 2, 1) $-\frac{1}{2}$ 4 (-2,16)	(3,1,1) 5 (2,62)				

gauge-set (k, m, m')

[naive ansatz $\pm \frac{1}{2}$] \cdot [integer] \approx [(\cdots) Volkov 2019 numerical value]

With prediction $a_{kmm'} = (-1)^{m+m'}/2$, the "zeroth" order estimate of the electron magnetic moment anomaly is given by the "gauge-set approximation," convergent and summable to all orders

$$a = rac{1}{2}(g-2) = rac{1}{2}rac{lpha}{\pi}rac{1}{\left(1-\left(rac{lpha}{\pi}
ight)^2
ight)^2}+ ext{"corrections"}\,.$$

request #3

gauge invariance matters

forget Dyson

most colleagues believe that in 1952 Dyson¹¹ had shown that the QED perturbation expansion is an asymptotic series (for a discussion, see Dunne and Schubert¹²), in the sense that the *n*-th order contribution should be exploding combinatorially

$$rac{1}{2}(g-2)pprox\cdots+n^n\left(rac{lpha}{\pi}
ight)^n+\cdots,$$

contrast with my estimate

$$\frac{1}{2}(g-2)\approx\cdots+\frac{n}{2}\left(\frac{lpha}{\pi}\right)^{2n}+\cdots$$

hence "QED is finite" claim

¹¹F. J. Dyson, Phys. Rev. **85**, 631–632 (1952).

¹²G. V. Dunne and C. Schubert, J. Phys. Conf. Ser. **37**, 59–72 (2006), I. Huet et al., "Asymptotic behaviour of the QED perturbation series", in *5th Winter Workshop on Non-Perturbative Quantum Field Theory, Sophia-Antipolis*, edited by C. Schubert (2017).

request #4 : prove that quenched QED is finite

any bound on a gauge set, exponential or slower, will do the trick!

QED finiteness conjecture

- o bye bye, Feynman diagrams
- 3 gitterberechnung, in Bad Honnef verboten

bye bye, Feynman diagrams

it's been a good ride, but there are way too many of you

lattice QED anomaly evaluation

1- to 5-loop contributions to the anomaly $a = \frac{1}{2}(g-2)$ the quenched set, no lepton loops:

$$a^{(2)} = 1/2$$
 Schwinger
 $= 0.505(1)$ lattice
 $a^{(4)} = -0.33\cdots$
 $= -0.34(1)$ lattice
 $a^{(6)} = 0.89\cdots$
 $= 0.89(5)$ lattice
 $a^{(8)} = -2.176\cdots$
 $= -2.5(2)$ lattice
 $a^{(10)} = 6.8(1)$ Volkov, Aoyama *et al.*

= 6.9(9) Kitano¹³ Gitter darf hier nicht erwähnt werden

look ma, no Feynman diagrams !

¹³R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).

Euclidean field theory

a field configuration Φ over primitive cell $\mathbb A$ occurs with state space probability density

$$\mathcal{P}_{\mathbb{A}}[\Phi] \,=\, rac{1}{Z_{\mathbb{A}}}\, e^{-S[\Phi]}\,, \qquad Z_{\mathbb{A}}=Z_{\mathbb{A}}[0]\,,$$

partition sum

$$Z_{\mathbb{A}}[\mathsf{J}] = \int d\Phi_{\mathbb{A}} e^{-S[\Phi] + \mathsf{J} \cdot \Phi}, \ d\Phi_{\mathbb{A}} = \prod_{z \in \mathbb{A}} d\phi_z.$$

applications of $d/dJ_z \Rightarrow$

n-point correlations $\langle \phi_{z_1} \phi_{z_2} \cdots \phi_{z_n} \rangle_{\mathbb{A}}$

 $S[\Phi]$ is the log probability (in statistics), the Gibbs weight (in statistical physics), or the action (in field theory)

QED without lepton loops is free theory

lattice action in the Feynman gauge

$$S_{\text{QED}} = rac{1}{2} \sum_{n,\mu} A_{\mu}(n) (-\Box + m_{\gamma}^2) A_{\mu}(n) , \qquad (1)$$

unit a = 1 lattice spacing

the electron-photon coupling e is in the electron propagator

$$(D)_{nm}^{\alpha\beta} = m \,\delta_{nm} \delta_{\alpha\beta} + \frac{1}{2} \sum_{\mu} \left[(\gamma_{\mu})_{\alpha\beta} e^{ieA_{\mu}(n)} \delta_{n+\mu,m} - (\gamma_{\mu})_{\alpha\beta} e^{-ieA_{\mu}(n-\mu)} \delta_{n-\mu,m} \right].$$

no lepton loops, so *e* is not renormalized, not a parameter in the simulation

lattice gauge simulation estimates the vertex form factor

$$G_{\mu}(t) = \Big\langle \sum_{\mathbf{p}'} D^{-1}(t_{\mathrm{sink}}, t; \mathbf{p}, \mathbf{p}') \gamma_{\mu} D^{-1}(t, t_{\mathrm{src}}; \mathbf{p}' + \mathbf{k}, \mathbf{p} + \mathbf{k}) \Big\rangle,$$

The locations $t_{\rm src}$, $t_{\rm sink}$ and t are those of two fermions and the current operator, respectively. They fix locations $t_{\rm src}$ and $t_{\rm sink}$ view the correlation function as a function of t

stochastic quantization

obtain the gauge field $A_{\mu}(n)$ correlation functions as the fictitious time average of the Langevin trajectories¹⁴

$$rac{\partial oldsymbol{A}_{\mu}(oldsymbol{n}, au)}{\partial au} = -rac{\delta oldsymbol{S}_{ ext{lattice}}}{\delta oldsymbol{A}_{\mu}(oldsymbol{n}, au)} + \eta_{\mu}(oldsymbol{n}, au)\,,$$

with Gaussian noise $\eta_{\mu}(n, \tau)$,

$$\langle A_{\mu_1}(n_1)\cdots A_{\mu_k}(n_k)\rangle = \lim_{\Delta\tau\to\infty} \frac{1}{\Delta\tau} \int_{\tau_0}^{\tau_0+\Delta\tau} dA_{\mu_1}(n_1,\tau)\cdots A_{\mu_k}(n_k,\tau),$$

Partition sum probability density e^{-S} is the fixed point of the corresponding Fokker-Planck equation

¹⁴R. Kitano et al., J. High Energy Phys. **2021**, 199 (2021).

coupling constant e expansion

expand $A_{\mu}(n, \tau)$ as

$$A_{\mu}(n,\tau) = \sum_{p=0}^{\infty} e^{p} A_{\mu}^{(p)}(n,\tau)$$

Langevin evolves each $A^{(p)}_{\mu}$,

$$\frac{\partial A_{\mu}^{(p)}(\boldsymbol{n},\tau)}{\partial \tau} = -\frac{\delta S_{\text{lattice}}}{\delta A_{\mu}(\boldsymbol{n},\tau)}\bigg|_{(p)} + \eta_{\mu}(\boldsymbol{n},\tau)\delta_{p0}$$

Worry 15 about UV, IR regularizations, lattice volume effects, continuum limit, \cdots

Take "L $\rightarrow \infty$ " and "T $\rightarrow \infty$ " large

They perform the lattice simulations with five sets of lattice volumes:

 $L^3 \times T = 24^3 \times 48, 28^3 \times 56, 32^3 \times 64, 48^3 \times 96$, and $64^3 \times 128$.

¹⁵R. Kitano and H. Takaura, Prog. Theor. Exp. Phys. **2023**, 103B02 (2023).

lattice QED anomaly evaluation

1- to 5-loop contributions to the anomaly $a = \frac{1}{2}(g-2)$ the quenched set, no lepton loops:

$$a^{(2)} = 0.505(1)$$
 Kitano
 $a^{(4)} = -0.34(1)$
 $a^{(6)} = 0.89(5)$
 $a^{(8)} = -2.5(2)$
 $a^{(10)} = 6.8(1)$ Volkov, Aoyama *et al.*
 $= 6.9(9)$ Kitano¹⁶

look ma, no Feynman diagrams !

Can it be made accurate?

¹⁶R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).

so far facts ; next, speculations

QED finiteness conjecture

- o bye bye, Feynman diagrams
- spatiotemporal chaos, in Bad Honnef verboten

chaotic lattice field theory, in Bad Honnef verboten

chaotic field theory

field theory in terms of spacetime periodic states

semiclassical chaotic field theory

deterministic field theory

For two-dimensional integer lattices, the spatiotemporal zeta function is the product over all prime orbits, of form¹⁷

$$1/\zeta = \prod_{p} 1/\zeta_{p}, \qquad 1/\zeta_{p} = \prod_{n=1}^{\infty} (1-t_{p}^{n}).$$

¹⁷P. Cvitanović and H. Liang, A chaotic lattice field theory in two dimensions, 2025.

expectation value of observables

expectation value of observable *a* is given by the cycle averaging formula

$$\langle a \rangle = \frac{\langle A \rangle_{\zeta}}{\langle V \rangle_{\zeta}}$$

Here the weighted Birkhoff sum of the observable $\langle A \rangle_{\zeta}$ and the weighted multi-period lattice volume $\langle V \rangle_{\zeta}$ are

$$\langle \boldsymbol{A} \rangle_{\zeta} = -\frac{\partial}{\partial \beta} \mathbf{1} / \zeta[\beta, \boldsymbol{z}(\beta)] \Big|_{\beta=0, z=z(0)} ,$$

$$\langle \boldsymbol{V} \rangle_{\zeta} = -\boldsymbol{z} \frac{\partial}{\partial \boldsymbol{z}} \mathbf{1} / \zeta[\beta, \boldsymbol{z}(\beta)] \Big|_{\beta=0, z=z(0)}$$

where the subscript in $\langle \cdots \rangle_{\zeta}$ stands for the deterministic zeta evaluation of such weighted sum over prime orbits.

chaotic field theory evaluation of anomaly

proposal : take the vertex form factor as observable

 $G_{\mu} = D^{-1} \gamma_{\mu} D^{-1}$

then its expectation value is given by deterministic zeta function weighted sum of G_{μ} evaluated over all prime orbits p,

$$\langle {\cal G}_{\mu}
angle_{\zeta} \, = \, - \sum_{m{
ho}}{}^{\prime} ({\cal G}_{\mu})_{m{
ho}}$$

(impressionistic "equation" : the correct formula is more complicated)

- everything evaluated on the infinite spacetime lattice
- no " $L \rightarrow \infty$ " and " $T \rightarrow \infty$ " limits estimates
- no Monte-Carlo voodoo

a fun fact

the 'anti-integrable' corner of Euclidian field theory is the 'chaos theory' of the last 1/4 of 20th century

as proven by 1886 Hill's formulas¹⁸

¹⁸G. W. Hill, Acta Math. 8, 1–36 (1886).

summary

- a proof of the QED finiteness conjecture might be within reach
- So might be methods for computing gauge invariant QFT sets without recourse to Feynman diagrams

you can download the current version of full notes here: ChaosBook.org/~predrag/papers/finiteQED.pdf

The source code: GitHub.com/cvitanov/reducesymm/QFT