Instant gratification takes too long. — Carrie Fisher

25.2.1 Regular representation

Take an arbitrary function $\rho(x)$ defined over the state space $x \in \mathcal{M}$. If the state space is tiled by a fundamental domain $\hat{\mathcal{M}}$ and its copies, function $\rho(x)$ can be written as a |G|-dimensional vector of functions, each function defined over the fundamental domain $\hat{x} \in \hat{\mathcal{M}}$ only. The natural choice of a function space basis is the |G|-component *regular basis* vector

$$\begin{bmatrix} \rho_1^{reg}(\hat{x}) \\ \rho_2^{reg}(\hat{x}) \\ \vdots \\ \rho_{|G|}^{reg}(\hat{x}) \end{bmatrix} = \begin{bmatrix} \rho(D(e)\hat{x}) \\ \rho(D(g_2)\hat{x}) \\ \vdots \\ \rho(D(g_{|G|})\hat{x}) \end{bmatrix},$$
(25.4)

constructed from an arbitrary function $\rho(x)$ defined over the entire state space \mathcal{M} , by applying $U(g^{-1})$ to $\rho(\hat{x})$ for each $g \in G$, with state space points restricted to the fundamental domain, $\hat{x} \in \hat{\mathcal{M}}$.

symm - 11apr2015

Now apply group action *operator* U(g) to a regular basis vector:

$$U(g) \begin{bmatrix} \rho(D(e)\hat{x}) \\ \rho(D(g_2)\hat{x}) \\ \vdots \\ \rho(D(g_{|G|})\hat{x}) \end{bmatrix} = \begin{bmatrix} \rho(D(g^{-1})\hat{x}) \\ \rho(D(g^{-1}g_2)\hat{x}) \\ \vdots \\ \rho(D(g^{-1}g_{|G|})\hat{x}) \end{bmatrix}.$$

It acts by permuting the components. (And yes, Mathilde, the pesky g^{-1} is inherited from (25.2), and there is nothing you can do about it.) Thus the action of the *operator* U(g) on a regular basis vector can be represented by the corresponding $[|G| \times |G|]$ permutation *matrix*, called the *left regular representation* $D^{reg}(g)$,

$$U(g) \begin{bmatrix} \rho_1^{reg}(\hat{x}) \\ \rho_2^{reg}(\hat{x}) \\ \vdots \\ \rho_{|G|}^{reg}(\hat{x}) \end{bmatrix} = D^{reg}(g) \begin{bmatrix} \rho_1^{reg}(\hat{x}) \\ \rho_2^{reg}(\hat{x}) \\ \vdots \\ \rho_{|G|}^{reg}(\hat{x}) \end{bmatrix}.$$

A product of two permutations is a permutation, so this is a matrix representation of the group. To compute its entries, write out the matrix multiplication explicitly, labeling the vector components by the corresponding group elements,

$$\rho_b^{reg}(\hat{x}) = \sum_a^G D^{reg}(g)_{ba} \rho_a^{reg}(\hat{x}) \,.$$

A product of two group elements $g^{-1}a$ is a unique element *b*, so the a_{th} row of $D^{reg}(g)$ is all zeros, except the b_{th} column which satisfies $g = b^{-1}a$. We arrange the columns of the multiplication table by the inverse group elements, as in table 25.1. Setting multiplication table entries with *g* to 1, and the rest to 0 then defines the regular representation *matrix* $D^{reg}(g)$ for a given *g*,

$$D^{reg}(g)_{ab} = \delta_{g,b^{-1}a} \,. \tag{25.5}$$

For instance, in the case of the 2-element group $\{e, \sigma\}$ the $D^{reg}(g)$ can be either the identity or the interchange of the two domain labels,

$$D^{reg}(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D^{reg}(\sigma) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
(25.6)

The multiplication table for D_3 is a more typical, nonabelian group example: see table 25.1. The multiplication tables for C_2 and C_3 are given in table 25.2.

The regular representation of group identity element *e* is always the identity matrix. As $D^{reg}(g)$ is a permutation matrix, mapping a tile $\hat{\mathcal{M}}_a$ into a different tile $\hat{\mathcal{M}}_{ga} \neq \hat{\mathcal{M}}_a$ if $g \neq e$, only $D^{reg}(e)$ has diagonal elements, and

$$\operatorname{tr} D^{reg}(g) = |G| \,\delta_{g,e} \,. \tag{25.7}$$

D ₃	e	σ_{12}	σ_{23}	σ_{31}	$C^{1/3}$	$C^{2/3}$			
e	e	σ_{12}	σ_{23}	σ_{31}	$C^{1/3}$	$C^{2/3}$			
$(\sigma_{12})^{-1}$	σ_{12}	е	$C^{1/3}$	$C^{2/3}$	σ_{23}	σ_{31}			
$(\sigma_{23})^{-1}$	σ_{23}	$C^{2/3}$	е	$C^{1/3}$	σ_{31}	σ_{12}			
$(\sigma_{31})^{-1}$	σ_{31}	$C^{1/3}$	$C^{2/3}$	е	σ_{12}	σ_{23}			
$(C^{1/3})^{-1}$	$C^{2/3}$	σ_{23}	σ_{31}	σ_{12}	е	$C^{1/3}$			
$(C^{2/3})^{-1}$	$ C^{1/3} $	σ_{31}	σ_{12}	σ_{23}	$C^{2/3}$	е			
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{array}{ccc} 1 & 0 \\ 0 & 0 \end{array}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$			0	$\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	$1 \\ 0$	0
	0 0	0 0	Dre	$\alpha \left(\frac{\alpha 1}{3} \right)$	0	0 0	1	Õ	0
$D^{reg}(\sigma_{23}) = \begin{bmatrix} 0 & 0 \end{bmatrix}$	0 0	0 1	$, D^{\prime e_{0}}$	$s(C^{1/3})$	= 0	1 0	0	0	0
0 1	0 0	0 0			0	0 0	0	0	1
0 0	0 1	0 0]			[1	0 0	0	0	0

Table 25.1: (top) The multiplication table of D₃, the group of symmetries of a triangle. (bottom) By (25.5), the 6 regular representation matrices $D^{reg}(g)$ of dihedral group D₃ have '1' at the location of *g* in the D₃ multiplication table table 25.1, '0' elsewhere. For example, the regular representation of the action of operators $U(\sigma_{23})$ and $U(C^{2/3})$ on the regular basis (25.4) are shown here.

25.2.2 Irreps: to get invariants, average

A representation $D^{(\mu)}(g)$ acting on d_{μ} -dimensional vector space $V^{(\mu)}$ is an *irre-ducible representation* (*irrep*) of group *G* if its only invariant subspaces are $V^{(\mu)}$ and the null vector {0}. To develop a feeling for this, one can train on a number of simple examples, and work out in each case explicitly a similarity transformation *S* that brings $D^{reg}(g)$ to a block diagonal form

$$S^{-1}D^{reg}(g)S = \begin{bmatrix} D^{(1)}(g) & & \\ & D^{(2)}(g) & \\ & & \ddots \end{bmatrix}$$
(25.8)

for every group element *g*, such that the corresponding subspace is invariant under actions $g \in G$, and contains no further nontrivial subspace within it. For the problem at hand we do not need to construct invariant subspaces $\rho^{(\mu)}(x)$ and $D^{(\mu)}(g)$ explicitly. We are interested in the symmetry reduction of the trace formula, and for that we will need only one simple result (lemma, theorem, whatever): the regular representation of a finite group contains all of its irreps μ , and its trace is given by the sum

tr
$$D^{reg}(g) = \sum_{\mu} d_{\mu} \chi^{(\mu)}(g),$$
 (25.9)

where d_{μ} is the dimension of irrep μ , and the characters $\chi^{(\mu)}(g)$ are numbers *intrinsic* to the group *G* that have to be tabulated only once in the history of humanity. And they all have been. The finiteness of the number of irreps and their dimensions d_{μ} follows from the dimension sum rule for tr $D^{reg}(e)$, $|G| = \sum d_{\mu}^2$.

The simplest example is afforded by the 1-dimensional subspace (irrep) given by the fully symmetrized average of components of the regular basis function $\rho^{reg}(x)$

$$\rho^{(A_1)}(x) = \frac{1}{|G|} \sum_{g}^{G} \rho(D(g) x).$$

By construction, $\rho^{(A_1)}$ is invariant under all actions of the group, $U(g)\rho^{(A_1)}(x) = \rho^{(A_1)}(x)$. In other words, for every *g* this is an eigenvector of the regular representation $D^{reg}(g)$ with eigenvalue 1. Other eigenvalues, eigenvectors follow by working out C₃, C_N (discrete Fourier transform!) and D₃ examples.

The beautiful Frobenius 'character orthogonality' theory of irreps (irreducible representations) of finite groups follows, and is sketched here in appendix A25; it says that all other invariant subspaces are obtained by weighted averages ('projections')

$$\rho^{(\mu)}(x) = \frac{d_{\mu}}{|G|} \sum_{g} \chi^{(\mu)}(g) U(g) \rho(x) = \frac{d_{\mu}}{|G|} \sum_{g} \chi^{(\mu)}(g) \rho(D(g^{-1})x)$$
(25.10)

The above $\rho^{(A_1)}(x)$ invariant subspace is a special case, with all $\chi^{(A_1)}(g) = 1$.

By now the group acts in many different ways, so let us recapitulate:

lement, multiplies other elements
the transformation matrix, multiplies $x \in \mathcal{M}$
functions $\rho(x)$ defined over state space \mathcal{M}
cts on invariant subspace $x \in \mathcal{M}^{(\mu)}$
r matrix rep, acts on vectors $x \in \mathcal{M}^{reg}$