GroupTheory  version 9.0.1, April 8, 2011

Chapter Nine

Unitary groups

P. Cvitanovic, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariant the ngym 5¢¢%q,

of a complex vectoyg. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps of/(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In se&ibs2

we show how to do this for 2- and 3-index tensors by constrgdtie appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In secti®3we review the Young tableaux,
and in sectiorB.4we show how to construct Young projection operators for tenso
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section9.5. We use the projection operators to evaluate; coefficients and
characters o/ (n) in sections9.6-9.9, and we derive new sum rules foi(n) 3-j
and 64 symbols in sectio.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant i8¢/ (n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In secti®ri3-9.12the mixedSU (n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter3.SU(2), SU(3), SU(4), andSU (n) are discussed from the “invariance group"
perspective in chaptdrs.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorg!) ® ¢(? € ®V?2. According to 6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip §.2),

The flip satisfies

(c+1)(c—1)=0. (9.1)
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The eigenvalues arg, = 1, Ay = —1, and the corresponding projection operators
(3.48 are
o—(-D1 1

71_(_1):§<1+a>=§{_‘_+><}7 9.2)
1:'2:_”1__11 _%(1_0)_%{ —><} 9.3)

We recognize the symmetrization, antisymmetrization operaiofs (6.19; P, =

S, P, = A, with subspace dimensiods = n(n+1)/2,ds = n(n—1)/2.In other
words, under general linear transformations the symmetric and the antisymmetric
parts of a tensar,;, transform separately:

r=Sx+ Ax,

P,=

1 1
Tap =73 (%b + xba) + = (xab xba)

- jr; :I:: (9.4)

The Dynkin indices for the two reps follow by 29 from 6;'s:

N )

h= n L N 2
=l(n+2). (9.5)
Substituting the defining rep Dynkin indéx! = C4 = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices
n+2 n—2

él 2n ) 2 2n ( )

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric. The
results of this section are summarized in figlréand tabled.1. We mix the third

index into the symmetric 2-index subspace using the invariant matrix

Q = S120(23)S12 = % lt(_ : (9.7)

Here projection operatof,, ensure the restriction to the 2-index symmetric sub-
space, and the transpositiefy;) mixes in the third index. To find the characteristic
equation forQ, we computeQ?:

1 1 1
Q® =S120(23)S120(23)S12 = 3 {S12 + S120(23)S12} = 5512 + EQ

it e |
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Hence,Q satisfies

(Q-1)(Q+1/2)S12=0, (9.8)
and the corresponding projection operat@g are
Q+11
P, = fsm {0(23) + 0323 +1} 812 =8

i< > =235 Jkes
P, = ?_ — 1812—§S12A23812 = gE (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspacé (L3 and a mixed symmetry subspace with dimensions

di=trPy = n(n+1)(n+2)/3! (9.11)
4 2
dy=trPy = 3 =n(n°—-1)/3. (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the

invariant matrix
Q= A120023)A12 = E : (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figugel Symmetries of the subspace are indicated by
the corresponding Young tableaux, taBl2 For example, we have just constructed

[1[2)eE=[1[23 e 12
4

I = JF+3
1 1) 2 -1
(n2+ ) n+3'(n—|— ) nn3 ) (9.14)
The projection operators for tensors with up to 4 indices are shown in figlire

and in figure9.2the corresponding stepwise reduction of the irreps is givéerims
of Young standard tableaux (defined in sect®d.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sectién$-9.2that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects of symmetric group
representations that will be important for our construction of the projection operators
in section9.4.
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Figure 9.1 Projection operators for 2-, 3-, and 4-index tensoté(im), SU(n), n > p =
number of indices.
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Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2, 3p,in.the boxes
of Young tableaux.
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9.3.1 Definitions

Partition & identical boxes intaD subsets, and let,,, m = 1,2,...,D, be the
number of boxes in the subsets ordered so that Ao > ... > Ap > 1. Then
the partition\ = [A1, Ao, ..., Ap] fulfills 22:1 Am = k. The diagram obtained
by drawing theD rows of boxes on top of each other, left aligned, starting with
at the top, is called &oung diagrant”.

Examples:
The ordered partitions fok = 4 are[4], [3,1],[2,2],[2,1,1] and[1,1,1,1]. The
corresponding Young diagrams are

[TT1] L -+

Inserting a number from the sét, ..., n} into every box of a Young diagram
Y, in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right, yi&osrey
tableauY,. The subscript labels different tableaux derived from a given Young
diagram|.e., different admissible ways of inserting the numbers into the boxes.

A standard tableais ak-box Young tableau constructed by inserting the numbers
1,...,k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partitian= [2, 1, 1] yields three distinct
standard tableaux:

2|

)

3

)

4]

(9.15)

N
NN
[w]po]=

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bersb,, of columns withm boxes: (b1bs...). Having k boxes we must have
anzl mb,, = k. For example, the partitiofit, 2, 1] and the labelg21100- - )
give rise to the same Young diagram, and so do the partificdt] and the labels
(020---).

We define théransposediagramY! as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpd8eldfis 2, 1, 1],

t 1,3

or, in terms of Dynkin labels, the transpose(®10. . .) is (1010.. .).
The Young tableaux are useful for labeling irreps of various groups. We shall use
the following facts (see for instance ref.4):

[w]F

1. Thek-boxYoung diagramsabel all irreps of the symmetric grouf). .

2. Thestandard tableauxf k-box Young diagrams with no more thanrows
label the irreps of7 L(n), in particular they label the irreps 6f(n).
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3. Thestandard tableawof k-box Young diagrams with no more than— 1
rows label the irreps af L(n), in particular they label the irreps 6fU (n).

In this section, we consider the Young tableaux for repS;0andU (n), while the
case ofSU(n) is postponed to sectich8.

9.3.2 Symmetric groupSy

The irreps of the symmetric groufy. are labeled by thg-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimendignof the irrep is the
number of standard tableaux that can be constructed from the Young diagram Y.
The exampleq.15 shows that the irrep = [2, 1, 1] of Sy is 3-dimensional.

As an alternative to counting standard tableaux, the dimersioof the irrep of
S corresponding to the Young diagram Y can be computed easily as
k!
M
where the numbdfY| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of the box, including the
box itself. ThenY| is the product of the numbers in all the boxes. For instance,
| 6]5[3[1]
Y = — |Y[=[4[3[1] =6!3. (9.17)
2]1
The hook rule 9.16 was first proven by Frame, de B. Robinson, and Thriail].
Various proofs can be found in the literatur@§, 170, 133 142, 21]; see also Sagan
[30] and references therein.

We now discuss the regular representation of the symmetric group. The elements
o € S of the symmetric group), form a basis of &!-dimensional vector spadé
of elements

Ay = (9.16)

s= Y s,0€V, (9.18)
€Sk

wheres,, are the components of a vectan the given basis. I§ € V' hascomponents
(ss) andr € Sy, thenrs is an element iV with component$rs), = s,-1,. This
action of the group elements on the vector sgackfines ark!-dimensional matrix
representation of the grouffy,, theregular representation

The regular representation is reducible, and each krappears\ , times in the
reductionA is the dimension of the subspakiecorrespondingto the irrefa This
gives the well-known relation between the order of the symmetric gSiup= k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| = Z A3

all irreps A

Using 0.16 and the fact that the Young diagrams label the irrepS;9fve have

1
1 :k!ZW, (9.19)
(k)
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where the sum is over all Young diagrams witthoxes. We shall use this relation
to determine the normalization of Young projection operators in appéhdix
The reduction of the regular representatiorbpfgives a completeness relation,

1= Py,
(k)

in terms of projection operators

Py= > Py,.

Y.€Y

The sum is over all standard tableaux derived from the Young diagram Y.IE=ach
projects onto a corresponding invariant subsgace for each Y there arAy such
projection operators (corresponding to the possible standard tableaux of the
diagram), and each of these project onto one ofAReinvariant subspacésgy of

the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary group U (n)

The irreps ofU (n) are labeled by thé-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withoxes

— one typically thinks of this as &-particle state. Fot/(n), a 1-index tensor has
n-components, so there atel-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There?are
2-particle states fof/(n), and as we have seen in secti®i these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

D@D:E@H. (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors of/ (n) have mixed symmetry. Boxes in arow correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspondto indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are onlyabels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux witmup to
rows correspond to irreps éf(n).

The number of standard tableafyx, derived from a Young diagram Y is given in
(9.16. Interms of irreducible tensors, the Young diagram deteesithe symmetries
of the indices, and thAy distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure9.2

For a givenU (n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tablegobtained by inserting
the numberd,2,...,ninto Y in the manner described in secti®r8.1 Thus the
dimension of an irrep ot/ (n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the same dimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irreps are

[11], [1[2], [2[2], and 7

so the symmetric state @f(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formul&s4 and €.19 for the dimensions of

the symmetry operators. Fof(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with4) and 6.15. In sectior9.4.3we state

and prove a dimension formula for a general irredig).

9.4 YOUNG PROJECTION OPERATORS

Givenanirrep ol (n) labeled by &-box standard tableaux Y, we construct the cor-
responding Young projection operai®y in birdtrack notation by identifying each
box in the diagram with a directed line. The operd®aris a block of symmetrizers
to the left of a block of antisymmetrizers, all imposed ontHimes. The blocks of
symmetry operators are dictated by the Youdlimgram whereas the attachment of
lines to these operators is specified by the particular standard tableau.

The Kronecker delta is invariant under unitary transformationstfar U (n),
we have(UT)a“’zSZ',Ub/b = §°. Consequently, any combination of Kronecker deltas,
such as a symmetrizer, is invariant under unitary transformations. The symmetry op-
erators constitute a complete set, so &ifyt) invariant tensor built from Kronecker
deltas can be expressed in terms of symmetrizers and antisymmetrizers. In particu-
lar, the invariance of the Kronecker delta und&m) transformations implies that
the same symmetry group operators that project the irre§g afso yield the irreps
of U(n).

The simplest examples of Young projection operators are those associated with
the Young tableaux consisting of either one row or one column. The corresponding
Young projection operators are simply the symmetrizers or the antisymmetrizers
respectively. As projection operators 16k, the symmetrizer projects onto the 1-
dimensional subspace corresponding to the fully symmetric representation, and the
antisymmetrizer projects onto the fully antisymmetric representation (the alternating
representation).

A Young projection operator for a mixed symmetry Young tableau will here be
constructed by first antisymmetrizing subsets of indices, and then symmetrizing
other subsets of indices; the Young tableau determines which subsets, as will be
explained shortly. Schematically,

Py, = QYM ; (9.21)

where the white (black) blob symbolizes a set of (anti)symmetrizers. The nor-
malization constanty (defined below) ensures that the operators are idempotent,
Py Py, = dwPy,.

This particular form of projection operators is not unique: in secti@we built
3-index tensor Young projection operators that were symmetric under transposition.



GroupTheory  version 9.0.1, April 8, 2011

UNITARY GROUPS 93

The Young projection operators constructed in this section are particularly conve-
nient for explicitU (n) computations, and another virtue is that we can write down
the projectors explicitly from the standard tableaux, without having to solve a char-
acteristic equation. For multiparticle irreps, the Young projection operators of this
section will generally be different from the ones constructed from characteristic
equations (see sectiors1-9.2); however, the operators are equivalent, since the
difference amounts to a choice of basis.

9.4.1 Construction of projection operators

LetY, be ak-box standard tableau. Arrange a set of symmetrizers corresponding to
the rows inY,, and to the right of this arrange a set of antisymmetrizers correspond-
ing to the columnsifY,. For a Young diagram Y witk rows and columns we label
therows $, S, ..., Sy and to the columns A A, ..., A;. Each symmetry operator

in Py is associated to a row/columnin Y, hence we label a symmetry operator after
the corresponding row/column, for example,

X A1A2A3A 4A 5

si[1] 2] 3] 4] 5]
s2[6]7]8|0
S3 [10] 11

Let the lines numbered 1 foenter the symmetrizers as described by the numbers

in the boxes in the standard tableau and connect the set of symmetrizers to the set
of antisymmetrizers in a nonvanishing way, avoiding multiple intermediate lines
prohibited by 6.17). Finally, arrange the lines coming out of the antisymmetsz

such that if the lines all passed straight through the symmetry operators, they would
exit in the same order as they entered. This ensures that upon expansion of all the
symmetry operators, the identity appears exactly once.

We denote bysS;| or |A;| thelengthof a row or column, respectively, that is the
number of boxes it contains. Thii4;| also denotes the number of lines entering
the antisymmetrizer A In the above example we hajf | = 5, |Az| = 3, etc.

The normalizationvy is given by

(T silt) (T 1as1) 029
ay = y .
Y|
where|Y] is related through9.16 to Ay, the dimension of irrep Y ob}, and is a
hook ruleS; combinatoric number. The normalization depends only on the shape
of the Young diagram, not the particular tableau.

Example:The Young diagrarrB:D tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length two, and two of length one.
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There are three distinétstandard arrangements, each corresponding to a projection
operator

1[2[3

(9.24)

|
o)
]

1124 (9.25)

3[4

N

, (9.26)

|
o)
]

1444 $444 1444
+++++ﬁ#+++++

where the normalization constantis = 3/2 by (9.23. More examples of Young
projection operators are given in sectiém.

9.4.2 Properties

We prove in appendiB that the above construction yields well defined projection
operators. In particular, the internal connection between the symmetrizers and an-
tisymmetrizers is unique up to an overall sign (proof in appeldiy. We fix the
overall sign by requiring that when all symmetry operators are expanded, the iden-
tity appears with a positive coefficient. Note that by construction (the lines exit in
the same order as they enter) the identity appears exactly once in the full expansion
of any of the Young projection operators.

We list here the most important properties of the Young projection operators:

1. The Young projection operators avghogonal If Y and Z are two distinct
standard tableaux, théw Pz = 0 = PzPy.

2. With the normalization9.23, the Young projection operators are indeed
projection operatorsi.e., they are idempotenP? = P+.

3. For a givenk the Young projection operators constitute a complete set such
thatl = 3" Py, where the sum is over all standard tableaux Y witioxes.

The proofs of these properties are given in appeBdix

9.4.3 Dimensions ofJ(n) irreps

The dimensiondy of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operader,= tr Py. Expanding

the symmetry operators yields a weighted sum of closed-loop diagrams. Each loop
is worth n, and since the identity appears precisely once in the expansion, the
dimensiondy of a irrep with ak-box Young tableau Y is a degréepolynomial in

n.

Example:We compute we dimension of tfi&(n) irrep 1 2‘:

ay =&

splle—

[co]i]
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5 S 5
41 — n >
S 3\2 < <
n(n? —1)

3

1
:g(n3+n2—n2—n):

(9.27)

In practice, this is unnecessarily laborious. The dimensionlé{:a) irrep Y is
given by

_ fy(n)
dv =P (9.28)

Herefy (n) is a polynomial im obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains an
2. The numbers in a row increase by one when reading from left to right.
3. The numbers in a column decrease by one when reading from top to bottom.

Hence, ifk is the number of boxes in Yy (n) is a polynomial inn of degreek.
The dimension formulad(28 is well known (see for instance ref.3d).

Example:In the above example with the irr 13'; 2‘, we have

dy — Jy(n) n(n?—1)

i3
in agreement with the diagrammatic trace calculat®27).

Example:With Y = [4,2,1], we have

n | n+l n+2* n+#
fy(n)=|n1| n :nQ(nQ—l)(n2—4)(n+3),

n-2
6/4]2[1]

|Y[=|3]1 = 144, (9.29)
1]

hence,
20,2 2

gy =" (n® —1)(n* —4)(n + 3) . (9.30)

144

Usingdy = tr Py, the dimension formul&(28 can be proven diagrammatically
by induction on the number of boxesintheirrep Y. The proofis given in appéhdix
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The polynomialfy (n) has an intuitive interpretation in terms of strand colorings
of the diagram fortr P. Draw the trace of the Young projection operator. Each
line is a strand, a closed line, which we draw as passing straight through all of the
symmetry operators. For /&box Young diagram, there ate strands. Given the
following set of rules, we count the number of ways to colorkhstrands using
colors. The top strand (corresponding to the leftmost box in the first row of Y) may
be colored im ways. Color the rest of the strands according to the following rules:

1. If a path, which could be colored in ways, enters an antisymmetrizer, the
lines below it can be colored im — 1, m — 2, ... ways.

2. If a path, which could be colored in ways, enters a symmetrizer, the lines
below it can be colored im + 1, m + 2, ... ways.

Using this coloring algorithm, the number of ways to color the strands of the
diagram isfy (n).

2|36
Example:ForY = 5} 7} ‘, the strand diagram is

[oo] ]

(9.31)

Each strand is labeled by the number of admissible colorings. Multiplying these
numbers and including the factby|Y|, we find

dy=mn—-2)(n—1)n*(n+1)*n+2)(n+3)

Flalo

_n(n+1)(n+3)!
o 2632(n—3)!

in agreement withq.29.

9.5 REDUCTION OF TENSOR PRODUCTS

We now work out several explicit examples of decomposition of direct products of
Young diagrams/tableaux in order to motivate the general rules for decomposition
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Y, Py, dvy,
n(n+1)(n+2)
JE e
4
R
3] n(n®-1)
3
1] 3] 4 !
2 3
I (n—2)én—l)n
®[2]® — n’

Table 9.1 Reduction of 3-index tensor. The last row shows the direct sum of the Young
tableaux, the sum of the dimensions of the irreps adding ug tand the sum of
the projection operators adding up to the identity as verification of completeness

(3.51).

of direct products stated below, in secti®/®.1 We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in seétian

The 3-index tensor reduces to

We@sE-(T2e[ )«

=[1[23]® é 2|, é 3@. (9.32)
R

The corresponding dimensions and Young projection operators are given i.thble
For simplicity, we neglect the arrows on the lines where this leads to no confusion.

The Young projection operators are orthogonal by inspection. We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

=S =)

Expanding the two tensors of mixed symmetry, we obtain

o k) =R
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Adding the two equations we get

== Sk X T e

verifying the completeness relation.

For 4-index tensors the decomposition is performed as in the 3-index case, result-
ing in table9.2

Acting with any permutation on the fully symmetric or antisymmetric projection
operators gives 1 times the projection operator (séed and 6.18). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation withinra; 3symbol, and, as we
shall show below, in this case the result will again be simple, a faetawr 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of direct products sué28sig
terms of Young diagrams:

Draw the two diagrams next to each other and place in each box of the second
diagramanu;, i = 1, ..., k, such that the boxes in the first row all hauein them,
second row boxes have in them,etc. The boxes of the second diagram are now
added to the first diagram to create new diagrams according to the following rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the two initial diagrams.

3. For Un) no diagram has more thanrows.

4. Making a journey through the diagram starting with the top row and entering
each row from the right, at any point the numbergé encountered in any
of the attached boxes must not exceed the number of previously encountered
ai—1's.

5. The numbers must not increase when reading across a row from left to right.
6. The numbers must decrease when reading a column from top to bottom.

Rules 4-6 ensure that states that were previously symmetrized are not antisym-
metrized in the product, and vice versa. Also, the rules prevent counting the same
state twice.

For example, consider the direct product of the partiti@hand[2, 1]. ForU (n)
with n > 3 we have

[ [d] |

ay al‘ ‘ ‘ al‘ al‘ ‘ al‘
= a a|a
I:\:\:‘ ® az az ® aija @ 7&1; @ a; ! ’

while for n = 2 we have

(T o g =g e -
e ED ’
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Yo Py, dy,
n(n+1)(n+2)(n+3)
12754 == R

[y

é 8

[N

N

[1]e2]o[3] (4]

1]2 4
n?(n?—1)

12

1,3 4

24 3

1] 2] 3

3] 2

|4]

1]3] 3 Y (n—

R e =

2] 2

13

% n(n—1)(n—2)(n—3)

24

Table 9.2 Reduction of 4-index tensors. Note the symmetry under —n.



9.8 SU(n) AND THE ADJOINT REP

The SU(n) group elements satisfyet G = 1, so SU(n) has an additional in-
variant, the Levi-Civita tensofa, a,...a, = Ga, 1 Ga,® -+ Ga, " Earay..ar - THE
diagrammatic notation for the Levi-Civita tensors was introduce@ 2.

While the irreps o/ (n) are labeled by the standard tableaux with no more than
n rows (see sectiof.3), the standard tableaux with a maximunmof 1 rows label
the irreps ofSU(n). The reason is that iI§U(n), a column of lengthn can be
removed from any diagram by contraction with the Levi-Civita ten§o2). For
example, forSU (4)

]
N | ‘. (9.45)

Standard tableaux that differ only by columns of lengttorrespond to equivalent
irreps. Hence, for the standard tableaux labeling irreg 0 ), the highest column
is of heightn — 1, which is also the rank ofU(n). A rep of SU(n), or 4,,_1
in the Cartan classification (tablé6) is characterized by, — 1 Dynkin labels
b1bs . ..b,—1. The corresponding Young diagram (defined in secfichl) is then
given by (b1b2...b,-100...), or (bybs...b,_1) for short.

For SU(n) a column withk boxes (antisymmetrization @f covariant indices)
can be converted by contraction with the Levi-Civita tensor into a colunin efk)
boxes (corresponding t@ — k) contravariant indices). This operation associates
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with each diagram a conjugate diagram. Thus ¢bejugateof a SU(n) Young
diagram Y is constructed from the missing pieces needed to complete the rectangle
of n rows,

SU(5) : ~ T . (9.46)

To find the conjugate diagram, add squares below the diagram of Y such that the
resulting figure is a rectangle with heightand width of the top row in Y. Remove

the squares corresponding to Y and rotate the rest by 180 degrees. The result is the
conjugate diagram of Y. For example, f6t/(6) the irrep(20110) has(01102) as

its conjugate rep:

; é@'
SU(6) : & . (9.47)

In general, theSU (n) reps(bibs ...b,—1) and(b,_1 ...byb1) are conjugate. For
example(10...0) stands for the defining rep, and its conjugat@is. . . 01), i.e,,
a column ofn — 1 boxes.

The Levi-Civitatensor converts an antisymmetrized collection-afin”-indices
into 1 “out™-index, or, in other words, it converts am—1)-particle state into a single
antiparticle state. We ugejto denote the single antiparticle state; it is the conjugate
of the fundamental representationsingle particle state. For example, f6¢/(3)
we have

(10)=[] = (20)=[T] =6
(1= =3 (02)= | =B (9.48)
an=1J=s8  en=l11l=15.

The product of the fundamental rég and the conjugate rep] of SU(n) de-
composes into a singlet and thdjoint representation

|

n - n = n - n :1—|—(n72—1).
Note that the conjugate of the diagram for the adjoint is again the adjoint.

Using the construction of secti@4, the birdtrack Young projection operator for
the adjoint representatiot can be written

0 o [






