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Chapter Nine

Unitary groups

P. Cvitanović, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariant the normqq = δab q
bqa

of a complex vectorq. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps ofU(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In sections.9.1–9.2
we show how to do this for 2- and 3-index tensors by constructing the appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In section9.3we review the Young tableaux,
and in section9.4we show how to construct Young projection operators for tensors
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section9.5. We use the projection operators to evaluate3n-j coefficients and
characters ofU(n) in sections.9.6–9.9, and we derive new sum rules forU(n) 3-j
and 6-j symbols in section9.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant forSU(n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In sections.9.10–9.12the mixedSU(n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter3.SU(2),SU(3),SU(4), andSU(n) are discussed from the “invariance group"
perspective in chapter15.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorsq(1) ⊗ q(2) ∈ ⊗V 2. According to (6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip (6.2),

σ = .

The flip satisfies

σ2 = =1 ,

(σ + 1)(σ − 1)=0 . (9.1)
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The eigenvalues areλ1 = 1, λ2 = −1, and the corresponding projection operators
(3.48) are

P1=
σ − (−1)1

1− (−1)
=

1

2
(1+ σ) =

1

2

{
+

}
, (9.2)

P2=
σ − 1

−1− 1
=

1

2
(1− σ) =

1

2

{
−

}
. (9.3)

We recognize the symmetrization, antisymmetrization operators (6.4), (6.15);P1 =
S,P2 = A, with subspace dimensionsd1 = n(n+1)/2, d2 = n(n−1)/2. In other
words, under general linear transformations the symmetric and the antisymmetric
parts of a tensorxab transform separately:

x=Sx+Ax ,

xab=
1

2
(xab + xba) +

1

2
(xab − xba)

= + . (9.4)

The Dynkin indices for the two reps follow by (7.29) from 6j′s:

=
1

2
(0) +

1

2
=

N

2

ℓ1=
2ℓ

n
· d1 +

2ℓ

N
· N
2

= ℓ(n+ 2) . (9.5)

Substituting the defining rep Dynkin indexℓ−1 = CA = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices

ℓ1 =
n+ 2

2n
, ℓ2 =

n− 2

2n
. (9.6)

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric. The
results of this section are summarized in figure9.1and table9.1. We mix the third
index into the symmetric 2-index subspace using the invariant matrix

Q = S12σ(23)S12 =

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

. (9.7)

Here projection operatorsS12 ensure the restriction to the 2-index symmetric sub-
space, and the transpositionσ(23) mixes in the third index. To find the characteristic
equation forQ, we computeQ2:

Q2=S12σ(23)S12σ(23)S12 =
1

2

{
S12 + S12σ(23)S12

}
=

1

2
S12 +

1

2
Q

= =
1

2

{
+

}
.
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Hence,Q satisfies

(Q− 1)(Q+ 1/2)S12 = 0 , (9.8)

and the corresponding projection operators (3.48) are

P1 =
Q+ 1

21

1 + 1
2

S12=
1

3

{
σ(23) + σ(123) + 1

}
S12 = S

=
1

3

{
+ +

}
= (9.9)

P2 =
Q− 1

− 1
2 − 1

S12=
4

3
S12A23S12 =

4

3
. (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspace (6.13) and a mixed symmetry subspace with dimensions

d1=trP1 = n(n+ 1)(n+ 2)/3! (9.11)

d2=trP2 =
4

3
= n(n2 − 1)/3 . (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the
invariant matrix

Q = A12σ(23)A12 = . (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figure9.1. Symmetries of the subspace are indicated by
the corresponding Young tableaux, table9.2. For example, we have just constructed

21 ⊗ 3 = 1 32 ⊕ 2
3
1

= +
4

3

n2(n+ 1)

2
=

n(n+ 1)(n+ 2)

3!
+

n(n2 − 1)

3
. (9.14)

The projection operators for tensors with up to 4 indices are shown in figure9.1,
and in figure9.2the corresponding stepwise reduction of the irreps is given in terms
of Young standard tableaux (defined in section9.3.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sections.9.1–9.2that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects of symmetric group
representations that will be important for our construction of the projection operators
in section9.4.
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Figure 9.1 Projection operators for 2-, 3-, and 4-index tensors inU(n), SU(n), n ≥ p =
number of indices.
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Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2, 3 , ...,p in the boxes
of Young tableaux.
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9.3.1 Definitions

Partitionk identical boxes intoD subsets, and letλm, m = 1, 2, . . . , D, be the
number of boxes in the subsets ordered so thatλ1 ≥ λ2 ≥ . . . ≥ λD ≥ 1. Then
the partitionλ = [λ1, λ2, . . . , λD] fulfills

∑D
m=1 λm = k. The diagram obtained

by drawing theD rows of boxes on top of each other, left aligned, starting withλ1

at the top, is called aYoung diagramY .

Examples:
The ordered partitions fork = 4 are [4], [3, 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1]. The
corresponding Young diagrams are

.

Inserting a number from the set{1, . . . , n} into every box of a Young diagram
Yλ in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right, yields aYoung
tableauYa. The subscripta labels different tableaux derived from a given Young
diagram,i.e., different admissible ways of inserting the numbers into the boxes.

A standard tableauis ak-box Young tableau constructed by inserting the numbers
1, . . . , k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partitionλ = [2, 1, 1] yields three distinct
standard tableaux:

1

4

2
3 ,

1
2
4

3
,

1

3

4
2 . (9.15)

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bers bm of columns withm boxes:(b1b2 . . .). Having k boxes we must have∑k

m=1 mbm = k. For example, the partition[4, 2, 1] and the labels(21100 · · ·)
give rise to the same Young diagram, and so do the partition[2, 2] and the labels
(020 · · ·).

We define thetransposediagramYt as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpose of[3, 1] is [2, 1, 1],

1 42
3

t

=
1
2
4

3
,

or, in terms of Dynkin labels, the transpose of(210 . . .) is (1010 . . .).
The Young tableaux are useful for labeling irreps of various groups. We shall use

the following facts (see for instance ref. [153]):

1. Thek-boxYoung diagramslabel all irreps of the symmetric groupSk.

2. Thestandard tableauxof k-box Young diagrams with no more thann rows
label the irreps ofGL(n), in particular they label the irreps ofU(n).
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3. Thestandard tableauxof k-box Young diagrams with no more thann − 1
rows label the irreps ofSL(n), in particular they label the irreps ofSU(n).

In this section, we consider the Young tableaux for reps ofSk andU(n), while the
case ofSU(n) is postponed to section9.8.

9.3.2 Symmetric groupSk

The irreps of the symmetric groupSk are labeled by thek-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimension∆Y of the irrep is the
number of standard tableaux that can be constructed from the Young diagram Y.
The example (9.15) shows that the irrepλ = [2, 1, 1] of S4 is 3-dimensional.

As an alternative to counting standard tableaux, the dimension∆Y of the irrep of
Sk corresponding to the Young diagram Y can be computed easily as

∆Y =
k!

|Y| , (9.16)

where the number|Y| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of the box, including the
box itself. Then|Y| is the product of the numbers in all the boxes. For instance,

Y = −→ |Y| =
6 15 3

34
2 1

1 = 6! 3 . (9.17)

The hook rule (9.16) was first proven by Frame, de B. Robinson, and Thrall [123].
Various proofs can be found in the literature [296, 170, 133, 142, 21]; see also Sagan
[303] and references therein.

We now discuss the regular representation of the symmetric group. The elements
σ ∈ Sk of the symmetric groupSk form a basis of ak!-dimensional vector spaceV
of elements

s =
∑

σ∈Sk

sσ σ ∈ V , (9.18)

wheresσ are the components of a vectors in thegivenbasis. Ifs ∈ V has components
(sσ) andτ ∈ Sk, thenτs is an element inV with components(τs)σ = sτ−1σ. This
action of the group elements on the vector spaceV defines ank!-dimensional matrix
representation of the groupSk, theregular representation.

The regular representation is reducible, and each irrepλ appears∆λ times in the
reduction;∆λ is the dimension of the subspaceVλ corresponding to the irrepλ. This
gives the well-known relation between the order of the symmetric group|Sk| = k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| =
∑

all irreps λ

∆2
λ .

Using (9.16) and the fact that the Young diagrams label the irreps ofSk, we have

1 = k!
∑

(k)

1

|Y |2 , (9.19)
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where the sum is over all Young diagrams withk boxes. We shall use this relation
to determine the normalization of Young projection operators in appendixB.3.

The reduction of the regular representation ofSk gives a completeness relation,

1 =
∑

(k)

PY ,

in terms of projection operators

PY =
∑

Ya∈Y

PYa
.

The sum is over all standard tableaux derived from the Young diagram Y. EachPYa

projects onto a corresponding invariant subspaceVYa
: for each Y there are∆Y such

projection operators (corresponding to the∆Y possible standard tableaux of the
diagram), and each of these project onto one of the∆Y invariant subspacesVY of
the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary groupU(n)

The irreps ofU(n) are labeled by thek-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withk boxes
— one typically thinks of this as ak-particle state. ForU(n), a 1-index tensor has
n-components, so there aren 1-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There aren2

2-particle states forU(n), and as we have seen in section9.1 these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

⊗ = ⊕ . (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors ofU(n)have mixed symmetry. Boxes in a row correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspond to indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are onlyn labels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux with up ton
rows correspond to irreps ofU(n).

The number of standard tableaux∆Y derived from a Young diagram Y is given in
(9.16). In terms of irreducible tensors, the Young diagram determines the symmetries
of the indices, and the∆Y distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure9.2.

For a givenU(n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tableauxYa obtained by inserting
the numbers1, 2, . . . , n into Y in the manner described in section9.3.1. Thus the
dimension of an irrep ofU(n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the same dimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irreps are

11 , 21 , 22 , and 1
2
,

so the symmetric state ofU(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formulas (6.4) and (6.15) for the dimensions of
the symmetry operators. ForU(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with (6.4) and (6.15). In section9.4.3we state
and prove a dimension formula for a general irrep ofU(n).

9.4 YOUNG PROJECTION OPERATORS

Given an irrep ofU(n) labeled by ak-box standard tableaux Y, we construct the cor-
responding Young projection operatorPY in birdtrack notation by identifying each
box in the diagram with a directed line. The operatorPY is a block of symmetrizers
to the left of a block of antisymmetrizers, all imposed on thek lines. The blocks of
symmetry operators are dictated by the Youngdiagram, whereas the attachment of
lines to these operators is specified by the particular standard tableau.

The Kronecker delta is invariant under unitary transformations: forU ∈ U(n),
we have(U †)a

a′

δb
′

a′U b′
b = δba. Consequently, any combination of Kronecker deltas,

such as a symmetrizer, is invariant under unitary transformations. The symmetry op-
erators constitute a complete set, so anyU(n) invariant tensor built from Kronecker
deltas can be expressed in terms of symmetrizers and antisymmetrizers. In particu-
lar, the invariance of the Kronecker delta underU(n) transformations implies that
the same symmetry group operators that project the irreps ofSk also yield the irreps
of U(n).

The simplest examples of Young projection operators are those associated with
the Young tableaux consisting of either one row or one column. The corresponding
Young projection operators are simply the symmetrizers or the antisymmetrizers
respectively. As projection operators forSk, the symmetrizer projects onto the 1-
dimensional subspace corresponding to the fully symmetric representation, and the
antisymmetrizer projects onto the fully antisymmetric representation (the alternating
representation).

A Young projection operator for a mixed symmetry Young tableau will here be
constructed by first antisymmetrizing subsets of indices, and then symmetrizing
other subsets of indices; the Young tableau determines which subsets, as will be
explained shortly. Schematically,

PYa
= αY , (9.21)

where the white (black) blob symbolizes a set of (anti)symmetrizers. The nor-
malization constantαY (defined below) ensures that the operators are idempotent,
PYa

PYb
= δabPYa

.
This particular form of projection operators is not unique: in section9.2we built

3-index tensor Young projection operators that were symmetric under transposition.
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The Young projection operators constructed in this section are particularly conve-
nient for explicitU(n) computations, and another virtue is that we can write down
the projectors explicitly from the standard tableaux, without having to solve a char-
acteristic equation. For multiparticle irreps, the Young projection operators of this
section will generally be different from the ones constructed from characteristic
equations (see sections.9.1–9.2); however, the operators are equivalent, since the
difference amounts to a choice of basis.

9.4.1 Construction of projection operators

LetYa be ak-box standard tableau. Arrange a set of symmetrizers corresponding to
the rows inYa, and to the right of this arrange a set of antisymmetrizers correspond-
ing to the columns inYa. For a Young diagram Y withs rows andt columns we label
the rows S1, S2, …, Ss and to the columns A1, A2, …, At. Each symmetry operator
in PY is associated to a row/column in Y, hence we label a symmetry operator after
the corresponding row/column, for example,

......

1 2 3 4 5

6 7 8 9

10 11

S1

S2

S3

AA AAA 1 2 3 4 5

= αY

5A

2S

S3

A 4

S
A

1

2

A

A

3

1

. (9.22)

Let the lines numbered 1 tok enter the symmetrizers as described by the numbers
in the boxes in the standard tableau and connect the set of symmetrizers to the set
of antisymmetrizers in a nonvanishing way, avoiding multiple intermediate lines
prohibited by (6.17). Finally, arrange the lines coming out of the antisymmetrizers
such that if the lines all passed straight through the symmetry operators, they would
exit in the same order as they entered. This ensures that upon expansion of all the
symmetry operators, the identity appears exactly once.

We denote by|Si| or |Ai| the lengthof a row or column, respectively, that is the
number of boxes it contains. Thus|Ai| also denotes the number of lines entering
the antisymmetrizer Ai. In the above example we have|S1| = 5, |A2| = 3, etc.

The normalizationαY is given by

αY =

(∏s
i=1 |Si|!

)(∏t
j=1 |Aj |!

)

|Y| , (9.23)

where|Y| is related through (9.16) to ∆Y, the dimension of irrep Y ofSk, and is a
hook ruleSk combinatoric number. The normalization depends only on the shape
of the Young diagram, not the particular tableau.

Example:The Young diagram tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length two, and two of length one.
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There are three distinctk-standard arrangements,each corresponding to a projection
operator

4
1 2 3 =αY (9.24)

3
1 42 =αY (9.25)

2
1 3 4 =αY , (9.26)

where the normalization constant isαY = 3/2 by (9.23). More examples of Young
projection operators are given in section9.5.

9.4.2 Properties

We prove in appendixB that the above construction yields well defined projection
operators. In particular, the internal connection between the symmetrizers and an-
tisymmetrizers is unique up to an overall sign (proof in appendixB.1). We fix the
overall sign by requiring that when all symmetry operators are expanded, the iden-
tity appears with a positive coefficient. Note that by construction (the lines exit in
the same order as they enter) the identity appears exactly once in the full expansion
of any of the Young projection operators.

We list here the most important properties of the Young projection operators:

1. The Young projection operators areorthogonal: If Y and Z are two distinct
standard tableaux, thenPYPZ = 0 = PZPY.

2. With the normalization (9.23), the Young projection operators are indeed
projection operators, i.e., they are idempotent:P2

Y = PY.

3. For a givenk the Young projection operators constitute a complete set such
that1 =

∑
PY, where the sum is over all standard tableaux Y withk boxes.

The proofs of these properties are given in appendixB.

9.4.3 Dimensions ofU(n) irreps

The dimensiondY of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operator,dY = trPY. Expanding
the symmetry operators yields a weighted sum of closed-loop diagrams. Each loop
is worth n, and since the identity appears precisely once in the expansion, the
dimensiondY of a irrep with ak-box Young tableau Y is a degreek polynomial in
n.

Example:We compute we dimension of theU(n) irrep 2
3
1 :

dY= 1
3

2 =
4

3
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=
4

3

(
1

2!

)2
{

+

− −
}

=
1

3
(n3 + n2 − n2 − n) =

n(n2 − 1)

3
. (9.27)

In practice, this is unnecessarily laborious. The dimension of aU(n) irrep Y is
given by

dY =
fY(n)

|Y | . (9.28)

HerefY(n) is a polynomial inn obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains ann.

2. The numbers in a row increase by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, ifk is the number of boxes in Y,fY(n) is a polynomial inn of degreek.
The dimension formula (9.28) is well known (see for instance ref. [138]).

Example:In the above example with the irrep 2
3
1 , we have

dY =
fY(n)

|Y | =
n(n2 − 1)

3

in agreement with the diagrammatic trace calculation (9.27).

Example:With Y = [4,2,1], we have

fY(n)=
n

n-1

n+1 n+2 n+3

n

n-2

= n2(n2 − 1)(n2 − 4)(n+ 3),

|Y|=
14 2

1
3
6

1 = 144, (9.29)

hence,

dY =
n2(n2 − 1)(n2 − 4)(n+ 3)

144
. (9.30)

UsingdY = trPY, the dimension formula (9.28) can be proven diagrammatically
by induction on the numberofboxes in the irrepY. Theproof is given in appendixB.4.
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The polynomialfY(n) has an intuitive interpretation in terms of strand colorings
of the diagram fortrPY. Draw the trace of the Young projection operator. Each
line is a strand, a closed line, which we draw as passing straight through all of the
symmetry operators. For ak-box Young diagram, there arek strands. Given the
following set of rules, we count the number of ways to color thek strands usingn
colors. The top strand (corresponding to the leftmost box in the first row of Y) may
be colored inn ways. Color the rest of the strands according to the following rules:

1. If a path, which could be colored inm ways, enters an antisymmetrizer, the
lines below it can be colored inm− 1, m− 2, … ways.

2. If a path, which could be colored inm ways, enters a symmetrizer, the lines
below it can be colored inm+ 1, m+ 2, … ways.

Using this coloring algorithm, the number of ways to color the strands of the
diagram isfY(n).

Example:For Y =
6

7
1 2

8
4 5

3
, the strand diagram is

n+2
n

n+1

n+3

n-1

n-2

n

n+1

(9.31)

Each strand is labeled by the number of admissible colorings. Multiplying these
numbers and including the factor1/|Y|, we find

dY=(n− 2) (n− 1)n2 (n+ 1)2 (n+ 2) (n+ 3)�
6 4 3 1

1

124

=
n (n+ 1) (n+ 3)!

26 32 (n− 3)!
,

in agreement with (9.28).

9.5 REDUCTION OF TENSOR PRODUCTS

We now work out several explicit examples of decomposition of direct products of
Young diagrams/tableaux in order to motivate the general rules for decomposition
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Ya PYa
dYa

1 32
n(n+1)(n+2)

6

2
3
1

1
2

3

4
3

4
3





n(n2−1)
3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

Table 9.1 Reduction of 3-index tensor. The last row shows the direct sum of the Young
tableaux, the sum of the dimensions of the irreps adding up ton3, and the sum of
the projection operators adding up to the identity as verification of completeness
(3.51).

of direct products stated below, in section9.5.1. We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in section9.2.

The 3-index tensor reduces to

1 ⊗ 2 ⊗ 3 =

(
21 ⊕ 1

2

)
⊗ 3

= 1 32 ⊕ 2
3
1 ⊕ 1

2
3 ⊕

1
2
3
. (9.32)

The corresponding dimensions and Young projection operators are given in table9.1.
For simplicity, we neglect the arrows on the lines where this leads to no confusion.

The Young projection operators are orthogonal by inspection.We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

+ =
1

3

{
+ +

}
.

Expanding the two tensors of mixed symmetry, we obtain

4

3

{
+

}
=

2

3
− 1

3
− 1

3
.
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Adding the two equations we get

+
4

3
+

4

3
+ = ,(9.33)

verifying the completeness relation.
For 4-index tensors the decomposition is performed as in the 3-index case, result-

ing in table9.2.
Acting with any permutation on the fully symmetric or antisymmetric projection

operators gives±1 times the projection operator (see (6.8) and (6.18)). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation within a 3n-j symbol, and, as we
shall show below, in this case the result will again be simple, a factor±1 or 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of direct products such as (9.20) in
terms of Young diagrams:

Draw the two diagrams next to each other and place in each box of the second
diagram anai, i = 1, . . . , k, such that the boxes in the first row all havea1 in them,
second row boxes havea2 in them,etc.The boxes of the second diagram are now
added to the first diagram to create new diagrams according to the following rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the two initial diagrams.

3. For U(n) no diagram has more thann rows.

4. Making a journey through the diagram starting with the top row and entering
each row from the right, at any point the number ofai’s encountered in any
of the attached boxes must not exceed the number of previously encountered
ai−1’s.

5. The numbers must not increase when reading across a row from left to right.

6. The numbers must decrease when reading a column from top to bottom.

Rules 4–6 ensure that states that were previously symmetrized are not antisym-
metrized in the product, and vice versa. Also, the rules prevent counting the same
state twice.

For example, consider the direct product of the partitions[3] and[2, 1]. ForU(n)
with n ≥ 3 we have

⊗ a1 a1

a2
=

a2

a1a1 ⊕
a2a1

a1 ⊕ a1

a2

a1

⊕ a1

a2

a1 ,

while for n = 2 we have

⊗ a1 a1

a2
=

a2

a1a1 ⊕
a2a1

a1 .
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2 3 41
n(n+1)(n+2)(n+3)

24

1
4

2 3

1 42
3

1 4
2

3

3
2

3
2

3
2





(n−1)n(n+1)(n+2)
8

2
4

1
3

1 3
42

4
3

4
3





n2(n2−1)
12

1

4

2
3

1
2
4

3

1

3

4
2

3
2

3
2

3
2





(n−2)(n−1)n(n+1)
8

4

1

3
2 n(n−1)(n−2)(n−3)

24

1 ⊗ 2 ⊗ 3 ⊗ 4 n4

Table 9.2 Reduction of 4-index tensors. Note the symmetry undern ↔ −n.
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kV can take values1, . . . , kZ − 1. Using completeness, we find

∑

U,V,W∈Λ

U

Y

Z

X

V

W

=

kZ−1∑

kV=1

∑

V∈ΛkV

∑

W∈ΛkZ−kV

∑

U∈ΛkY−kV

U

Y

Z

X

V

W

=

kZ−1∑

kV=1 ......

... ...

X

Z

Y

=(kZ − 1) Y

Z

X

.

Now sum over all tableaux X and Z to find

∑

X,Z,U,V,W∈Λ

U

Y

Z

X

V

W

=

kY−1∑

kZ=2

(kZ − 1)
∑

Z∈ΛkZ

∑

X∈ΛkY−kZ

Y

Z

X

=
1

2
(kY − 1)(kY − 2) dY ,

verifying the sum rule (9.44) for 6-j symbols.

9.8 SU(n) AND THE ADJOINT REP

The SU(n) group elements satisfydet G = 1, soSU(n) has an additional in-
variant, the Levi-Civita tensorεa1a2...an

= Ga1

a′

1Ga2

a′

2 · · ·Gan

a′

nεa′

1
a′

2
...a′

n
. The

diagrammatic notation for the Levi-Civita tensors was introduced in (6.27).
While the irreps ofU(n) are labeled by the standard tableaux with no more than

n rows (see section9.3), the standard tableaux with a maximum ofn− 1 rows label
the irreps ofSU(n). The reason is that inSU(n), a column of lengthn can be
removed from any diagram by contraction with the Levi-Civita tensor (6.27). For
example, forSU(4)

→ . (9.45)

Standard tableaux that differ only by columns of lengthn correspond to equivalent
irreps. Hence, for the standard tableaux labeling irreps ofSU(n), the highest column
is of heightn − 1, which is also the rank ofSU(n). A rep of SU(n), or An−1

in the Cartan classification (table7.6) is characterized byn − 1 Dynkin labels
b1b2 . . . bn−1. The corresponding Young diagram (defined in section9.3.1) is then
given by(b1b2 . . . bn−100 . . .), or (b1b2 . . . bn−1) for short.

For SU(n) a column withk boxes (antisymmetrization ofk covariant indices)
can be converted by contraction with the Levi-Civita tensor into a column of(n−k)
boxes (corresponding to(n − k) contravariant indices). This operation associates
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with each diagram a conjugate diagram. Thus theconjugateof a SU(n) Young
diagram Y is constructed from the missing pieces needed to complete the rectangle
of n rows,

SU(5) : . (9.46)

To find the conjugate diagram, add squares below the diagram of Y such that the
resulting figure is a rectangle with heightn and width of the top row in Y. Remove
the squares corresponding to Y and rotate the rest by 180 degrees. The result is the
conjugate diagram of Y. For example, forSU(6) the irrep(20110) has(01102) as
its conjugate rep:

SU(6) : ro
tate

. (9.47)

In general, theSU(n) reps(b1b2 . . . bn−1) and(bn−1 . . . b2b1) are conjugate. For
example,(10 . . .0) stands for the defining rep, and its conjugate is(00 . . . 01), i.e.,
a column ofn− 1 boxes.

The Levi-Civita tensor converts an antisymmetrizedcollection ofn−1 “in”-indices
into 1 “out”-index, or, in other words, it converts an(n−1)-particle state into a single
antiparticle state. We usē to denote the single antiparticle state; it is the conjugate
of the fundamental representationsingle particle state. For example, forSU(3)
we have

(10) = = 3 (20) = = 6

(01) = = 3 (02) = = 6

(11) = = 8 (21) = = 15 .

(9.48)

The product of the fundamental rep and the conjugate rep̄ of SU(n) de-
composes into a singlet and theadjoint representation:

⊗ ¯ = ⊗

...



n−1 = 1 ⊕

...



n−1

n · n = n · n = 1 + (n2 − 1) .

Note that the conjugate of the diagram for the adjoint is again the adjoint.
Using the construction of section9.4, the birdtrack Young projection operator for

the adjoint representationA can be written

PA =
2(n− 1)

n ... ...

.




