
5 Irreducible representations of Sn and C[Sn]

Let G be a group and let x be a particular element of the group. We define the conjugacy class of x,

denoted by xG to be the set

xG :=
{

g ∈ G
∣∣g = hxh−1 for some h ∈ G

}
(5.1)

For the symmetric group Sn, it can be shown that every element in a particular conjugacy class have 
the same cycle structure (c.f. Definition 1.2). Conversely, the if two elements of Sn have the 
same cycle structure, they are in the same conjugacy class
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Definition 5.1 – Partition of a natural number:
Let n ∈ N, and let λ = (λ1, λ2, . . . , λk) be such that

k∑

i=1

λi = n , and λi ≥ λi+1 for every i = 1, 2, . . . , k − 1 . (5.8)

Then, λ is called a partition of n, and we write λ ` n.

It is readily seen that the cycle structure of any permutation ρ ∈ Sn gives a partition of n, and
conversely, for any partition λ of n, there exists a cycle in Sn with cycle structure λ. Therefore, the
conjugacy classes of Sn correspond uniquely to the partitions of the number n. There is a graphical
tool to help keep track of these partitions:

Definition 5.2 – Young diagram:
Let n ∈ N and let λ = (λ1, λ2, . . . , λk) be a partition of n. The Young diagram Yλ corresponding

to λ is a planar arrangement of n boxes that are left-aligned and top-aligned, such that the ith row
of Yλ contains exactly λi boxes. Furthermore, we say that Yλ has size n.

Example 5.1:

The Young diagrams corresponding to the various cycle structures of permutations in S4 (i.e.
partitions of 4) are

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(5.9)

4 = 1 + 1 + 1 + 1 4 = 2 + 1 + 1 4 = 2 + 2 4 = 3 + 1 4 = 4

It turns out that the partitions of n have a close connection with the irreducible representations of
Sn.

5.1 Equivalent representations & Schur’s Lemma

Recall the definition of a representation, in particular an irreducible representation, from section 3.

Definition 5.3 – Equivalent representations:
Let G be a group and V1 and V2 carry two irreducible representations ϕ1 and ϕ2, respectively, of G,

ϕ1 : G→ End(V1) , and ϕ2 : G→ End(V2) . (5.10)

We say that the representations ϕ1 and ϕ2 are equivalent, if there exists an isomorphism I12 : V2 →
V1 such that

I12 ◦ ϕ2(g) ◦ I−1
12 = ϕ1(g) for every g ∈ G , (5.11)

where ◦ denotes the composition of linear maps. In the literature, the operator (or map) I12 is often
also referred to as an intertwining operator.
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Now, we are finally in a position to see how the supposed detour via partitions of natural numbers
connects to the representation theory of Sn:

Theorem 5.1 – Conjugacy classes give inequivalent irreducible representations:
Let G be a finite group. Then the conjugacy classes of G classify all inequivalent irreducible repre-
sentations of G.

In particular, if G is the symmetric group Sn, then the Young diagrams of size n classify all inequiv-
alent irreducible representations of Sn.

This theorem can easiest be proven using group characters (see, e.g. [11]), which are a powerful
tool of group representation theory. However, since in this course we will not be introducing group
characters, we leave Theorem 5.1 without proof, but encourage the interested reader to find out
more about group characters own his/her own. Alternatively, for the group Sn, one can may also
formulate a combinatorial proof as is done in [4].

Note 5.1: Number of inequivalent irreducible representations

Since any finite group G has a finite number of conjugacy classes (this is true since the
conjucacy classes partition the group, or can also be seen using Lagrange’s Theorem), a finite
group can only have a finite number of inequivalent irreducible representations!

In particular, the number of inequivalent irreducible representations of Sn is given by p(n),
where p is called the partition function, counting the number of partitions of n. However,
there is, as of yet, no exact closed form formula for p(n) — finding such a formula is one of
the many outstanding problems in number theory.

Example 5.2:

In Example 5.1, we have seen that there are five Young diagrams of size 4. Therefore, we
know the group S4 has five inequivalent irreducible representations, one corresponding to
each Young diagram.

Lemma 5.1 – Schur’s Lemma:
Let M1 and M2 be two irreducible F[G]-modules of a group G. Let I21 : M2 → M1 be a G-
homomorphism. Then

1. I12 is a G-isomorphism if and only if V1 and V2 carry equivalent representations of G, or
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Lemma 5.2 – Schur’s Lemma (for group representations):
Let ϕ1 : G → End(V1) and ϕ2 : G → End(V2) be two irreducible representations of a group G, and
let T : V2 → V1 be a map satisfying

T ◦ ϕ2(g) = ϕ1(g) ◦ T (5.16)

for every g ∈ G. Then

1. T is invertible or

2. T is the zero map.

5.2 Young projection operators & irreducible representations of Sn

Young diagrams provide a graphical tool to count the inequivalent irreducible representations of Sn.
Granted, Young diagrams are easier to geep track of than partitions of n, but if the story ended here
then Young diagrams would only be of little use to us. Luckily for us, this is not the case: Filling
the boxes of a Young diagram with numbers in n := {1, 2, . . . , n} gives us not only a count of all
irreducible representations of Sn, but, thanks to an algorithm developed by Alfred Young [12], gives
immediate access to the primitive idempotents generating the minimal ideals of C[Sn]. Exactly how
this happens will be the topic of the present section.

Definition 5.4 – Young tableaux:
Let Y be a particular Young diagram of size n. A Young tableau of shape Y is the diagram Y
where each box is filled with a unique number in n = {1, 2, . . . , n} such that the numbers increase
from left to right and from top to bottom in each row and column.

We will denote a particular Young tableau with an upper case Greek letter, usually Θ of Φ, and we
will denote the Young diagram underlying Θ by YΘ. Furthermore, the set of all Young tableaux of
size n (i.e. consisting of n boxes) will be denoted by Yn.

Example 5.3:

The Young tableaux in Y4, together with the Young diagram from which they stem, are given
by:

1 2 3 4
1 3 4

2

1 2 4

3

1 2 3

4

1 3

2 4

1 2

3 4

1 4

2

3

1 3

2

4

1 2

3

4

1

2

3

4

In the literature, the presently defined Young tableau is often also referred to as a standard Young
tableau, where the adjective “standard” refers to the fact that each box is filled with a unique
integer in n, there may not be any repetitions or numbers missing from n. However, unless we want
to emphasize the standardness of the Young tableau, we will simply say Young tableau when we
mean a standard Young tableau.
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Definition 5.5 – (Anti-)symmetrizers of Young tableaux:
Let Θ ∈ N be a Young tableau with rows R1,R2, . . .Rs and columns C1, C2, . . . Ct. Then, we define
the product of symmetrizers corresponding to Θ, SΘ, to be

SΘ := SR1SR2 · · ·SRs . (5.17a)

Similarly, we define the the product of antisymmetrizers corresponding to Θ, AΘ, to be

AΘ := AC1SC2 · · ·SCt . (5.17b)

Since, by the standardness of Young tableaux, each integer of n occurs exactly once in Θ, each of
the symmetrizers SRi in (5.17a) are disjoint, and the same holds true for the antisymmetrizers
ACj in (5.17b). Therefore, we may also refer to SΘ and AΘ merely as the sets of symmetrizers,
respectively, antisymmetrizers corresponding to Θ.

Note 5.2: (Anti-)symmetrizers of Young tableaux in birdtrack notation

Let Θ ∈ Yn be a particular Young tableau. As was stated in Definition 5.5, the symmetrizers
appearing the product SΘ are all disjoint, in that no two symmetrizers in SΘ have common
index legs. Therefore, in birdtrack notation, we may draw all of the symmetrizers in SΘ

underneath each other, yielding SΘ to be a tower of symmetrizers. The same also may be
done with the antisymmetrizers in AΘ.
For example, the Young tableau

1 3 4 6
2 7 8
5
9

(5.18a)

has corresponding sets of symmetrizers and antisymmetrizers

SΘ = and AΘ = . (5.18b)

The sets of symmetrizers and antisymmetrizers corresponding to a particular Young tableau Θ ∈
Yn can be used to create an idempotent operator of C[Sn]. It turns out that the idempotents
constructed from Young tableaux, also referred to as Young projection operators, give all linearly
independent idempotents in C[Sn]. Hence, the Young tableaux in Yn count, and give direct access to,
all irreducible representations of the symmetric group Sn! This is the core message of the following
theorem:

Theorem 5.2 – Young projection operators and irreps of Sn:
Let Θ,Φ ∈ Yn be two Young tableaux. We define the Young operator eΘ to be

eΘ := SΘAΘ . (5.19)

Then the following statments hold:
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1. The Young operators eΘ are quasi-idempotent for every Θ ∈ Yn; that is, there exists a nonzero
constant αΘ ∈ C such that

YΘ := αΘeΘ = αΘSΘAΘ (5.20)

is idempotent. The operator YΘ is referred to as the Young projection operator corresponding
to the tableau Θ.

2. The Young projection operators YΘ are primitive idempotents, thus generating the minimal
ideals of C[Sn].

3. For Θ,Φ ∈ Yn, the irreducible representations generated by YΘ and YΦ are equivalent if and
only if the tableaux Θ and Φ have the same shape.

We will delay the proof of Theorem 5.2 to section 5.2.3. For now, let us ponder on what this theorem
actually says: As already alluded to previously, Theorem 5.2 states that each Young tableau in Yn
gives rise to a primitive idempotent YΘ := αΘSΘAΘ of C[Sn], where αΘ ∈ C and αΘ 6= 0. Thus,
the Young tableaux of Yn give direct access to the irreducible representations of Sn.

Furthermore, from Theorem 5.1 we know that all inequivalent irreducible representations of Sn are
indexed by Young diagrams; part 3 of Theorem 5.2 confirms this by stating that two Young projec-
tors YΘ and YΦ corresponding to the Young tableaux Θ,Φ ∈ Yn generate equivalent representations
of Sn if and only if Θ and Φ have the same shape — i.e. if and only if Θ and Φ have the same
underlying Young diagram, YΘ = YΦ.

5.2.1 Structure of Young projection operators & vanishing operators

Let Θ ∈ Yn be a Young tableau. By definition, each number in n occurs exactly once in the tableau.
Therefore, each symmetrizer in SΘ has at most one leg in common with each antisymmetrizer in
AΘ.

Let c1 be the first row in Θ.Tautologically, the elements in c1 are in the first place in each row, and
hence the index lines in the Young projection operator YΘ exiting the topmost (first) antisymmetrizer
(corresponding to the column c1) enter the |c1| symmetrizers in the first place. Similarly, for ri being
the ith row in Θ, the index lines of YΘ exiting the ith antisymmetrizer enter the top |ci| symmetrizers
in the ith place.4 For example,

YΘ = −→ ρΘ σΘ , (5.21)

where the exact form of the permutations ρΘ and σΘ depend on the filling of the Young tableau
(i.e. the exact arrangement of numbers in Θ), while the lengths of the symmetrizers and antisym-
metrizers, as well as the way in which the index lines connect AΘ to SΘ depends only on the shape
YΘ of Θ.

A valid question to ask now is “Can a Young projection operator ever be zero”? To answer this
question, let us be more precise on what we mean for an operator two be zero. In particular, we
distinguish the following cases:

4Note that, if this ordering were not already naturally imposed on us, one could always reorder the index lines, as
one may factor any permutation out of a symmetrizer at no cost.
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Definition 5.6 – Identically and dimensionally zero operators:
Let O be an operator acting linearly on aspace V. We say that

1. O is identically zero if O = 0, the additive identity in End(V), and

2. O is dimensionally zero if ker(O) = V.

Note 5.3: Identically zero and dimensionally zero operators

Note that condition 1 of Definition 5.6 is stronger than condition 2 in that every identically
zero operator is dimensionally zero, but there may exist operators whose kernel is the entire
space, that are not themselves the additive identity in End(V).

As an example, consider the two operators defined as

S12A12 = =
1

4

(
+

)(
−

)

=
1

4

(
+ − −

)
= 0 (5.22a)

A12 = =
1

2

(
−

)
. (5.22b)

As we have just seen, the operator S12A12 is 0, and hence we say that S12A12 is identically
zero. On the other hand, A12 6= 0, but if we consider the action of A12 on V ⊗2 where
dim(V ) = N < 2, every element of V ⊗2 gets mapped to zero, such that ker(A12) = V ⊗2.
Hence, the operator A12 is dimensionally zero but not identically zero.

Notice that the nomenclature dimensionally zero is inspired by the fact that the space on
which the operator O acts is not large enough to support the action: As we have seen in
the example (5.22), A12 is only dimensionally zero if it acts on V ⊗2 with dim(V ) = N < 2.
If dim(V ) = N ≥ 2 then A12 is no longer dimensionally zero! In contrast, the operator
S12A12 = 0 on V ⊗2, and hence ker(S12A12) = V ⊗2, irrespective of the dimension of V .

With the considerations in Note 5.3, we can give an alternative definition of identically and dimen-
sionally zero operators in C[Sn]:

Definition 5.7 – Identically and dimensionally zero operators in C[Sn]:
Let O ∈ C[Sn]. Then, we can write O as

O =
∑

σ∈Sn

λσσ , λσ ∈ C for every σ ∈ Sn . (5.23)

We say that

1. O is identically zero if λσ = 0 for every σ ∈ Sn, and

2. O is dimensionally zero if ker(O) = V and there exists at least one σ ∈ Sn such that λσ 6= 0.
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5.2.2 Hook length formula

Something that has not been explicitly mentioned in this Theorem is how to find the constant
αΘ ∈ C \ {0} such that operator YΘ = αΘeΘ is idempotent. Luckily however, there exists an easy
formula utilizing the hook rule to compute αΘ:

Definition 5.8 – Hook rule & hook length:
Let Θ ∈ Yn be a particular Young tableau. Its hook length HΘ is computed using the following
hook rule:

Take the Young diagram underlying the tableau Θ, YΘ, and fill each box with the number of boxes
lying to the right and underneath it (i.e. the length of the hook whose corner is the cell in question),
e.g.

YΘ = −→
7 4 3 1

5 2 1

2

1

. (5.24)

The hook length of the tableau Θ is given by the product of all numbers appearing in the resulting
tableau; for the example given in eq. (5.24), we have that HΘ = 7 · 5 · 4 · 3 · 22 = 1680.

The hook length of a Young diagram is defined in an analogous way — one merely foregoes the
first step of “deleting the entries” as a Young diagram has no entries in its boxes to begin with.
Furthermore, from Definition 5.8, it immeadiately follows that two Young tableaux with the same
shape have the same hook lengths.

Theorem 5.3 – Number of Young tableaux of certain shape & normalization constant αΘ:
Let Y be a particular Young diagram of size n. Then, the number of Young tableaux with shape Y
is given by

n!

HY
. (5.25)

Let Θ ∈ Yn be a Young tableau, and denote the length of the ith row by ri, and the length of the
jth column by cj. Then, the normalization constant αΘ needed to render YΘ = αΘeΘ idempotent is
given by

αΘ =

∏
i ri! ·

∏
j cj !

HY
(5.26)

Theorem 5.3 will be left without proof, but a nice combinatorial proof can be found in [4].

Exercise 5.2: Write down all Young diagrams of size 6 (i.e. consisting of six boxes).
Compute the Hook length of each diagram. With this information, find the number of Young
tableaux of size 6, i.e. compute |Y6|.
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Solution: There are, in total, 11 Young diagrams of size 6, namely

, , , , ,

, , , , , .

(5.27)

The hook length of each diagram is calculated according to Definition 5.8, for example.

hook lengths−−−−−−−−→
5 3 1

3 1

1

−→ H = 5 · 3 · 1 · 3 · 1 · 1 = 45 (5.28a)

hook lengths−−−−−−−−→
4 3

3 2

2 1

−→ H = 4 · 3 · 3 · 2 · 2 · 1 = 144 . (5.28b)

Continuing in this fashion, we see that the Hook lengths of all diagrams in (5.27) are given
by

H = 6! = 720 , H = 144 , H = 72 ,

H = 80 , H = 72 , H = 45 , H = 144 ,

H = 144 , H = 80 , H = 144 , H = 6! = 720 .

(5.29)

Theorem 5.3 tells us that the number of Young tableaux corresponding to a particular Young
diagram Y (i.e. tableaux of shape Y) is given by n!

HY
, where n is the size of the diagram Y.

Hence, to find the number of all Young tableaux of size 6, we have to form a sum of the Hook
lengths over the Young diagrams of size 6,

|Y6| =
∑

Y size 6

6!

HY
. (5.30a)

Hence, we find that

|Y6| =
6!

6!
+

6!

144
+

6!

48
+

6!

80
+

6!

48
+

6!

45
+

6!

144
+

6!

144
+

6!

80
+

6!

144
+

6!

6!
= 1 + 5 + 10 + 9 + 10 + 16 + 5 + 5 + 9 + 5 + 1

= 76 . (5.30b)

Hence, there are 76 Young tableaux of size 6.

Notice that, if you were only interested in the number of Young tableaux of size n, going this route
via the Young diagrams and the hook lengths is not the easiest/quickest way to go, since there is
not closed form exact formula for the number of Young diagrams of a certain size (recall Note 5.1).
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Luckily however, there exists a closed form formula for the number of Young tableaux, but that is
a story for another day....

Exercise 5.3: Compute all Young projection operators of C[S3] (acting on V ⊗3).

Solution: It is readily seen that the Young diagrams of size 3 are given by

, and , (5.31a)

with corresponding hook lengths

H = 3! , H = 3 and H = 3! . (5.31b)

From Theorem 5.3 we know that the first and last Young diagram in eq. (5.31a) give rise
to one Young tableau each, while the middle Young diagram produces two Young tableaux.
These tableaux are

1 2 3
1 2

3

1 3

2

1

2

3

. (5.32)

Using the definition of the Young operators eΘ = SΘAΘ given in Theorem 5.2, we find, for
every Θ ∈ Y3,

e 1 2 3 = , e 1 2
3

= , e 1 3
2

= , e 1
2
3

= . (5.33)

To turn each quasi-idempotent eΘ into an idempotent YΘ = αΘeΘ, we compute the normal-
ization constants αΘ for each Θ ∈ Y3 using Theorem 5.3:

α 1 2 3 =
3!

H
= 1 , α 1 2

3

= α 1 3
2

=
2!2!

H
=

4

3
and α 1

2
3

=
3!

H
= 1 . (5.34)

Therefore, the Young projection operators YΘ = αΘeΘ for every Θ ∈ Y3 are given by

Y 1 2 3 = , Y 1 2
3

=
4

3
, Y 1 3

2

=
4

3
, Y 1

2
3

= . (5.35)
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