
group theory - week 12

Lorentz group; spin

Georgia Tech PHYS-7143
Homework HW12 due Tuesday 2019-04-09

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 12.1 Lorentz spinology 5 points
Exercise 12.2 Lorentz spin transformations 5 points

Bonus points
Exercise 12.3 The unbearable lightness of SO(4) Lie algebra 15 points

Total of 10 points = 100 % score.
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GROUP THEORY - WEEK 12. LORENTZ GROUP; SPIN

2019-04-02 Predrag Lecture 23
SO(4) = SU(2)⊗ SU(2); Lorentz group
For SO(4) = SU(2)⊗SU(2) see also birdtracks.eu chap. 10 Orthogonal groups,
pp. 121-123; sect. 20.3.1 SO(4) or Cartan A1 +A1 algebra

For Lorentz group, read Schwichtenberg [2] Sect. 3.7 (click here).

2019-04-04 Predrag Lecture 24 SO(1, 3); Spin
Schwichtenberg [2] Sect. 3.7 (click here).

12.1 Discussion
Henriette Roux In this course the Levi-Civita tensor appears to be the unique con-

nection for SO(4); but in GR, I learnt that the choice of connection is actually
arbitrary and there are theories of gravity which need not use the Levi-Civita
tensor. Are these two different concepts which are not necessarily linked?

Predrag Sean Carroll answers your question in arXiv:9712019. He does not un-
derstand that the invariant tensors are good, as they are what defines a given
symmetry group:

It is a remarkable property of the above tensors – the metric, the
inverse metric, the Kronecker delta, and the Levi-Civita tensor – that,
even though they all transform according to the tensor transformation
law, their components remain unchanged in any Cartesian coordinate
system in flat spacetime. In some sense this makes them bad examples
of tensors, since most tensors do not have this property.

However, he then goes on to explain that while in curved spacetime lengths and
volumes are measured in the spacetime dependent way, we still need a notion of
a volume of a hypercube as a skew product of its edges, ie, the determinant:

The Kronecker tensor can be thought of as the identity map from vec-
tors to vectors (or from dual vectors to dual vectors), which clearly
must have the same components regardless of coordinate system. The
other tensors (the metric, its inverse, and the Levi-Civita tensor) char-
acterize the structure of spacetime, and all depend on the metric. We
shall therefore have to treat them more carefully when we drop our
assumption of flat spacetime.

What he then does in his eq. (2.39) is to promote Levi-Civita from ‘tensor’ to
‘symbol’ in order to be able to compute determinants, just like we do in flat
space SO(n).

See also MathWorld discussion.

Are you happy now?

(A side, nomenclature remark: Levi-Civita is not a ‘connection’ in the sense the
word ‘connection’ is used in GR.)
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12.2 Spinors and the Lorentz group
A Lorentz transformation is any invertible real [4× 4] matrix transformation Λ,

x′µ = Λµνx
ν (12.1)

which preserves the Lorentz-invariant Minkowski bilinear form ΛT ηΛ = η,

xµyµ = xµηµνy
ν = x0y0 − x1y1 − x2y2 − x3y3

with the metric tensor η = diag(1,−1,−1,−1).
A contravariant four-vector xµ = (x0, x1, x2, x3) can be arranged [3] into a Her-

mitian [2×2] matrix in Herm(2,C) as

x = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(12.2)

in the hermitian matrix basis

σµ = σ̄µ = (12,σ) = (σ0, σ1, σ2, σ3) , σ̄µ = σµ = (12,−σ) , (12.3)

with σ given by the usual Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (12.4)

With the trace formula for the metric

1

2
tr (σµσ̄ν) = ηµν , (12.5)

the covariant vector xµ can be recovered by

1

2
tr (xσ̄µ) =

1

2
tr (xνσν σ̄

µ) = xνη µν = xµ (12.6)

The Minkowski norm squared is given by

detx = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xµx
µ , (12.7)

and with (12.3)

x =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
=

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (12.8)

the Minkowski scalar product is given by

xµyµ =
1

2
tr(x y) . (12.9)

The special linear group SL(2,C) in two complex dimensions is given by the set
of all matrices Λ such that

SL(2,C) = {Λ∈GL(2,C) | det Λ = +1}. (12.10)
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Let a matrix Λ ∈ SL(2,C) act on x ∈ Herm(2,C) as

x 7→ x′ = ΛxΛ† (12.11)

where † denotes Hermitian conjugation. The Minkowski scalar product is preserved,
det x′ = det x . Thus x′ can also be represented by a real linear combination of gener-
alized Pauli matrices

x′ = σµx
′µ with x′µx

′µ = xµx
µ (12.12)

and Λ explicitly acts as a Lorentz transformation (12.1), with Λµν = 1
2 tr (σ̄µΛσνΛ†) .

The mapping is two-to-one, as two matrices±Λ ∈ SL(2,C) generate the same Lorentz
transformation ΛxΛ† = (−Λ)x(−Λ)†. This Λ belong to the proper orthochronous
Lorentz group SO+(1, 3), and it can be shown that SL(2,C) is simply connected and
is the double universal cover of the SO+(1, 3).

Consider the fully antisymmetric Levi-Civita tensor ε = −ε−1 = −εT in two
dimensions

ε = iσ2 =

(
0 1
−1 0

)
. (12.13)

This defines a symplectic (i.e., skew-symmetric) bilinear form 〈u, v〉 = −〈v, u〉 on two
spinors u and v, elements of the two-dimensional complex vector (or spinor) space C2

u =

(
u1

u2

)
, v =

(
v1

v2

)
, (12.14)

equipped with the symplectic form

〈u, v〉 = u1v2 − u2v1 = uTεv . (12.15)

This symplectic form is SL(2,C)-invariant

〈u, v〉 = uTεv = 〈Λu,Λv〉 = uTΛTεΛv , (12.16)

so one can interpret the group acting on spinors as SL(2,C) ∼= Sp(2,C) , the complex
symplectic group in two dimensions

Sp(2,C) = {Λ∈GL(2,C) |ΛTεΛ = ε} . (12.17)

Summary. The group of Lorentz transformations of spinors is the group SL(2,C)
of [2×2] complex matrices with determinant 1, i.e., the invariant tensor is the 2-index
Levi-Civita εAB . The SL(2,C) matrices are parametrized by three complex dimensions
and therefore six real ones (the matrices have four complex numbers and one complex
constraint on the determinant). This matches the 6 dimensions of the group manifold
associated with the Lorentz group SO(1, 3).

Andrew M. Steane writes “A spinor is the most basic mathematical object that can
be Lorentz-transformed.” His An introduction to spinors, arXiv:1312.3824, might help
you develop intuition about spinors.

Andrzej Trautman tracks the origin of spinors to Euclid, and General Relativity to
Clifford. He includes a letter from Hades saying, inter alia, “Unfortunately, it appears
that there is now in your world a race of vampires, called referees, who clamp down
mercilessly upon mathematicians unless they know the right passwords.”
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12.3 SO(4) of the Kepler problem
One of “hidden" symmetries of quantum mechanics is the SO(4) of the Kepler problem.

John Baez discusses it in a fun read here: “if we take the angular momentum
together with the Runge–Lenz vector, we get 6 conserved quantities—and these turn
out to come from the group of rotations in 4 dimensions, SO(4), which is itself 6-
dimensional. The obvious symmetries in this group just rotate a planet’s elliptical
orbit, while the unobvious ones can also squash or stretch it, changing the eccentricity
of the orbit. [...] wavefunctions for bound states of hydrogen can be reinterpreted as
functions on the 3-sphere, S3. The sneaky SO(4) symmetry then becomes obvious: it
just rotates this sphere! And the Hamiltonian of the hydrogen atom is closely connected
to the Laplacian on the 3-sphere. The Laplacian has eigenspaces of dimensions n2

where n = 1, 2, 3, . . . , and these correspond to the eigenspaces of the hydrogen atom
Hamiltonian. ”

When the energy is fixed, the symmetry becomes Lie algebra SO(3, 1) for positive-
energy, scattering states, or SO(4) for negative-energy, bound states.

To dig deeper, skim through Baez Mysteries of the gravitational 2-body problem.
Bander, M. and Itzykson [1] Group theory and the hydrogen atom (I) might be OK,

but I have not read it.
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EXERCISES

Exercises
12.1. Lorentz spinology.

Show that

(a)
x2 = xµx

µ = det x (12.18)

(b)

xµy
µ =

1

2
(det (x+ y)− det (x)− det (y)) (12.19)

(c)

xµy
µ =

1

2
tr (x y) , (12.20)

where y = σ̄µy
µ

12.2. Lorentz spin transformations.
Let a matrix Λ ∈ SL(2,C) act on hermitian matrix x as

x 7→ x′ = ΛxΛ† . (12.21)

(a) Check that x′ is Hermitian, and the Minkowski scalar product (12.19) is preserved.

(b) Show that Λ explicitly acts as a Lorentz transformation x′µ = Λµνx
ν .

(c) Show that the mapping from a Λ ∈ SL(2,C) to the Lorentz transformation in
SO(1, 3) is two-to-one.

(d) Consider the Levi-Civita tensor ε = −ε−1 = −εT in two dimensions,

ε =

(
0 1
−1 0

)
, (12.22)

and the associated symplectic form

〈u, v〉 = uTεv = u1v2 − u2v1 . (12.23)

Show that this symplectic form is SL(2,C)-invariant

〈u, v〉 = uTεv = 〈Λu,Λv〉 = uTΛTεΛv . (12.24)

12.3. The unbearable lightness of SO(4) Lie algebra. Download John Wood’s (click here)
notes. The challenge: achieve some elegance in deriving the SO(4) commutator bracket
relations, for example reduce the number of steps in the calculation by 30% or 50%.
The prize: a case of beer, details to be negotiated with John.
The challenges start on p. 9-8, following eq. (9.21), i.e., “(i)”, “(iv)”, and “(v)”. For
instance, on p. 9-11 John indicates all of the cancellations. These suggest that his solution
is “calculating zero” unnecessarily. One could take linear combinations of the operators
that possess these commutator bracket relations; but the combinations do not seem a priori
warranted on the basis of the dynamics of the problem.

(J. Wood)
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