
group theory - week 11

SU(2) and SO(3)

Georgia Tech PHYS-7143
Homework HW11 due Tuesday 2019-04-02

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 The characters of SO(3) representations 1 point
Exercise 11.2 Lie algebra of SO(4) and SU(2)⊗ SU(2) 6 points
Exercise 11.5 SO(n) Clebsch-Gordan series for V ⊗V . 3 points

Bonus points
Exercise 11.3 Real and pseudo-real representations of SO(3) 4 points
Exercise 11.4 Total spin of N particles 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

2019-03-26 Predrag Lecture 21 SU(2) and SO(3)
Gutkin notes, Lect. 9 SU(2), SO(3) and their representations, Sects. 1-3.2;
sect. 11.3 SU(2) – SO(3) correspondence below.

2019-03-28 Predrag Lecture 22 SO(3) in QM guest lecture by John Wood

Birdtrack notation [1] (click here) that was scheduled for this date thus never
got explained. We can live without it....

To learn about it anyway, you can fetch clippings on irreps of SU(n) and SO(n)
from Predrag’s monograph [1] here. Go through Sect. 2.2 First example: SU(n),
Sect. 6.1 Symmetrization, Sect. 6.2 Antisymmetrization, Sect. 9.1 Two-index ten-
sors. Skim through Sect. 9.2 Three-index tensors, and Table 9.1. There is also
a glimpse of a some birdtracking (still to be written up) in sect. 11.4 Irreps of
SO(n).

Reading for week 15: Sect. 9.3 Young tableaux.

11.1 Recap of the course, so far
Read this discussion by opening it in the most recent version of P. Cvitanović, World
Wide Quest to Tame Group Theory (because it is hyperlinked to earlier weeks of the
course).

Predrag This course is all about class (physically distinct symmetry operations) and
character (mining numbers from symmetries).

Here are some question by the dream student Henriette Roux (pseudonym) that
I have answered in part in class discussions, but still have to write up:

Henriette Roux Why is it that the Fourier transformation works? The presence of a
discrete but infinite translational symmetry in a system calls for its use of it to
diagonalize the matrix and thus make calculations easier, but exactly why is the
Fourier transform able to do this?

Henriette Roux How is this Fourier transform as we have studied in the space/point
groups section related to that which we have derived from the projection opera-
tors?

Henriette Roux As an extension of the Fourier transform, are there any equivalent
of Fourier transforms for rotations or other infinite but discrete symmetries as
well? So for example, if there is a system with a discrete but infinite rotational
symmetry, is there a “rotational” transform where the representing matrix is di-
agonalized? Are there whole classes of such transformations?

Henriette Roux You say that position and momentum are “dual” to each other, and
so is the real space and reciprocal space (I guess it’s the same thing as position
and momentum but just for argument sake). The commonality between these are
the fact that they can be Fourier transformed from one space to another. Does
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

this mean that unitary operations, eiHt, suggest a Fourier transform from the
“energy” or “frequency” space to “time” space as well?

Henriette Roux This seems very closely related to Noether’s theorem as well, is there
a way to explain this similarity?

Henriette Roux The special thing about Lie groups is that there exist analytic func-
tions which link g(a) and its inverse, and c = f(b, a) for g(c) = g(a)g(b). Does
this need for analytic functions come from the fact that to construct a group
manifold, the maps relating different “local” Euclidean spaces need to be C∞,
or smooth? If so, is there a reference we can refer to which explains how the Lie
groups satisfy all the other conditions of a manifold (establishing an open ball,
building an atlas and so on) as well? Just as an extension, how do you even study
groups which do not fall under the realm of a manifold? Don’t common func-
tions like differentials and integrations not apply in spaces outside a manifold?

Henriette Roux Why is that we Taylor expand the group in the first place? How is
this connected to the shift to left/right group study we did?

The next few questions are about General Relativity, and how is what is covered
in this course applicable to GR:

Henriette Roux We keep to the first order in the expansion for g(θ) as we are con-
sidering the tangent space to the manifold. In the context of the GR, the tangent
space was defined as the space of directional derivatives at a point. In our case,
we are studying groups, which are not, in general, vectors (well I guess they can
be [1×1] vectors/matrices but that’s only specific irreps, so how do we understand
the concept of tangent space as you have define it?

- Or does it work out since Lie groups are always Abelian and thus have an
infinite number of 1D irreps?

- What happens if we keep the expansion to the 2nd order? Does the mathematics
change in any way? Is there a good reason to ignore the 2nd and higher order
expansions, not just in the physics sense (keeping to largest order of significance)
but in the mathematical way of understanding things?

11.2 Central force problems

John Wood For another way of looking at the H atom (and all solvable central force
problems) download my chapter (click here) from Quantum Mechanics for Nu-
clear Structure: I. A Primer, IOP science series.

The SO(2, 1) method can be extended to solve relativistic central force problems
(one of my students did his Ph.D. thesis on this 20 years ago).

Q: Is the geometry associated with these algebraic structures, as applied to cen-
tral force problems, explored?
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

11.3 SU(2) – SO(3) correspondence
Notes by Kimberly Y. Short

Angular momentumL = r×p has three components, the operators that generate SU(2)
and satisfy [L1, L2] = iL3. If we define e = L1 + iL2, f = L1 − iL2, and h = 2L3,
then we have the following algebra:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h (11.1)

where

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
(11.2)

Matrices e and f act as the raising and lowering (also called ‘ladder’) operators L± in
this representation. (The set {e, f, h} forms an ‘sl2-triple’.)

We observe that there are n2 − 1 = 3 such operators satisfying this algebra, which
is the Lie algebra of SU(n), where n = 2. The eigenvalues of h are integers separated
by 2, and the eigenvalues of L3 must be half-integers separated by 1. Consequently,
the representation with highest L3 eigenvalue given by l must have dimension 2l + 1
(note: 2l is λmax for h).

Further, L2 = L ·L commutes with L1, L2, and L3 and hence, by Schur’s Lemma,
L2 = λI in this representation, so every vector is an eigenvector of L2. For example,
we’ve seen in quantum mechanics,

L2 Y ml = l(l + 1)~2 Y ml (11.3)

And since the spherical harmonics Y ml (θ, φ) constitute an orthonormal basis of the
Hilbert space of square-integrable functions, any vector can be expanded in a basis of
Y ml (θ, φ). L± act on Y ml in the following way:

L±Y
m
l = ~

√
l(l + 1)−m(m± 1) Y m±1

l . (11.4)

An element of SU(2) can be written as

eiσjαj/2 (11.5)

where σj is a Pauli matrix and αj is a number. (The exponentiation of the Pauli ma-
trices gives SU(2).) What is the importance of the 1/2 factor in the argument of the
exponential. First, consider a generic position vector r = xêi + yêj + zêk. We may
construct a matrix of the form

σ · r = σxx+ σyy + σzz

=

(
0 x
x 0

)
+

(
0 −iy
iy 0

)
+

(
z 0
0 −z

)
=

(
z x− iy

x+ iy −z

)
(11.6)
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

The determinant,

det
(

z x− iy
x+ iy −z

)
= −(x2 + y2 + z2) = −x2 (11.7)

is an expression for the length of a vector.
Now consider a unitary transformation of this matrix. For example,

U(σ · r)U† = σx(σ · r)σx

=

(
0 1
1 0

)(
z x− iy

x− iy z

)(
0 1
1 0

)
=

(
−z x+ iy

x− iy z

)
(11.8)

Taking this determinant, we find the same expression as before:

det
(
−z x+ iy

x− iy z

)
= −(x2 + y2 + z2) = −x2 (11.9)

We observe that, like SO(3), SU(2) preserves the lengths of vectors.
The correspondence between SO(3) and SU(2) can be made more explicit. To see

this, consider an SU(2) transformation on a two-component object called a spinor ψ
where

ψ =

(
α
β

)
, (11.10)

and

x =
1

2
(β2 − α2), y = − i

2
(α2 + β2), z = αβ . (11.11)

One may check that an SU(2) transformation on ψ is equivalent to an SO(3) transfor-
mation on x. From this equivalence, one sees that an SU(2) transformation has three
real parameters that correspond to the three rotation angles of SO(3). If we label the
“angles” for the SU(2) transformation by α, β, and γ, we observe, for a “rotation”
about x̂

Ux(α) =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
. (11.12)

Likewise for an SU(2) transformation about ŷ:

Uy(β) =

(
cosβ/2 sinβ/2
− sinβ/2 cosβ/2

)
(11.13)

And for the final rotation, the SU(2) transformation about ẑ:

Uz(γ) =

(
eiγ/2 0

0 e−iγ/2

)
(11.14)
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

Compare these three matrices to the corresponding SO(3) rotation matrices:

Rx(ζ) =

1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ

 , Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (11.15)

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

In this context, the eigenvalue equation for L3 and for L2 are differential equations
whose solutions are the spherical harmonics Y ml which take the form

eimφPml (cos θ), −l ≤ m ≤ l (11.16)

in spherical coordinates and which determine the shape of electron orbitals and their
probabilities to be found in a given region.

In quantum mechanics, the possible results of a measurement are determined by
the possible eigenvalues of an operator. As such, the possible measurable values of
the z-component of angular momentum correspond to the allowed values of L3. The
measurement outcomes are not arbitrary; the largest one, l, must be a half-integer, and
there are 2l + 1 eigenvectors. Applying the lowering operator L− one-by-one, we can
find the possible outcomes to be m ∈ {l, l − 1, ...,−l}. The angular dependence of
the corresponding wave function goes as ∼ eimφPml (cos θ). In addition, higher values
of l correspond to higher energy, so the different values of l correspond to different
electron orbitals in order of increasing energy.

11.4 Irreps of SO(n)

The dimension of SO(n) is given by the trace of the adjoint projection operator:

N = trPA = =
n(n− 1)

2
. (11.17)

Dimensions of the other reps are listed in table 11.1.

References
[1] P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups (Prince-

ton Univ. Press, Princeton NJ, 2004).
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EXERCISES

Young tableaux × = • + +

Dimensions n2 = 1 + n(n−1)
2

+ (n+2)(n−1)
2

Projectors = 1
n

+
���
���
���
���
���
���

���
���
���
���
���
���

+
{

− 1
n

}

Table 11.1: SO(n) Clebsch-Gordan series for V ⊗V .

Exercises
11.1. The characters of SO(3) representations: Show that for an irrep labeled by j, the

character of a conjugacy class labeled by θ

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(11.18)

can be obtained by taking the trace of Rjz(θ). Verify that for j = 1 this character is the
three dimensional special orthogonal representation character (10.6).

11.2. Lie algebra of SO(4) and SU(2) ⊗ SU(2). One particle Hamiltonian with a central
potential has in general SO(3) symmetry group. It turns out, however, that for Coulomb
potential the symmetry group is actually larger - SO(4), rather than SO(3). This explains
why the energy level degeneracies in the hydrogen atom are anomalously large. So SO(4)
and its representations are of a special importance in atomic physics.

(a) Show that the Lie algebra so(4) of the group SO(4) is generated by real antisym-
metric 4× 4 matrices.

(b) What is the dimension of so(4)?

A natural basis in so(4) is provided by antisymmetric matrices Mµν , µ, ν ∈ 1, 2, 3, 4,
µ 6= ν, generators of SO(4) rotations which leave invariant the µν-plane. The elements
of these matrices are given by

(Mµν)ij = δiµδjν − δjµδiν (11.19)

(c) Check that these matrices satisfy the commutation relationship

[Mab,Mcd] = Madδbc +Mbcδad −Macδbd −Mbdδac. (11.20)

(d) Show that Lie algebras of the groups SO(4) and SU(2) × SU(2) are isomorphic.
Path:

(d.i) Define matrices

Jk =
1

2
εkijMi,j , Kk = Mk4, k = 1, 2, 3

and

Ak =
1

2
(Jk +Kk) and Bk =

1

2
(Jk −Kk) .
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(d.ii) Show that A and B satisfy the same commutation relations as two copies of
su(2).

(e) How does one construct irreps of so(4) out of irreps of su(2)?

(f) Are groups SO(4) and SU(2)⊗ SU(2) isomorphic to each other?

(B. Gutkin)

11.3. Real and pseudo-real representations of SO(3). Recall (Gutkin notes, Lect. 4
Representation Theory II, Sect. 5 5. Three types of representations) that there are exist
three types of representation which can be distinguished by the indicator:

∫
G

dµ(g)χl(g
2) =


+1 real
0 complex
−1 pseudo-real

. (11.21)

Determine for which values of l = 0, 1/2, 1, 3/2, 2 . . . the representationDl of SO(3) is
real or pseudo-real.

Hint: The characters and Haar measure (10.8) of SO(3) are given by

χl(g) =
sin
([
l + 1

2

]
θ
)

sin
(
1
2
θ
) , dµ(g) =

dθ

π
sin2(θ/2) (11.22)

where θ is rotation angle for the group element g.
(B. Gutkin)

11.4. Total spin ofN particles. Consider a system of four particles with spin 1/2. Assuming
that all (except spin) degrees of freedom are frozen the Hilbert space of the system is given
by V = V1/2 ⊗ V1/2 ⊗ V1/2 ⊗ V1/2, with V1/2 being two-dimensional space for each
spin. V = ⊕Vs can be decomposed then into different sectors Vs having the total spin s
i.e., Ŝ2v = s(s + 1)v, for any v ∈ Vs. Here Ŝ2 = (

∑4
i=1 ŝi)

2 and ŝi = (ŝxi , ŝ
y
i , ŝ

z
i ) is

spin operator for i-th particle.

(a) What are possible values s for the total spin of the system?

(b) Determine dimension of the subspace of V0 with 0 total spin. In other words: how
many times trivial representation enters into product:

D = D1/2 ⊗D1/2 ⊗D1/2 ⊗D1/2 ? (11.23)

(c) What is the answer to the above questions for N spins?

Hint: it is convenient to use (11.22) to decompose D into irreps.
(B. Gutkin)

11.5. SO(n) Clebsch-Gordan series for V ⊗V .
(a) Show that the product of two n-dimensional reps of SO(n) decomposes into three
irreps:

=
1

n
+

���
���
���
���
���
���

���
���
���
���
���
���

+

{
− 1

n

}
. (11.24)

(b) Compute the dimensions of the three irreps.
(c) Which one is the adjoint one, and why? Hint: check the invariance condition.
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11.6. Splitting of degeneracies in a central potential. Hamiltonian H0 has rotational
symmetry of SO(3).

(a) What are the possible energy level degeneracies of H0?

A weak perturbation V with a symmetry Td of full tetrahedron group is added (e.g., V is
a potential created by lattice of atoms with a symmetry of Td).

(b) What will be the degeneracies of new Hamiltonian H0 + V ?

(c) Assuming that the total angular momentum of the system before the perturbation is
l = 2. How the degeneracies of the corresponding energy level will be split after
the perturbation is applied?

(B. Gutkin)

11.7. Quadrupole transitions.
a) Write Q1 = xy, Q2 = zy, Q3 = x2 − y2 and Q4 = 2z2 − x2 − y2 as components of
spherical tensor of rank 2. Hint: use spherical harmonics Y ml (θ, ϕ).
b) The last quantity Q4 is known as quadrupole moment. What are the selection rules for
transitions induced by Q4 in a system with SO(3) symmetry? In other words, for which
m, l and k, j the transition rates:

Pm,l→k,j ∼ |〈ml|Q4|j k〉|2

are non-zero?
c) By using Wigner-Eckart theorem write down the relationship between |〈ml|Q4|j k〉|2
and |〈ml|Q1|j k〉|2 in terms of Clebsch-Gordan coefficients.

(B. Gutkin)
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