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4- and 5-loop contributions to the anomaly

in 2017 Laporta completed the 20-year project :
891 4-loop electron magnetic moment diagrams, analytically1

here : the quenched set, no lepton loops
4- and 5-loop contributions to the anomaly a = 1

2(g − 2):

a(8) = −2.176866027739540077443259355895893938670
= −2.569(237) Kitano2 gitterberechnung, in Bad Honnef verboten

a(10) = 6.782(113) Volkov3, Aoyama et al.4

= 6.979(937) Kitano Gitter darf hier nicht erwähnt werden

awesome, heroic achievements

1S. Laporta, Phys. Lett. B 772, 232–238 (2017).
2R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).
3S. Volkov, Phys. Rev. D 110, 036001 (2024).
4T. Aoyama et al., Phys. Rev. D 111, l031902 (2025).

https://doi.org/10.1016/j.physletb.2017.06.056
https://doi.org/10.1093/ptep/ptae194
https://doi.org/10.1103/physrevd.110.036001
https://doi.org/10.1103/physrevd.111.l031902


request #1

please always do look at the
quenched set separately

renormalons schnormalons, they will go gently into that good night :)

https://soundcloud.com/poets-org/notgogentle-mp3-5/s-2o7zI


notation : electron-photon vertex Γµ

out-, in- electron momenta : p± = p ∓ q/2
evaluated on the mass shell p2

± = m2 = 1

Dirac, Pauli form factors F1(q2) and F2(q2):

u(p+)Γµ(p,q)u(p−) = u(p+)

{
F1(q2)γµ−

F2(q2)

2m
σµνqν

}
u(p−) ,

spinors u(p+) and u(p−) satisfy the Dirac equation

u(p+) ̸p+ = u(p+)m , ̸p− u(p−) = m u(p−) .



notation : renormalized vertex

Z1 = 1 + L : vertex renormalization constant
Z2 : electron wave function renormalization constant
Ward identity : Z1 = Z2.



renormalized vertex

by definition, the renormalized charge form factor F̃1(0) = 1

The vertex renormalization constant L is given by the on-shell
value of the unrenormalized charge form factor5

1 + L = F1(0) =
1
4

tr [(̸p + 1)pνΓν ]q=0

(the electron mass set to m = 1 throughout)

5S. J. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644–1647 (1967).

https://doi.org/10.1103/PhysRev.156.1644


magnetic moment

the anomalous magnetic moment of an electron

a = (g − 2)/2

is given by the static limit of the magnetic form factor
a = F̃2(0) = M/(1 + L), where6

M = lim
q→0

1
4q2 tr

{[
γνp2 − (1 + q2/2)pν

]
(̸p+ + 1)Γν(̸p− + 1)

}

6S. J. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644–1647 (1967).

https://doi.org/10.1103/PhysRev.156.1644


perturbative expansion for the magnetic moment anomaly

a =
M(α)

1 + L(α)
=

∞∑
n=1

a(2n)
(α
π

)n
,

where 1 + L = F1(0), M = F2(0) are computed from the
unrenormalized proper vertex, given by the sum of all
one-particle irreducible electron-electron-photon vertex
diagrams with internal photons and electron mass
counterterms. Expanding M and L we have

a(2) = M(2)

a(4) = M(4) − L(2)M(2)

a(6) = M(6) − L(2)M(4) − (L(4) − (L(2))2)M(2)



request #2

look at physical, mass-shell
observables



4- and 5-loop contributions to the anomaly

4-loop : 518 diagrams

5-loop : 6 354 diagrams

each of size ≈ ±10, add them up:

a(2) = +0.5
a(4) = −0.33
a(6) = +0.92
a(8) = −2.18

a(10) = +6.78 (not random graphs sum ≈ ±800 !!!)

Q : what is the sign of nth contribution?

Q : why are these numbers so insanely small?



gauge cancellations?

as a prelude, you might enjoy the Dunne and Schubert7

historical review of ideas about the QED
perturbation series

they note:

a point which remains poorly understood
“is the influence of gauge cancellations on the divergence
structure of a gauge theory.”

7G. V. Dunne and C. Schubert, J. Phys. Conf. Ser. 37, 59–72 (2006).

https://doi.org/10.1088/1742-6596/37/1/012


gauge invariance induced cancellations

If gauge invariance of QED guarantees that all UV and
on-mass shell IR divergences cancel, could it be that it also
enforces cancellations among the finite parts of contributions of
different Feynman graphs?



gauge invariance

A gauge change generates a kµ term in a photon propagator,
and that affects a photon-electron vertex in a very simple way.

from ̸k = (̸p+ ̸k + m)− (̸p + m) it follows that

1
̸p+ ̸k − m

̸k 1
̸p − m

=
1

̸p − m
− 1

̸p+ ̸k − m
,

neighbouring photon insertions cancel, leading to

gauge invariant sets



gauge sets

a =
1
2
(g − 2) =

∞∑
k=1

∞∑
m=0

∞∑
m′=0

akmm′

(α
π

)k+m+m′

.

A gauge set kmm′ consists of all 1-particle irreducible vertex
diagrams, with k photons crossing the external vertex
(cross-photons) and m [m′] photons originating and terminating
on the incoming [outgoing] electron leg (leg-photons)



representative 4-loop gauge set graphs

(1) (2) (3) (4) (5) (6)

remaining diagrams : permute vertices, mirror diagrams

gauge set kmm′ Laporta approx
(1) 130 - 1.9710 - 2
(2) 220 - 0.1424 0
(3) 121 - 0.6219 - 1/2
(4) 211 1.0867 1
(5) 310 - 1.0405 - 1
(6) 400 0.5125 1/2

Laporta8 gauge-set contributions a(8)
kmm′ ; my approximations

Signs are right, and the sets are close to multiples of 1/2

8S. Laporta, Phys. Lett. B 772, 232–238 (2017).

https://doi.org/10.1016/j.physletb.2017.06.056


there are very few gauge sets

Comparison of the number of vertex diagrams without fermion loops, gauge sets, and

the “gauge-set approximation”9 for the magnetic moment in 2nth order.

9P. Cvitanović, Nucl. Phys. B 127, 176–188 (1977).

https://doi.org/10.1016/0550-3213(77)90357-1


Feynman’s challenge, 12th Solvay Conference

Is there any method of computing the anomalous moment of
the electron which, on first approximation, gives a fair
approximation to the α term and a crude one to α2; and when
improved, increases the accuracy of the α2 term, yielding a
rough estimate to α3 and beyond?10

10R. P. Feynman, “The present status of Quantum Electrodynamics”, in The Quantum Theory of Fields:
Proceedings of the XII on Physics at the Univ. of Brussels (Interscience, 1962), p. 61.

https://archive.org/details/quantumtheoryoff00unse
https://archive.org/details/quantumtheoryoff00unse


the unreasonable smallness of gauge sets

When the diagrams are grouped into gauge sets, a surprising
thing happens; while the finite part of each Feynman diagram is
of order of 10 to 100, and each one is UV and IR divergent, for
n = 2,3 every gauge set adds up to approximately

±1
2

(α
π

)n
,

with the sign given by a simple empirical rule

akmm′ = (−1)m+m′ 1
2



1977 (slightly wrong) four-loop prediction

new “prediction” : a(8) = −2, rather than 0.



2025 five-loop status

gauge-set (k ,m,m′)

[ naive ansatz ± 1
2 ] · [ integer ] ≈ [ (· · · ) Volkov 2019 numerical value ]



an example of (slightly wrong) gauge-set approximation

With prediction akmm′ = (−1)m+m′
/2 , the “zeroth” order

estimate of the electron magnetic moment anomaly is given by
the “gauge-set approximation,” convergent and summable to all
orders

a =
1
2
(g − 2) =

1
2
α

π

1(
1 −

(
α
π

)2
)2 + “corrections" .



request #3

gauge invariance matters



forget Dyson

most colleagues believe that in 1952 Dyson11 had shown that
the QED perturbation expansion is an asymptotic series (for a
discussion, see Dunne and Schubert12), in the sense that the
n-th order contribution should be exploding combinatorially

1
2
(g − 2) ≈ · · ·+ nn

(α
π

)n
+ · · · ,

contrast with my estimate

1
2
(g − 2) ≈ · · ·+ n

2

(α
π

)2n
+ · · · .

hence “QED is finite” claim

11F. J. Dyson, Phys. Rev. 85, 631–632 (1952).
12G. V. Dunne and C. Schubert, J. Phys. Conf. Ser. 37, 59–72 (2006), I. Huet et al., “Asymptotic behaviour of the

QED perturbation series”, in 5th Winter Workshop on Non-Perturbative Quantum Field Theory, Sophia-Antipolis,
edited by C. Schubert (2017).

https://doi.org/10.1103/physrev.85.631
https://doi.org/10.1088/1742-6596/37/1/012
http://inspirehep.net/record/1604933?ln=en


request #4 : prove that quenched QED is finite

any bound on a gauge set,
exponential or slower, will do the

trick!



1 QED finiteness conjecture
2 bye bye, Feynman diagrams
3 gitterberechnung, in Bad Honnef verboten



bye bye, Feynman diagrams

it’s been a good ride, but there are way too many of you



lattice QED anomaly evaluation

1- to 5-loop contributions to the anomaly a = 1
2(g − 2)

the quenched set, no lepton loops:

a(2) = 1/2 Schwinger
= 0.505(1) lattice

a(4) = −0.33 · · ·
= −0.34(1) lattice

a(6) = 0.89 · · ·
= 0.89(5) lattice

a(8) = −2.176 · · ·
= −2.5(2) lattice

a(10) = 6.8(1) Volkov, Aoyama et al.
= 6.9(9) Kitano13 Gitter darf hier nicht erwähnt werden

look ma, no Feynman diagrams !
13R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).

https://doi.org/10.1093/ptep/ptae194


Euclidean field theory

a field configuration Φ over primitive cell A occurs with state
space probability density

pA[Φ] =
1

ZA
e−S[Φ] , ZA = ZA[0] ,

partition sum

ZA[J] =
∫

dΦA e−S[Φ]+J·Φ, dΦA =
∏
z∈A

dϕz .

applications of d/dJz ⇒
n-point correlations ⟨ϕz1ϕz2 · · ·ϕzn⟩A

S[Φ] is the log probability (in statistics), the Gibbs weight (in
statistical physics), or the action (in field theory)



quenched lattice QED

QED without lepton loops is free theory

lattice action in the Feynman gauge

SQED =
1
2

∑
n,µ

Aµ(n)(−□+ m2
γ)Aµ(n) , (1)

unit a = 1 lattice spacing



lattice Dirac propagator

the electron-photon coupling e is in the electron propagator

(D)αβnm = m δnmδαβ +
1
2

∑
µ

[
(γµ)αβeieAµ(n)δn+µ,m

−(γµ)αβe−ieAµ(n−µ)δn−µ,m

]
.

no lepton loops, so e is not renormalized, not a parameter in
the simulation



fermion–fermion–current three-point functions

lattice gauge simulation estimates the vertex form factor

Gµ(t) =
〈∑

p′

D−1(tsink, t ;p,p′)γµD−1(t , tsrc;p′ + k,p + k)
〉
,

The locations tsrc, tsink and t are those of two fermions and the
current operator, respectively. They fix locations tsrc and tsink
view the correlation function as a function of t



stochastic quantization

obtain the gauge field Aµ(n) correlation functions as the
fictitious time average of the Langevin trajectories14

∂Aµ(n, τ)
∂τ

= − δSlattice

δAµ(n, τ)
+ ηµ(n, τ) ,

with Gaussian noise ηµ(n, τ),

⟨Aµ1(n1) · · ·Aµk (nk )⟩ = lim
∆τ→∞

1
∆τ

∫ τ0+∆τ

τ0

dτAµ1(n1, τ) · · ·Aµk (nk , τ),

Partition sum probability density e−S is the fixed point of the
corresponding Fokker-Planck equation

14R. Kitano et al., J. High Energy Phys. 2021, 199 (2021).

https://doi.org/10.1007/jhep05(2021)119


coupling constant e expansion

expand Aµ(n, τ) as

Aµ(n, τ) =
∞∑

p=0

epA(p)
µ (n, τ)

Langevin evolves each A(p)
µ ,

∂A(p)
µ (n, τ)
∂τ

= − δSlattice

δAµ(n, τ)

∣∣∣∣∣
(p)

+ ηµ(n, τ)δp0



lattice simulations nitty gritty

Worry15 about UV, IR regularizations, lattice volume effects,
continuum limit, · · ·

Take "L → ∞" and "T → ∞" large

They perform the lattice simulations with five sets of lattice
volumes:

L3 ×T = 243 × 48, 283 × 56, 323 × 64, 483 × 96, and 643 × 128.

15R. Kitano and H. Takaura, Prog. Theor. Exp. Phys. 2023, 103B02 (2023).

https://doi.org/10.1093/ptep/ptad125


lattice QED anomaly evaluation

1- to 5-loop contributions to the anomaly a = 1
2(g − 2)

the quenched set, no lepton loops:

a(2) = 0.505(1) Kitano
a(4) = −0.34(1)
a(6) = 0.89(5)
a(8) = −2.5(2)

a(10) = 6.8(1) Volkov, Aoyama et al.
= 6.9(9) Kitano16

look ma, no Feynman diagrams !

Can it be made accurate?

16R. Kitano, Prog. Theor. Exp. Phys. 2025, Prog. Theor. Exp. Phys. (2024).

https://doi.org/10.1093/ptep/ptae194


so far facts ; next, speculations

1 QED finiteness conjecture
2 bye bye, Feynman diagrams
3 spatiotemporal chaos , in Bad Honnef verboten



chaotic lattice field theory, in Bad Honnef verboten

field theory
in terms of

spacetime periodic
states

chaotic field theory



semiclassical chaotic field theory

S[Φg]S[Φa]

S[Φ]

ϕ
00 ϕzz ′

M
A

Φa
Φb

Φc

Φd
Φe

Φf

Φg



deterministic field theory

p[Φg]p[Φa]

p[Φ]

ϕ
00 ϕzz ′

M
A

Φa
Φb

Φc

Φd
Φe

Φf

Φg



spatiotemporal zeta function

For two-dimensional integer lattices, the spatiotemporal zeta
function is the product over all prime orbits, of form17

1/ζ =
∏

p

1/ζp , 1/ζp =
∞∏

n=1

(1 − tn
p ) .

17P. Cvitanović and H. Liang, A chaotic lattice field theory in two dimensions, 2025.



expectation value of observables

expectation value of observable a is given by the cycle
averaging formula

⟨a⟩ =
⟨A⟩ζ
⟨V ⟩ζ

.

Here the weighted Birkhoff sum of the observable ⟨A⟩ζ and the
weighted multi-period lattice volume ⟨V ⟩ζ are

⟨A⟩ζ = − ∂

∂β
1/ζ[β, z(β)]

∣∣∣∣
β=0,z=z(0)

,

⟨V ⟩ζ = − z
∂

∂z
1/ζ[β, z(β)]

∣∣∣∣
β=0,z=z(0)

.

where the subscript in ⟨· · ·⟩ζ stands for the deterministic zeta
evaluation of such weighted sum over prime orbits.



chaotic field theory evaluation of anomaly

proposal : take the vertex form factor as observable

Gµ = D−1γµD−1

then its expectation value is given by deterministic zeta function
weighted sum of Gµ evaluated over all prime orbits p,

⟨Gµ⟩ζ = −
∑

p

′
(Gµ)p

(impressionistic "equation" : the correct formula is more
complicated)

everything evaluated on the infinite spacetime lattice
no "L → ∞" and "T → ∞" limits estimates
no Monte-Carlo voodoo



a fun fact

the ‘anti-integrable’ corner of Euclidian field theory is the ‘chaos
theory’ of the last 1/4 of 20th century

as proven by 1886 Hill’s formulas18

18G. W. Hill, Acta Math. 8, 1–36 (1886).

https://doi.org/10.1007/bf02417081


summary

1 a proof of the QED finiteness conjecture might be within
reach

2 so might be methods for computing gauge invariant QFT
sets without recourse to Feynman diagrams

you can download the current version of full notes here:
ChaosBook.org/∼predrag/papers/finiteQED.pdf

The source code: GitHub.com/cvitanov/reducesymm/QFT

http://chaosbook.org/~predrag/papers/finiteQED.pdf
https://GitHub.com/cvitanov/reducesymm/QFT
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