
group theory - week 2

Finite groups - definitions

Georgia Tech PHYS-7143
Homework HW2 due Tuesday 2019-01-22

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 2.1 Gx ⊂ G 1 point
Exercise 2.2 Transitivity of conjugation 1 point
Exercise 2.3 Isotropy subgroup of gx 1 points
Exercise 2.5 Z4-invariant potential 7 (+2) points

Total of 10 points = 100 % score.

Bonus points
Exercise 2.X: fix the errors in example 2.3 Vibrational spectra of molecules.
LaTeX source code 3 points
Exercise 2.8 Three masses on a loop 6 points
Exercise 2.7 An arrangement of five particles 4 points

Extra points accumulate, can help you later if you miss a few problems.
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GROUP THEORY - WEEK 2. FINITE GROUPS - DEFINITIONS

2019-01-15 Predrag Lecture 3 Don’t wonna know group theory
Today’s example 2.3 whiteboard derivation of normal-modes of the ring of N
asymmetric pairs of oscillators is taken from Gutkin lecture notes example 5.1
Zn symmetry. The corresponding projection operators (1.31) are worked out in
example 2.4.

2019-01-17 Predrag Lecture 4 Finite groups
Groups, permutations, rearrangement theorem, subgroups, cosets, all exempli-
fied by the S3 = C3v = D3 symmetries of an equilateral triangle. This lec-
ture follows closely Chapter 1 Basic Mathematical Background: Introduction of
Dresselhaus et al. textbook [1] (click here) (ask for password if you have for-
gotten it). This book (or Tinkham [3]) is good on discrete and space groups,
but perhaps not so good on continuous groups. The MIT course 6.734 online
version contains much of the same material.

If instead, bedside crocheting is your thing, click here.

2.1 Using group theory without knowing any
It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read sect. A.6 Gruppenpest of ref. [2]). So what we
will do first is work out a few examples of physical applications of group theory that
you already know without knowing that you have been using “Group Theory.”

Example 2.1. Discrete symmetries in physics:

• Point groups i.e., subgroups of O(3).

• Point groups + discrete translations e.g., symmetry groups of crystals.

• Permutation groups

SΨ(x1, x2, . . . xn) = Ψ(x2, x1, . . . xn).

• Boson wave functions are symmetric while fermion wave functions are anti-symmetric
under exchange of variables.

(B. Gutkin)

Example 2.2. Reflection and discrete rotation symmetries:

(a) Reflection symmetry V (x) = PV (x) = V (−x):(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Enψ(x) (2.1)

(see figure 2.1). If ψ(x) is solution then Pψ(x) is also solution. From this and non-
degeneracy of the spectrum follows that either Pψ(x) = ψ(x) or Pψ(x) = −ψ(x).
The first case corresponds to symmetric functions while the second one to anti-
symmetric one. Thus the whole spectrum can be decomposed in accordance to
a symmetry of the Hamiltonian (equations of motion).

PHYS-7143-19 week2 24 2019-01-11

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-19/SCHEDULE.HTML
http://birdtracks.eu/courses/PHYS-7143-19/groups.pdf
http://ChaosBook.org/library/Dresselhaus07.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/group-full02.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/group-full02.pdf
http://www.theiff.org/oexhibits/oe1e.html
https://www.youtube.com/embed/CvuoY_yPZeM
https://www.youtube.com/embed/CvuoY_yPZeM


GROUP THEORY - WEEK 2. FINITE GROUPS - DEFINITIONS

L R

Figure 2.1: (left) A reflection-symmetric double-well potential. (right) A 1/3rd-circle
rotation-symmetric plane billiard (infinite wall potential in 2D). (B. Gutkin)

(b) Rotation symmetry V (x) = gV (x), G = {e, g, g2}: By the same argument we
have three possibilities:

gψ(x) = ψ(x); gψ(x) = ei2π/3ψ(x); g−1ψ(x) = e−i2π/3ψ(x).

In addition, by the time reversal symmetry if ψ(x) is solution then ψ∗(x) is solu-
tion with the same eigenvalue as well. From this follows that the spectrum must
be degenerate. The spectrum is split into a real eigenfunction {ψ1(x)}, and a
degenerate pair of real eigenfunctions

ψ2(x) = ψ(x) + ψ∗(x);ψ3(x) = i(ψ(x)− ψ∗(x)) , where gψ(x) = ei2π/3ψ(x)

invariant under rotations by 1/3-rd of a circle.

(B. Gutkin)

Example 2.3. Vibrational spectra of molecules: In the linear, harmonic oscillator
approximation the classical dynamics of the molecule is governed by the Hamiltonian

H =

N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x>i Vijxj ,

where {xi} are small deviations from the resting the equilibrium, resting points of the
molecules labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form
by an orthogonal transformation, a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =

N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.2)

Consider now the ring of pair-wise interactions of two kinds of molecules sketched in
figure 2.2 (a), given by the potential

V (z) =
1

2

N∑
i=1

(
k1(xi − yi)2 + k2(xi+1 − yi)2

)
, zi =

(
xi
yi

)
, (2.3)
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Figure 2.2: (a) Chain with circular symmetry. (b) Dependance of frequency on the
representation wavenumber k. (c) Molecule with D3 symmetry. (B. Gutkin)

whose [2N×2N ] matrix form is (aside to the cognoscenti: this is a Toeplitz matrix):

Vij =
1

2



k1 + k2 −k1 0 0 0 . . . 0 0 −k2
−k1 k1 + k2 −k2 0 0 . . . 0 0 0

0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1
−k2 0 0 0 0 . . . 0 −k1 k1 + k2


This potential matrix is a holy mess. How do we find an orthogonal transformation (2.2)
that diagonalizes it? Look at figure 2.2 (a). Molecules lie on a circle, so that suggests
we should use a Fourier representation. As the i = 1 labelling of the starting molecule
on a ring is arbitrary, we are free to relabel them, for example use the next molecule
pair as the starting one. This relabelling is accomplished by the [2N×2N ] permutation
matrix (or ‘one-step shift’, ‘stepping’ or ‘translation’ matrix) M of form


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

M


z1
z2
z3
...
zn

 =


zn
z1
z2
...

zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi
yi

)
(2.4)

Projection operators corresponding to M are worked out in example 2.4. They are N
distinct [2N×2N ] matrices,

Pk =



I λ̄I λ̄2I . . . λ̄N−2I λ̄N−1I
λI I λ̄I . . . λ̄N−3I λ̄N−2I
λ2I λI I . . . λ̄N−4I λ̄N−3I

...
...

...
. . .

...
...

λN−2I λN−3I λN−4I . . . I λ̄I
λN−1I λN−2I λN−2I . . . λI I


, λ = exp

(
2πi

N
k

)

(2.5)
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which decompose the 2N -dimensional configuration space of the molecule ring into
a direct sum of N 2-dimensional spaces, one for each discrete Fourier mode k =
0, 1, 2, · · · , N − 1.

The system (2.3) is clearly invariant under the cyclic permutation relabelling M ,
[V,M ] = 0 (though checking this by explicit matrix multiplications might be a bit tedious),
so the Pk decompose the interaction potential V as well, and reduce its action to the kth
2-dimensional subspace. Thus the [2N×2N ] diagonalization (2.2) is now reduced to a
[2×2] diagonalization which one can do by hand. The resulting kth space is spanned
by two 2N -dimensional vectors, which we guess to be of form:

η1 =
1√
n



1
0
λ
0
...

λn−1

0


, η2 =

1√
n



0
1
0
λ
...
0

λn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

V η1 = (k1 + k2)η1 − (k1 + k2λ)η2 , V η2 = (k1 + k2)η2 − (k1 + k2λ̄)η1 .

The corresponding eigenfrequencies are determined by the equation:

0 = det
((

k1 + k2 −(k1 + k2λ)
−(k1 + k2λ̄) k1 + k2

)
− ω2

2
I

)
=⇒

1

2
ω2
±(k) = k1 + k2 ± |k1 + k2λ

k| , (2.6)

one acoustic (ω(0) = 0), one optical, see figure 2.2 (b) and the acoustic and optical
phonons wiki. (B. Gutkin)

Example 2.4. Projection operators for cyclic group ZN .
Consider a cyclic group ZN = {e, g, g2, · · · gN−1}, and let M = D(g) be a [2N×2N ]

representation of the one-step shift g. In the projection operator formulation (1.31),
the N distinct eigenvalues of M , the N th roots of unity λn = λn, λ = exp(i 2π/N),
n = 0, . . . N − 1, split the 2N -dimensional space into N 2-dimensional subspaces by
means of projection operators

Pn =
∏
m6=n

M − λm I
λn − λm

=

N−1∏
m=1

λ−nM − λm I
1− λm , (2.7)

where we have multiplied all denominators and numerators by λ−n. The numerator is
now a matrix polynomial of form (x − λ)(x − λ2) · · · (x − λN−1) , with the zeroth root
(x− λ0) = (x− 1) quotiented out from the defining matrix equation MN − 1 = 0. Using

1− xN

1− x = 1 + x+ · · ·+ xN−1 = (x− λ)(x− λ2) · · · (x− λN−1)

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.31)),

Pn =
1

N

N−1∑
m=0

ei
2π
N
nmMm .
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This form of the projection operator is the simplest example of the key group theory tool,
projection operator expressed as a sum over characters,

Pn =
1

|G|
∑
g∈G

χ̄(g)D(g) ,

upon which stands all that follows in this course. (B. Gutkin and P. Cvitanović)

2.2 Discussion
2017-08-31 Michael Meehan <xmeehan@gatech.edu>, writes: When talking about

the cosets of a subgroup we demonstrated multiplication between cosets with a
specific example, but this wasn’t leading to something along the lines of that the
set of all left cosets of a subgroup (or the set of all the right cosets of a subgroup)
form a group, correct? It didn’t appear so in the example since the “unit” {E,A}
we looked appears to only have the properties of an identity with multiplication
from one direction (the direction depending on if it is the set of left cosets or the
set of right cosets). In the context of the lecture I think this point was related
to Lagrange’s theorem (although we didn’t call it that) and I vaguely remember
cosets being used in the proof of Lagrange’s theorem but I wasn’t connecting it
today. Are we going to cover that in a future lecture?

2019-01-15 Predrag You are right - Lagrange’s theorem (see the wiki) simply says
the order of a subgroup has to be a divisor of the order of the group. We used
cosets to partition elements ofG to prove that. But what we really need cosets for
is to define (see Dresselhaus et al. [1] Sect. 1.7) Factor Groups whose elements
are cosets of a self-conjugate subgroup (click here). I will not cover that in a
subsequent lecture, so please read up on it yourself.

2017-08-31 Michael Meehan You talked about the period of an element X , and said
that that period is the set

{E,X, · · · , Xn−1} , (2.8)

where n is the order of the element X . I had thought that set was the subgroup
generated by the elementX and that the period of the elementX was a synonym
for the order of the element X? Is that incorrect?

2019-01-15 Predrag To keep things as simple as possible, in Thursday’s lecture I fol-
lowed Sect. 1.3 Basic Definitions of Dresselhaus et al. textbook [1], to the letter.
In Def. 3 the order of an elementX is the smallest n such thatXn = E, and they
call the set (2.8) the period of X . I do not like that usage (and do not remember
seeing it anywhere else). As you would do, in ChaosBook.org Chap. Flips,
slides and turns I also define the smallest n to be the period of X and refer to
the set (2.8) as the orbit generated by X . When we get to compact continuous
groups, the orbit will be a (great) circle generated by a given Lie algebra element,
and look more like what we usually think of as an orbit.
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I am not using my own ChaosBook.org here, not to confuse things further by
discussing both time evolution and its discrete symmetries. Here we focus on the
discrete group only (typically spatial reflections and finite angle rotations).

References
[1] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to

the Physics of Condensed Matter (Springer, New York, 2007).
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Exercises
2.1. Gx ⊂ G. The maximal set of group actions which maps a state space point x into itself,

Gx = {g ∈ G : gx = x} , (2.9)

is called the isotropy group (or stability subgroup or little group) of x. Prove that the set
Gx as defined in (2.9) is a subgroup of G.

2.2. Transitivity of conjugation. Assume that g1, g2, g3 ∈ G and both g1 and g2 are
conjugate to g3. Prove that g1 is conjugate to g2.

2.3. Isotropy subgroup of gx. Prove that for g ∈ G, x and gx have conjugate isotropy
subgroups:

Ggx = g Gx g
−1

2.4. D3: symmetries of an equilateral triangle. Consider group D3
∼= Z3v , the symmetry

group of an equilateral triangle:

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.
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(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 4.1)

2.5. Z4-invariant potential. Consider the Schrödinger equation for a particle moving
in a two-dimensional bounding potential V , such that the spectrum is discrete. As-
sume that V is ZN -invariant, i.e., V remains invariant under the rotation R by the an-
gle 2π/N . For N = 3 case, figure 2.3 (a), the spectrum of the system can be split
into two sectors: {E0

n} non-degenerate levels corresponding to symmetric eigenfunctions
φn(Rx) = φn(x) and doubly degenerate levels {E±n } corresponding to non-symmetric
eigenfunctions φn(Rx) = e±2πi/3φn(x).

Q 1 What is the spectral structure in the case of N = 4, figure 2.3 (b)?
How many sectors appear and what are their degeneracies?

Q 2 What is the spectral structure for general N?

Q 3 A constant magnetic field normal to the 2D plane is added to V .
How will it affect the spectral structure?

Q 4 (bonus question) Figure out the spectral structure if the symmetry group of potential
is D3 (also includes 3 reflections), figure 2.3 (c).

(Boris Gutkin)

(a) (b) (c)

Figure 2.3: Hard wall potential with (a) symmetry Z3, (b) symmetry Z4, and (c) symmetry
D3.

2.6. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the conjugacy classes of S3?

(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

2.7. Arrangement of five particles. Consider the arrangement of particles illustrated in
figure 2.4: on each corner (vertex) of a rigid square lies a particle C; in the center of the
square, but out of the plane on the z axis, is the particle A.

(a) What are the symmetries of this arrangement?
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A"C"

C" C"
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Figure 2.4: 4 identical particles of type C lie on the vertices of a square. In the center
of the square, but out of the plane, is a particle of type A. (K. Y. Short)

(b) Find its multiplication table.

(c) Find its subgroups.

(d) Determine the corresponding left and right cosets.

(e) Determine its conjugacy classes.

(f) Which subgroups are self-conjugate?

(g) Describe their factor groups.

(K. Y. Short)

2.8. Three masses on a loop. Three identical masses, connected by three identical springs,
are constrained to move on a circle hoop as shown in figure 2.5. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (K. Y. Short)

Figure 2.5: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.
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