
group theory - week 6

For fundamentalists

Georgia Tech PHYS-7143
Homework HW6 due Tuesday 2019-02-19

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 6.1 3-disk symbolic dynamics 2 points
Exercise 6.2 Reduction of 3-disk symbolic dynamics to binary 3 points
Exercise 6.3 3-disk fundamental domain cycles 2 points
Exercise 6.4 Z2-equivariance of Lorenz system 3 points

Bonus points
Exercise 6.5 Proto-Lorenz system 10 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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2019-02-12 Predrag Lecture 11 Symmetries and dynamics
So far we have covered what any QM fixated Group Theory textbook since
1930’s and on covers. Today to turn to what we actually use group theory for
today, here, in Howey, and for that there is no book but ChaosBook.org.

Many fundamental problems of fluid dynamics and more generally non-linear
field theories are studied in experimental settings equipped with symmetries.
That is the subject of dynamical systems theory (of which classical, quantum
and stochastic mechanics and field theories are but specialized branches). We
start gently, with perhaps the simplest physical example, the three disk game of
pinball.

Read ChaosBook.org Chapter 10 Flips, slides and turns. There is also Chaos-
Book.org Appendix 10 Discrete symmetries of dynamics that you probably do
not need. You already know much of the material covered in the text, so best to
go straight to
example 10.7 Subgroups, cosets of D3,
example 11.6 3-disk game of pinball - symmetry-related orbits,
example 11.7 3-disk game of pinball - cycle symmetries,
example 11.10 3-disk game of pinball in the fundamental domain,
and then work your way backward, if there is something you do not understand
off the bat..

2019-02-14 Predrag Lecture 12 Fundamental domain
Lorenz flow example. Read ChaosBook.org Chapter 11 World in a mirror.
Maybe start with example 10.6 Equivariance of the Lorenz flow, example 11.8
Desymmetrization of Lorenz flow, and then work your way back if needed.

The reading and the homework for this week, is augmented by - if you find that
helpful - by ‘live’ online blackboard lectures: click here.

6.1 Thoughts
How I think of the fundamental domain is explained in my online lectures, Week 14,
in particular the snippet Regular representation of permuting tiles.

The basic insight is that if the symmetry and dynamics commute, one can imple-
ment the stratification of the state space by the symmetry first, paying no heed to the
dynamics. In arbitrary coordinates, the state space is a stratified by a jumble of group
orbits. It is an ‘orbitfold’, in the sense that it also contains subspaces on which group
orbits are of the dimension of a symmetry subgroup, with the group action on invariant
subspaces trivial, and on which group orbits are points.

On the linear level, the natural stratification is implemented by decomposing the
state space into irreps of the symmetry group. This is a linear reshuffling of coordi-
nates that makes the action of the symmetry operators as simple as possible. Mentally,
you can think of new basis vectors as eigenvectors of the symmetry operators (Fourier
modes, spherical eigenfunctions, etc.) The nonlinear terms in dynamical equations
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jumble everything up. They are re-expressed in this basis using Kronecker-product
decompositions into sums over products of irreps.

Unfortunately - if I had more time, that would have been shorter, this goes on and
on, ChaosBook course 2, Week 15, lecture 29. Discrete symmetry factorization.

Alvin Heng What do the parameters σ, ρ and b stand for in the Lorenz equations (6.4)?

Predrag The short answer is the truncation of the Navier-Stokes that leads to Lorenz
equations is so drastic that they have no longer any physical meaning; in his
1963 paper [13] Lorenz played with the parameters until he empirically found
an interesting example of deterministic chaos. Since then, applied mathemati-
cians have reverse-engineered various physical systems to find situations where
parameters σ, ρ and b mean something, see remark 6.1 (copied to here from
ChaosBook.org). The discrete symmetry of the original Navier-Stokes system
(‘left’ is as good as ‘right’) happened to survive the drastic truncation from 105

Fourier modes (for physically accurate simulations) to 3. I prefer to teach non-
linear dynamics using the Rössler system, precisely because it has no discrete
symmetry, just chaos.

6.2 ChaosBook notes
Copied here are a few snippets from this week’s lecture notes, needed here just because
exercises refer to them - read the full lecture notes instead.

Definition: Flow invariant subspace. A typical point in fixed-point subspaceMH

moves with time, but, due to equivariance

f(gx) = gf(x) , (6.1)

its trajectory x(t) = f t(x) remains within f(MH) ⊆MH for all times,

hf t(x) = f t(hx) = f t(x) , h ∈ H , (6.2)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach to
seeking compact invariant solutions. The larger the symmetry subgroup, the smaller
MH , easing the numerical searches, so start with the largest subgroups H first.

We can often decompose the state space into smaller subspaces, with group acting
within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂M is an invariant subspace if

{Mα | gx ∈Mα for all g ∈ G and x ∈Mα} . (6.3)

{0} and M are always invariant subspaces. So is any Fix (H) which is point-wise
invariant under action of G.
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(a) (b)

Figure 6.1: (a) The pair of full-space 9-cycles, the counter-clockwise 121232313 and
the clockwise 131323212 correspond to (b) one fundamental domain 3-cycle 001.

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces un-
der the action of G are {0} andMα is called irreducible.

Example 6.1. Equivariance of the Lorenz flow. The velocity field in Lorenz equa-
tions [13] ẋ

ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 =

 −σ σ 0
ρ −1 0
0 0 −b

 x
y
z

+

 0
−xz
xy

 (6.4)

is equivariant under the action of cyclic group Z2 = {e, C1/2} acting on R3 by a π rotation
about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (6.5)

Example 6.2. Desymmetrization of Lorenz flow: (continuation of example 6.1) Lorenz
equation (6.4) is equivariant under (6.5), the action of order-2 group Z2 = {e, C1/2},
where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (6.6)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible sub-
spaces M = M+ ⊕ M−, the z-axis M+ and the [x, y] plane M−, with projection
operators onto the two subspaces given by

P+ =
1

2
(1 + C1/2) =

 0 0 0
0 0 0
0 0 1

 , P− =
1

2
(1− C1/2) =

 1 0 0
0 1 0
0 0 0

 . (6.7)

so (
ẋ−
ẏ−

)
=

(
−σ σ
ρ −1

)(
x−
y−

)
+

(
0

−z x−

)
ż+ = −b z+ +

1

4
(x+ + x−)(y+ + y−) , (6.8)

where z+ = z. As (ẋ+, ẏ+) = (0, 0), values of (x+, y+) are conserved parts of the initial
condition. We define the fundamental domain by the (arbitrary) condition x̂− ≥ 0, and
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Table 6.1: D3 correspondence between the binary labeled fundamental domain prime cycles
p̃ and the full 3-disk ternary labeled cycles p, together with the D3 transformation that maps
the end point of the p̃ cycle into the irreducible segment of the p cycle. White spaces in the
above ternary sequences mark repeats of the irreducible segment; for example, the full space
12-cycle 1212 3131 2323 consists of 1212 and its symmetry related segments 3131, 2323. The
multiplicity of p cycle ismp = 6np̃/np. The shortest pair of fundamental domain cycles related
by time reversal (but no spatial symmetry) are the 6-cycles 001011 and 001101.
p̃ p gp̃
0 1 2 σ12

1 1 2 3 C
01 12 13 σ23

001 121 232 313 C
011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12

00001 12121 23232 31313 C
00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p gp̃
000001 121212 131313 σ23

000011 121212 313131 232323 C2

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C
010111 121312 313231 232123 C2

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C
0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

whenever exits the domain,we replace the function dependence by the corresponding
fundamental domain coordinates,

(x−, y−) = C1/2(x̂−, ŷ−) = (−x̂−,−ŷ−) if x− < 0 ,

and record that we have applied C1/2 (that is the ‘reconstruction equation’ in the case of
a discrete symmetry). When we integrate (6.8), the trajectory coordinates (x̂−(t), ŷ−(t))
are discontinuous whenever the trajectory crosses the fundamental domain border.
That, however, we do not care about - the only thing we need are the Poincaré sec-
tion points and the Poincaré return map in the fundamental domain.

Poincaré section hypersurface can be specified implicitly by a single condition, through
a function U(x) that is zero whenever a point x is on the Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (6.9)

In order that there is only one copy of the section in the fundamental domain, this con-
dition has to be invariant, U(gx̂) = U(x̂) for g ∈ G, or, equivalently, the normal to it has
to be equivariant

∂jU(gx̂) = g∂jU(x̂) for g ∈ G . (6.10)

There are two kinds of compact (finite-time) orbits. Periodic orbits x(Tp) = x(Tp)
are either self dual under rotation C1/2, or appear in pairs related by C1/2; in the funda-
mental domain there is only one copy x̂(Tp) = x̂(Tp) of each. Relative periodic orbits
(or ‘pre-periodic orbits’) x̂(Tp) = C1/2x(Tp) they are periodic orbits.

As the flow is Z2-invariant, so is its linearization ẋ = Ax. Evaluated at E0, A com-
mutes with C1/2, and the E0 stability matrix A decomposes into [x, y] and z blocks.
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(a) (b)

Figure 6.2: (a) Lorenz flow cut by y = x Poincaré section plane P through the z axis
and both E1,2 equilibria. Points where flow pierces into section are marked by dots.
To aid visualization of the flow near the E0 equilibrium, the flow is cut by the second
Poincaré section, P ′, through y = −x and the z axis. (b) Poincaré sections P and P ′
laid side-by-side. (E. Siminos)

The 1-dimensionalM+ subspace is the fixed-point subspace, with the z-axis points
left point-wise invariant under the group action

M+ = Fix (Z2) = {x ∈M | g x = x for g ∈ {e, C1/2}} (6.11)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A Z2-fixed point x(t)
in Fix (Z2) moves with time, but according to (6.2) remains within x(t) ∈ Fix (Z2) for all
times; the subspaceM+ = Fix (Z2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (6.4) is
reduced to the exponential contraction to the E0 equilibrium,

ż = −b z . (6.12)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy−bz
in the Lorenz equation (6.4) send all initial conditions within M− = (x(0), y(0), 0) into
the full, z(t) 6= 0 state spaceM/M+.

By taking as a Poincaré section any C1/2-equivariant, non-self-intersecting surface
that contains the z axis, the state space is divided into a half-space fundamental domain
M̃ =M/Z2 and its 180o rotationC1/2M̃. An example is afforded by the P plane section
of the Lorenz flow in figure 6.2. Take the fundamental domain M̃ to be the half-space
between the viewer and P. Then the full Lorenz flow is captured by re-injecting back
into M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental domain’
is here largely mater of taste. For purposes of visualization it is convenient to make
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(a) (b)

Figure 6.3: (a) Lorenz attractor plotted in [x̂, ŷ, z], the doubled-polar angle coordinates
(6.13), with points related by π-rotation in the [x, y] plane identified. Stable eigen-
vectors of E0: e(3) and e(2), along the z axis (6.12). Unstable manifold orbit Wu(E0)
(green) is a continuation of the unstable e(1) of E0. (b) Blow-up of the region near E1:
The unstable eigenplane of E1 defined by Re e(2) and Im e(2), the stable eigenvector
e(3). The descent of the E0 unstable manifold (green) defines the innermost edge of
the strange attractor. As it is clear from (a), it also defines its outermost edge. (E.
Siminos)

the double-cover nature of the full state space by M̃ explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (x, y) in polar coordinates (x, y) =
(r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar angle representation:’

(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (6.13)

as in figure 6.2 (a). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant. In this representa-
tion the M̃ = M/Z2 fundamental domain flow is a smooth, continuous flow, with (any
choice of) the fundamental domain stretched out to seamlessly cover the entire [x̂, ŷ]
plane.

(E. Siminos and J. Halcrow)

Commentary

Remark 6.1. Lorenz equation. The Lorenz equation (6.4) is the most celebrated early illus-
tration of “deterministic chaos” [13] (but not the first - that honor goes to Dame Cartwright [2]
in 1945. Amusingly, Denisov and Ponomarev [5] argue that Ben F. Laposky might have been
the first to observe chaotic attractors as early as 1953, which, strictly speaking falls after 1945,
even in Russia). Lorenz’s 1963 paper, which can be found in reprint collections refs. [4, 9], is a
pleasure to read, and it is still one of the best introductions to the physics motivating such models
(read more about Lorenz here). The equations, a set of ODEs in R3, exhibit strange attractors.
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W. Tucker [20–22] has proven rigorously (via interval arithmetic) that the Lorenz attractor is
strange for the original parameters (no stable orbits) and that it has a long stable periodic or-
bit for slightly different parameters. In contrast to the hyperbolic strange attractors such as the
weakly perturbed cat map [3], the Lorenz attractor is structurally unstable. Frøyland [6] has a
nice brief discussion of Lorenz flow. Frøyland and Alfsen [7] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are included in ref. [6]. Guckenheimer-
Williams [8] and Afraimovich-Bykov-Shilnikov [1] offer an in-depth discussion of the Lorenz
equation. The most detailed study of the Lorenz equation was undertaken by Sparrow [18].
For a geophysics derivation, see Rothman course notes [16]. For a physical interpretation of ρ
as “Rayleigh number,” see Jackson [11] and Seydel [17]. The Lorenz truncation to 3 modes,
however, is so drastic that the model bears no relation to the geophysical hydrodynamics prob-
lem that motivated it. Just for fun, as Lorentz was such a lovable weatherman, in 1972 Willem
Malkus constructed [14], by a feat of reverse engineering, a physical system, a “water wheel”,
popularized by Strogatz [19], that is described by Lorentz equations. You can see it simulated
on wolfram.com, and tested experimentally at http://www.ace.gatech.edu. There is no deep
physics in this lovely game, it is but a cute distraction. For detailed pictures of Lorenz invariant
manifolds consult Vol II of Jackson [11] and “Realtime visualization of invariant manifolds” by
Ronzan. The Lorenz attractor is a very thin fractal – as we shall see, stable manifold thickness
is of the order 10−4 – whose fractal structure has been accurately resolved by D. Viswanath [23,
24]. If you wonder what analytic function theory has to say about Lorenz, check ref. [25]. Mod-
ular flows are your thing? E. Ghys and J. Leys have a beautiful tale for you. Refs. [12, 15] might
also be of interest.

6.3 Eigenfunctions
What follows is an inconclusive discussion of eigenfunctions over fundamental do-
mains - feel free to ignore...

Predrag Heilman and Strichartz [10] Homotopies of Eigenfunctions and the Spectrum
of the Laplacian on the Sierpinski Carpet, arXiv:0908.2942, is not an obvious
read for us, but they compute a spectrum on a square domain, and we might
have to be mindful of it: “ Since all of our domains are invariant under the
D4 symmetry group, we can simplify the eigenfunction computations by reduc-
ing to a fundamental domain. On this domain we impose appropriate boundary
conditions according to the rep-resentation type. For the 1-dimensional repre-
sentation, we restrict to the sector 0 ≤ θ ≤ π/4 . Recall that the functions will
extend evenly when reflected about θ = 0 in the 1++ and 1– cases, and oddly
in the 1-+ and 1+- cases. Note that performing an even extension across a ray is
equivalent to imposing Neumann boundary conditions on that ray. Similarly, the
odd extension is equivalent to Dirichlet conditions. For the 2-dimensional rep-
resentation our fundamental domain is the sector 0 ≤ θ ≤ π/2 , and we impose
Neumann boundary conditions on the ray θ = 0 and Dirichlet conditions on the
ray θ = π/2. Note that our fundamental domains are simply connected. ”

This seems to be saying that one gets the 2-dimensional representation by dou-
bling the fundamental domain and mixing boundary conditions. Do you under-
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stand that?

Boris Here is my present understanding of the fundamental domains issue: If you want
simple boundary conditions like Dirichlet or Neumann you stick to 1d represen-
tations only. They connect eigenfunction to itself at the fundamental domain
boundaries – otherwise you would need to connect pair of functions (would be
something like boundary conditions for spinor in case of 2d representations.) So
what you do is the following: take the largest abelian subgroup Z2 × Z2 (for
D4 ) and split its spectrum with respect to its fundamental domain defined as
1/4 of the square (twice the fundamental domain of the full group). Then your
see that Dirichlet-Dirichlet and Neumann-Neumann Hamiltonians still have Z2

symmetry so your split them further into the Hamiltonians of the 1/8 fundamen-
tal domain. But Dirichlet-Neumann remains 1/4th of the square.

Predrag Your argument is in the spirit of Harter’s class operators construction (see
week 5) of higher-dimensional representations by using particular chains of sub-
groups, but I am not able to visualize how that larger fundamental domain (of
the lower-order subgroup) folds back into the small fundamental domain of the
whole group. By the time the dust settles, I have the symmetry factorization of
the determinants that we need, but I do not have a gut feeling for the boundary
conditions that you do, when it comes to higher-dimensional irreps.
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Exercises
6.1. 3-disk symbolic dynamics. As periodic trajectories will turn out to be our main tool to

breach deep into the realm of chaos, it pays to start familiarizing oneself with them now
by sketching and counting the few shortest prime cycles. Show that the 3-disk pinball has
3 · 2n−1 itineraries of length n. List periodic orbits of lengths 2, 3, 4, 5, · · · . Verify that
the shortest 3-disk prime cycles are 12, 13, 23, 123, 132, 1213, 1232, 1323, 12123, · · · .
Try to sketch them. (continued in exercise 6.3)
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EXERCISES

A comment about exercise 6.1, exercise 6.2, and exercise 6.3: If parts of these problems
seem trivial - they are. The intention is just to check that you understand what these
symbolic dynamics codings are - the main message is that the really smart coding (fun-
damental domain) is 1-to-1 given by the group theory operations that map a point in the
fundamental domain to where it is in the full state space. This observation you might not
find deep, but it is - instead of absolute labels, in presence of symmetries one only needs to
keep track of relative motions, from domain to domain, does not matter which domain in
absolute coordinates - that is what group actions do. And thus the word ‘relative’ creeps
into this exposition.

6.2. Reduction of 3-disk symbolic dynamics to binary. (continued from exercise 6.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · · ,
correspond to the fundamental domain cycles 0, 1, 01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 6.1 by drawing them both in the full
3-disk system and in the fundamental domain, as in figure 6.2.

(c) Optional: Can you see how the group elements listed in table 6.1 relate irreducible
segments to the fundamental domain periodic orbits?

(continued in exercise 6.3)

6.3. 3-disk fundamental domain cycles. Try to sketch 0, 1, 01, 001, 011, · · · . in the
fundamental domain, and interpret the symbols {0, 1} by relating them to topologically
distinct types of collisions. Compare with table 6.1. Then try to sketch the location of
periodic points in the Poincaré section of the billiard flow. The point of this exercise is
that while in the configuration space longer cycles look like a hopeless jumble, in the
Poincaré section they are clearly and logically ordered. The Poincaré section is always to
be preferred to projections of a flow onto the configuration space coordinates, or any other
subset of state space coordinates which does not respect the topological organization of
the flow.

6.4. Z2-equivariance of Lorenz system. Verify that the vector field in Lorenz equations
(6.4)

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (6.14)

is equivariant under the action of cyclic group Z2 = {e, C1/2} acting on R3 by a π
rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 6.1.

6.5. Proto-Lorenz system. Here we quotient out the Z2 symmetry by constructing an
explicit “intensity” representation of the desymmetrized Lorenz flow.

1. Rewrite the Lorenz equation (6.4) in terms of variables

(u, v, z) = (x2 − y2, 2xy, z) , (6.15)
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show that it takes form u̇
v̇
ż

 =

 −(σ + 1)u+ (σ − r)v + (1− σ)N + vz
(r − σ)u− (σ + 1)v + (r + σ)N − uz −Nz

v/2− bz


N =

√
u2 + v2 . (6.16)

2. Show that this is the (Lorenz)/Z2 quotient map for the Lorenz flow, i.e., that it
identifies points related by the π rotation (6.6).

3. Show that (6.15) is invertible. Where does the inverse not exist?
4. Compute the equilibria of proto-Lorenz and their stabilities. Compare with the

equilibria of the Lorenz flow.
5. Plot the strange attractor both in the original form (6.4) and in the proto-Lorenz

form (6.16)
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for the Lorenz parameter values σ = 10, b = 8/3, ρ = 28. Topologically, does it
resemble more the Lorenz, or the Rössler attractor, or neither? (plot by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is either a periodic orbit or a relative
periodic orbit of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How do the Floquet multipliers of
relative periodic orbits of the Lorenz flow relate to the Floquet multipliers of the
proto-Lorenz?

9 Show that the coordinate change (6.15) is the same as rewriting

ṙ =
r

2
(−σ − 1 + (σ + ρ− z) sin 2θ

+(1− σ) cos 2θ)

θ̇ =
1

2
(−σ + ρ− z + (σ − 1) sin 2θ

+(σ + ρ− z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (6.17)

PHYS-7143-19 week6 64 2019-02-12



EXERCISES

in variables
(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x+ iy, z2 = u+ iv.
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