
group theory - week 16

Wigner 3- and 6-j coefficients

Georgia Tech PHYS-7143
Homework HW16 due Tuesday 2019-04-23 - optional, not graded

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 16.1 Gravity tensors, part (a) 2 points
Exercise 16.1 Gravity tensors, part (b) 4 points
Exercise 16.1 Gravity tensors, part (c) 1 point
Exercise 16.1 Gravity tensors, part (d) 2 points
Exercise 16.1 Gravity tensors, part (e) 3 points
Exercise 16.1 Gravity tensors, part (f) 4 points
Exercise 16.1 Gravity tensors, part (g) 3 points
Exercise 16.1 Gravity tensors, part (h) 6 points

Bonus points
Exercise 16.1 Gravity tensors, part (i) 4 points
Exercise 16.1 Gravity tensors, part (j) 10 points

Total of 20 points = 100 % score.
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GROUP THEORY - WEEK 16. WIGNER 3- AND 6-J COEFFICIENTS

2019-04-23 Predrag Bonus lecture 31 Wigner 3- and 6-j coeffi-
cients
Excerpts from Predrag’s monograph [4], fetch them here:

Background reading on groups, vector spaces, tensors, invariant tensors, invari-
ance groups (my advice is to start with Sect. 5.1 Couplings and recouplings, then
backtrack to these introductory sections as needed):
Sect. 3.2 Defining space, tensors, reps,
Sect. 3.3 Invariants,
Sect. 4.1 Birdtracks,
Sect. 4.2 Clebsch-Gordan coefficients, and
Sect. 4.3 Zero- and one-dimensional subspaces.

The final result, discussed in the day’s whiteboard-side chat, is invariant and
highly elegant: any group-theoretical invariant quantity can be expressed in
terms of Wigner 3- and 6-j coefficients:
Sect. 5.1 Couplings and recouplings,
Sect. 5.2 Wigner 3n-j coefficients, and
Sect. 5.3 Wigner-Eckart theorem.

The rest is just bedside reading, nothing technical:
Sect. 4.8 Irrelevancy of clebsches and
Sect. 4.9 A brief history of birdtracks.

Course finale: Indiana Jones video (click here).

16.1 Literature

We noted in sect. 2.1 that a practically-minded physicist always has been, and continues
to be resistant to gruppenpest. Apparently already in 1910 James Jeans wrote, while
discussing what should a physics syllabus contain: “We may as well cut out the group
theory. That is a subject that will never be of any use in physics.”

Voit writes here about the “The Stormy Onset of Group Theory in the New Quan-
tum Mechanics,” citing Bonolis [2] From the rise of the group concept to the stormy
onset of group theory in the New Quantum Mechanics. A saga of the invariant charac-
terization of physical objects, events and theories.

Chayut [3] From the periphery: the genesis of Eugene P. Wigner’s application of
group theory to quantum mechanics traces the origins of Wigner’s application of group
theory to quantum physics to his early work as a chemical engineer, in chemistry and
crystallography. “In the early 1920s, crystallography was the only discipline in which
symmetry groups were routinely used. Wigner’s early training in chemistry exposed
him to conceptual tools which were absent from the pedagogy available to physicists
for many years to come. This both enabled and pushed him to apply the group theoretic
approach to quantum physics. It took many years for the approach first introduced by
Wigner in the 1920s – and whose reception by the physicists was initially problematical
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– to assume the pivotal place it now holds.” Another historical exposition is given by
Scholz [6] Introducing groups into quantum theory (1926–1930).

So what is group theory good for? By identifying the symmetries, one can apply
group theory to determine good quantum numbers which describe a physical state (i.e.,
the irreps). Group theory then says that many matrix elements vanish, or shows how
are they related to others. While group theory does not determine the actual value of a
matrix element of interest, it vastly simplifies its calculation.

The old fashioned atomic physics, fixated on SO(3) / SU(2), is too explicit, with too
many bras and kets, too many square roots, too many deliriously complicated Clebsch-
Gordan coefficients that you do not need, and way too many labels, way too explicit for
you to notice that all of these are eventually summed over, resulting in a final answer
much simpler than any of the intermediate steps.

I wrote my book [4] Group Theory - Birdtracks, Lie’s, and Exceptional Groups to
teach you how to compute everything you need to compute, without ever writing down
a single explicit matrix element, or a single Clebsch-Gordan coefficient. There are two
versions. There is a particle-physics / Feynman diagrams version that is index free,
graphical and easy to use (at least for the low-dimensional irreps). The key insights
are already in Wigner’s book [8]: the content of symmetry is a set of invariant numbers
that he calls 3n-j’s. Then there are various mathematical flavors (Weyl group on Cartan
lattice, etc.), elegant, but perhaps too elegant to be computationally practical.

But it is nearly impossible to deprogram people from years of indoctrination in
QM and EM classes. The professors have no time to learn new stuff, and students love
manipulating their mu’s and nu’s.
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[4] P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups (Prince-
ton Univ. Press, Princeton NJ, 2004).

[5] R. Penrose, “Applications of negative dimensional tensors”, in Combinatorial
mathematics and its applications, edited by D. J. J.A. Welsh (Academic, New
York, 1971), pp. 221–244.

[6] E. Scholz, “Introducing groups into quantum theory (1926–1930)”, Hist. Math.
33, 440–490 (2006).

[7] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity (Wiley, New York, 1972).

2019-04-07 139 PHYS-7143-19 week16

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-19/SCHEDULE.HTML
http://dx.doi.org/10.1016/0003-4916(77)90313-X
http://dx.doi.org/10.1016/0003-4916(77)90313-X
http://dx.doi.org/10.1016/0003-4916(77)90313-X
https://www.researchgate.net/publication/234207946
https://www.researchgate.net/publication/234207946
https://www.researchgate.net/publication/234207946
https://www.researchgate.net/publication/234207946
http://dx.doi.org/10.1023/A:1011431408763
http://dx.doi.org/10.1023/A:1011431408763
http://dx.doi.org/10.1023/A:1011431408763
https://press.princeton.edu/titles/8839.html
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://dx.doi.org/10.1016/j.hm.2005.11.007
http://dx.doi.org/10.1016/j.hm.2005.11.007
http://dx.doi.org/10.1016/j.hm.2005.11.007
http://dx.doi.org/10.1119/1.1987308
http://dx.doi.org/10.1119/1.1987308


EXERCISES

[8] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra (Academic, New York, 1931).

Exercises
16.1. Gravity tensors. In this problem we will apply diagrammatic methods (“birdtracks”)

to construct and count the numbers of independent components of the “irreducible rank-
four gravity curvature tensors.” However, any notation that works for you is OK, as long
as you obtain the same irreps and their dimensions. The goal of this exercise (longish, as
much of it is the recapitulation of the material covered in the book) is to give you basic
understanding for how Young tableaux work for groups other than U(n). We start with

Part 1 : U(n) Young tableaux decomposition.

(a) The Riemann-Christoffel curvature tensor of general relativity has the following
symmetries (see, for example, Weinberg [7] or the Riemann curvature tensor wiki):

Rαβγδ = −Rβαγδ (16.1)

Rαβγδ = Rγδαβ (16.2)

Rαβγδ +Rβγαδ +Rγαβδ = 0 . (16.3)

Introducing a birdtrack notation for the Riemann tensor

Rαβγδ =

α

δ

β

γ
R , (16.4)

check that we can state the above symmetries as

Rαβγδ = −Rβαγδ

R = R , (16.5)

Rαβγδ = Rγδαβ

R = R , (16.6)

Rαβγδ + Rβγαδ + Rγαβδ = 0

R + R + R = 0 . (16.7)

The first condition says that R lies in the ⊗ subspace.

(b) The second condition says that R lies in the ↔ interchange-symmetric sub-
space.

Use the characteristic equation for
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to split into the and irreps:

1

2

(
+

)
=

4

3
+ . (16.8)

(c) Show that the third condition (16.7) says that R has no components in

the irrep:

R + R + R = 3 R = 0 . (16.9)

Hence, the symmetries of the Riemann tensor are summarized by the irrep
projection operator [5]:

(PR)αβγδ,
δ′γ′β′α′ =

4

3

α

β

δ

γ

ά

´

´

´

γ

δ

β (16.10)

(d) Verify that the Riemann tensor is in the subspace

(PRR)αβγδ = (PR)αβγδ,
δ′γ′β′α′ Rα′β′γ′δ′ = Rαβγδ

4

3
R = R . (16.11)

(e) Compute the number of independent components of the Riemann tensor Rαβγδ by
taking the trace of the irrep projection operator:

dR = trPR =
n2(n2 − 1)

12
. (16.12)

Part 2 : SO(n) Young tableaux decomposition
The Riemann tensor has the symmetries of the irrep of U(n). However, gravity
is also characterized by the symmetric tensor gαβ , that reduces the symmetry to a local
SO(n) invariance (more precisely SO(1, n− 1), but compactness is not important here).
The extra invariants built from gαβ’s decompose U(n) reps into sums of SO(n) reps.
Orthogonal group SO(n) is the group of transformations that leaves invariant a symmetric
quadratic form (q, q) = gµνq

µqν , with a primitive invariant rank-2 tensor:

gµν = gνµ = µ ν µ, ν = 1, 2, . . . , n . (16.13)

If (q, q) is an invariant, so is its complex conjugate (q, q)∗ = gµνqµqν , and

gµν = gνµ = µ ν (16.14)

is also an invariant tensor. The matrix Aνµ = gµσg
σν must be proportional to unity, as

otherwise its characteristic equation would decompose the defining n-dimensional rep. A
convenient normalization is

gµσg
σν = δνµ

= . (16.15)
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As the indices can be raised and lowered at will, nothing is gained by keeping the arrows.
Our convention will be to perform all contractions with metric tensors with upper indices
and omit the arrows and the open dots:

gµν ≡ µ ν . (16.16)

The U(n) 2-index tensors can be decomposed into a sum of their symmetric and antisym-
metric parts. Specializing to the subgroup SO(n), the rule is to lower all indices on all
tensors, and the symmetrization projection operator is written as

Sµν,ρσ = gρρ′gσσ′Sµν ,
ρ′σ′

=
1

2
(gµσgνρ + gµρgνσ)

From now on, we drop all arrows and gµν ’s and write the decomposition into symmetric
and antisymmetric parts as

= +

gµσgνρ =
1

2
(gµσgνρ + gµρgνσ) +

1

2
(gµσgνρ − gµρgνσ) . (16.17)

The new invariant tensor, specific to SO(n), is the index contraction:

Tµν,ρσ = gµνgρσ , T = . (16.18)

Its characteristic equation

T2 = = nT (16.19)

yields the trace and the traceless part projection operators. As T is symmetric, ST = T,
only the symmetric subspace is reduced by this invariant.

(f) Show that SO(n) 2-index tensors decompose into three irreps:

traceless symmetric:

(P2)µν,ρσ =
1

2
(gµσgνρ + gµρgνσ)− 1

n
gµνgρσ = − 1

n
,

(16.20)

singlet: (P1)µν,ρσ =
1

n
gµνgρσ =

1

n
, (16.21)

antisymmetric: (P3)µν,ρσ =
1

2
(gµσgνρ − gµρgνσ) = .(16.22)

What are the dimensions of the three irreps?

(g) In the same spirit, the U(n) irrep is decomposed by the SO(n) intermediate
2-index state invariant matrix

Q = . (16.23)
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Show that the intermediate 2-index subspace splits into three irreducible reps by
(16.20) – (16.22):

Q =
1

n
+

{
− 1

n

}
+

= Q0 + QS + QA . (16.24)

Show that the antisymmetric 2-index state does not contribute

PRQA = 0 . (16.25)

(Hint: The Riemann tensor is symmetric under the interchange of index pairs.)

(h) Fix the normalization of the remaining two projection operators by computing
Q2
S ,Q

2
0:

P0 =
2

n(n− 1)
, (16.26)

PS =
4

n− 2

{
− 1

n

}
(16.27)

and compute their dimensions.
This completes the SO(n) reduction of the U(n) irrep (16.11):

U(n) → SO(n)

→ + + ◦

PR = PW + PS + P0

n2(n2−1)
12

= (n+2)(n+1)n(n−3)
12

+ (n+2)(n−1)
2

+ 1

(16.28)
The projection operator for the SO(n) traceless irrep is:

PW = PR −PS −P0

PW =
4

3
− 4

n− 2
+

2

(n− 1)(n− 2)
.(16.29)

(i) The above three projection operators project out the standard, SO(n)-irreducible
general relativity tensors:

Curvature scalar:

R = − R = Rµ ν
νµ (16.30)

Traceless Ricci tensor:

Rµν −
1

n
gµνR = − R +

1

n
R (16.31)
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Weyl tensor:

Cλµνκ = (PWR)λµνκ

= R − 4

n− 2
R +

2

(n− 1)(n− 2)
R

= Rλµνκ +
1

n− 2
(gµνRλκ − gλνRµκ − gµκRλν + gλκRµν)

− 1

(n− 1)(n− 2)
(gλκgµν − gλνgµκ)R . (16.32)

The numbers of independent components of these tensors are given by the dimen-
sions of corresponding irreducible subspaces in (16.28).

What is the lowest dimension in which the Ricci tensor contributes? the Weyl tensor
contributes? Show that in 2, respectively 3 dimensions, we have

n = 2 : Rλµνκ = (P0R)λµνκ = 1
2
(gλνgµκ − gλκgµν)R

n = 3 : = gλνRµκ − gµνRλκ + gµκRλν − gλκRµν
− 1

2
(gλνgµκ − gλκgµν)R .

(16.33)

(j) The last example of this exercise is an application of birdtracks to general relativ-
ity index manipulations. The object is to find the characteristic equation for the
Riemann tensor in four dimensions.

The antisymmetrization tensorAa1a2...,
bp...b2b1 has nonvanishing components, on-

ly if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensor A has no nonvanishing components:

1

2

p

..
. ..
. = 0 if p > n . (16.34)

This identity implies that for p > n, not all combinations of p Kronecker deltas are
linearly independent. A typical relation is the p = n+ 1 case

0 =

n+1

...

21 ...

=

...

−
...

+

...

− . . . . (16.35)

Contract (16.34) with two Riemann tensors:

0 =
R

R

, (16.36)
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and obtain the characteristic equation by expanding with (16.35):

0 = 2
R R

− 4
R R

−4
R R

+ 2R
R (16.37)

−

{
R2

2
− 2 R R +

1

2

R R
}

.

This identity has been used by Adler et al., eq. (E2) in ref. [1].
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