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Instant gratification takes too long.
— Carrie Fisher

25.2.1 Regular representation

Take an arbitrary function ρ(x) defined over the state space x ∈ M. If the state
space is tiled by a fundamental domain M̂ and its copies, function ρ(x) can be
written as a |G|-dimensional vector of functions, each function defined over the
fundamental domain x̂ ∈ M̂ only. The natural choice of a function space basis is
the |G|-component regular basis vector

ρ
reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 =


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 , (25.4)

constructed from an arbitrary function ρ(x) defined over the entire state spaceM,
by applying U(g−1) to ρ(x̂) for each g ∈ G, with state space points restricted to the
fundamental domain, x̂ ∈ M̂.
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Now apply group action operator U(g) to a regular basis vector:

U(g)


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 =


ρ( D(g−1)x̂ )
ρ(D(g−1g2)x̂)

...
ρ(D(g−1g|G|)x̂)

 .
It acts by permuting the components. (And yes, Mathilde, the pesky g−1 is inher-
ited from (25.2), and there is nothing you can do about it.) Thus the action of the
operator U(g) on a regular basis vector can be represented by the corresponding
[|G|×|G|] permutation matrix, called the left regular representation Dreg(g),

U(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 = Dreg(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 .
A product of two permutations is a permutation, so this is a matrix representation
of the group. To compute its entries, write out the matrix multiplication explicitly,
labeling the vector components by the corresponding group elements,

ρ
reg
b (x̂) =

G∑
a

Dreg(g)ba ρ
reg
a (x̂) .

A product of two group elements g−1a is a unique element b, so the ath row of
Dreg(g) is all zeros, except the bth column which satisfies g = b−1a. We arrange the
columns of the multiplication table by the inverse group elements, as in table 25.1.
Setting multiplication table entries with g to 1, and the rest to 0 then defines the
regular representation matrix Dreg(g) for a given g,

Dreg(g)ab = δg,b−1a . (25.5)

For instance, in the case of the 2-element group {e, σ} the Dreg(g) can be either
the identity or the interchange of the two domain labels,

Dreg(e) =

[
1 0
0 1

]
, Dreg(σ) =

[
0 1
1 0

]
. (25.6)

The multiplication table for D3 is a more typical, nonabelian group example:
see table 25.1. The multiplication tables for C2 and C3 are given in table 25.2.

The regular representation of group identity element e is always the identity
matrix. As Dreg(g) is a permutation matrix, mapping a tile M̂a into a different tile
M̂ga , M̂a if g , e, only Dreg(e) has diagonal elements, and

tr Dreg(g) = |G| δg,e . (25.7)
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D3 e σ12 σ23 σ31 C1/3 C2/3

e e σ12 σ23 σ31 C1/3 C2/3

(σ12)−1 σ12 e C1/3 C2/3 σ23 σ31
(σ23)−1 σ23 C2/3 e C1/3 σ31 σ12
(σ31)−1 σ31 C1/3 C2/3 e σ12 σ23
(C1/3)−1 C2/3 σ23 σ31 σ12 e C1/3

(C2/3)−1 C1/3 σ31 σ12 σ23 C2/3 e

Dreg(σ23) =



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


, Dreg(C1/3) =



0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0


Table 25.1: (top) The multiplication table of D3, the group of symmetries of a triangle. (bottom)
By (25.5), the 6 regular representation matrices Dreg(g) of dihedral group D3 have ‘1’ at the location
of g in the D3 multiplication table table 25.1, ‘0’ elsewhere. For example, the regular representation
of the action of operators U(σ23) and U(C2/3) on the regular basis (25.4) are shown here.

25.2.2 Irreps: to get invariants, average

A representation D(µ)(g) acting on dµ-dimensional vector space V (µ) is an irre-
ducible representation (irrep) of group G if its only invariant subspaces are V (µ)

and the null vector {0}. To develop a feeling for this, one can train on a number of
simple examples, and work out in each case explicitly a similarity transformation
S that brings Dreg(g) to a block diagonal form

S −1Dreg(g)S =


D(1)(g)

D(2)(g)
. . .

 (25.8)

for every group element g, such that the corresponding subspace is invariant under
actions g ∈ G, and contains no further nontrivial subspace within it. For the prob-
lem at hand we do not need to construct invariant subspaces ρ(µ)(x) and D(µ)(g)
explicitly. We are interested in the symmetry reduction of the trace formula, and
for that we will need only one simple result (lemma, theorem, whatever): the reg-
ular representation of a finite group contains all of its irreps µ, and its trace is
given by the sum

tr Dreg(g) =
∑
µ

dµ χ(µ)(g) , (25.9)

where dµ is the dimension of irrep µ, and the characters χ(µ)(g) are numbers intrin-
sic to the group G that have to be tabulated only once in the history of humanity.
And they all have been. The finiteness of the number of irreps and their dimen-
sions dµ follows from the dimension sum rule for tr Dreg(e), |G| =

∑
d2
µ.

The simplest example is afforded by the 1-dimensional subspace (irrep) given
by the fully symmetrized average of components of the regular basis function
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ρreg(x)

ρ(A1)(x) =
1
|G|

G∑
g

ρ(D(g) x) .

By construction, ρ(A1) is invariant under all actions of the group, U(g) ρ(A1)(x) =

ρ(A1)(x) . In other words, for every g this is an eigenvector of the regular repre-
sentation Dreg(g) with eigenvalue 1. Other eigenvalues, eigenvectors follow by
working out C3, CN (discrete Fourier transform!) and D3 examples.

The beautiful Frobenius ‘character orthogonality’ theory of irreps (irreducible
representations) of finite groups follows, and is sketched here in appendix A25; it
says that all other invariant subspaces are obtained by weighted averages (‘projec-
tions’)

ρ(µ)(x) =
dµ
|G|

∑
g

χ(µ)(g) U(g) ρ(x) =
dµ
|G|

∑
g

χ(µ)(g) ρ(D(g−1)x) (25.10)

The above ρ(A1)(x) invariant subspace is a special case, with all χ(A1)(g) = 1.

By now the group acts in many different ways, so let us recapitulate:

g abstract group element, multiplies other elements
D(g) [d×d] state space transformation matrix, multiplies x ∈ M
U(g) operator, acts on functions ρ(x) defined over state spaceM

D(µ)(g) [dµ×dµ] irrep, acts on invariant subspace x ∈ M(µ)

Dreg(g) [|G|×|G|] regular matrix rep, acts on vectors x ∈ Mreg
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