
group theory - week 9

Continuous groups

Georgia Tech PHYS-7143
Homework HW9 due Tuesday, October 24, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.1 Irreps of SO(2) 2 points
Exercise 9.2 Reduction of product of two SO(2) irreps 1 point
Exercise 9.3 Irreps of O(2) 2 points
Exercise 9.4 Reduction of product of two O(2) irreps 1 point
Exercise 9.5 A fluttering flame front 4 points

Bonus points
Exercise 9.6 O(2) fundamental domain for Kuramoto-Sivashinsky equation (difficult)
10 points

Total of 10 points = 100 % score.
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GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

2017-10-17 Predrag Lecture 16 Continuous groups
This lecture is not taken from any particular book, it’s about basic ideas of how
one goes from finite groups to the continuous ones that any physicist should
know. The main idea comes from discrete groups. We have worked one ex-
ample out in week 2, the discrete Fourier transform of example 2.4 Projection
operators for cyclic group CN . The cyclic group CN is generated by the pow-
ers of the rotation by 2π/N , and in general, in the N → ∞ limit one only
needs to understand the algebra of T`, generators of infinitesimal transforma-
tions, D(θ) = 1 + i

∑
` θ`T`. They turn out to be derivatives.

2017-10-19 Predrag Lecture 17 Lie groups. Matrix representa-
tions
The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of U(1) ' SO(2), but from then on this way of thinking about
continuous symmetries gets to be increasingly awkward. So we need a fresh
restart; that is afforded by matrix groups, and in particular the unitary group
U(n) = U(1) ⊗ SU(n), which contains all other compact groups, finite or con-
tinuous, as subgroups.

Reading: Chen, Ping and Wang [6] Group Representation Theory for Physicists,
Sect 5.2 Definition of a Lie group, with examples.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2). In particular, note that while geometrically intu-
itive representation is the set of rotation [2×2] matrices, they split into pairs of
1-dimensional irreps. Also, not covered in the lectures, but worth a read: Sect.
6.6 completes discussion of Fourier analysis as continuum limit of cyclic groups
Cn, compares SO(2), discrete translations group, and continuous translations
group.

Sect. 9.1 that follows is a very condensed extract of chapters 3 Invariants and reducibil-
ity and 4 Diagrammatic notation from Group Theory - Birdtracks, Lie’s, and Excep-
tional Groups [8]. I am usually reluctant to use birdtrack notations in front of graduate
students indoctrinated by their professors in the 1890’s tensor notation, but today I’m
emboldened by the very enjoyable article on The new language of mathematics by Dan
Silver [16]. Your professor’s notation is as convenient for actual calculations as -let’s
say- long division using roman numerals. So leave them wallowing in their early pro-
gressive rock of 1968, King Crimsons of their youth (the surviving band plays Atlanta
October 23-24). You chill to beats younger than Windows 98, to grime, to trap, to
hardvapour, to birdtracks.

9.1 Lie groups for pedestrians
[...] which is an expression of consecration of angular momen-
tum.

— Mason A. Porter’s student
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Figure 9.1: Circle group S1 = SO(2), the symmetry group of a circle with directed
rotations, is a compact group, as its natural parametrization is either the angle φ ∈
[0, 2ß), or the perimeter x ∈ [0, L).

Definition: A Lie group is a topological group G such that (i) G has the structure of
a smooth differential manifold, and (ii) the composition map G × G → G : (g, h) →
gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make a living.
The compact Lie groups that we will deploy here are a generalization of the theory of
SO(2) ' U(1) rotations, i.e., Fourier analysis. By a ‘smooth differential manifold’
one means objects like the circle of angles that parameterize continuous rotations in
a plane, figure 9.1, or the manifold swept by the three Euler angles that parameterize
SO(3) rotations.

By ‘compact’ one means that these parameters run over finite ranges, as opposed
to parameters in hyperbolic geometries, such as Minkowsky SO(3, 1). The groups
we focus on here are compact by default, as their representations are linear, finite-
dimensional matrix subgroups of the unitary matrix group U(d).

Example 1. Circle group. A circle with a direction, figure 9.1, is invariant under rota-
tion by any angle θ ∈ [0, 2π), and the group multiplication corresponds to composition
of two rotations θ1 + θ2 mod 2π. The natural representation of the group action
is by a complex numbers of absolute value 1, i.e., the exponential eiθ. The composi-
tion rule is then the complex multiplication eiθ2eiθ1 = ei(θ1+θ2) . The circle group is
a continuous group, with infinite number of elements, parametrized by the continuous
parameter θ ∈ [0, 2π). It can be thought of as the n→∞ limit of the cyclic group Cn.
Note that the circle divided into n segments is compact, in distinction to the infinite
lattice of integers Z, whose limit is a line (noncompact, of infinite length).

An element of a [d×d] -dimensional matrix representation of a Lie group continu-
ously connected to identity can be written as

g(φ) = eiφ·T , φ · T =

N∑
a=1

φaTa , (9.1)

where φ · T is a Lie algebra element, Ta are matrices called ‘generators’, and φ =
(φ1, φ2, · · · , φN ) are the parameters of the transformation. Repeated indices are summed
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throughout, and the dot product refers to a sum over Lie algebra generators. Sometimes
it is convenient to use the Dirac bra-ket notation for the Euclidean product of two real
vectors x, y ∈ Rd, or the product of two complex vectors x, y ∈ Cd, i.e., indicate
complex x-transpose times y by

〈x|y〉 = x†y =

d∑
i

x∗i yi . (9.2)

Finite unitary transformations exp(iφ · T ) are generated by sequences of infinitesimal
steps of form

g(δφ) ' 1 + iδφ · T , δφ ∈ RN , |δφ| � 1 , (9.3)

where Ta, the generators of infinitesimal transformations, are a set of linearly indepen-
dent [d×d] hermitian matrices (see figure 9.2 (b)).

The reason why one can piece a global transformation from infinitesimal steps is
that the choice of the “origin” in coordinatization of the group manifold sketched in
figure 9.2 (a) is arbitrary. The coordinatization of the tangent space at one point on the
group manifold suffices to have it everywhere, by a coordinate transformation g, i.e.,
the new origin y is related to the old origin x by conjugation y = g−1xg, so all tangent
spaces belong the same class, they are geometrically equivalent.

Unitary and orthogonal groups are defined as groups that preserve ‘length’ norms,
〈gx|gx〉 = 〈x|x〉, and infinitesimally their generators (9.3) induce no change in the
norm, 〈Tax|x〉+ 〈x|Tax〉 = 0 , hence the Lie algebra generators Ta are hermitian for,

T †a = Ta . (9.4)

The flow field at the state space point x induced by the action of the group is given by
the set of N tangent fields

ta(x)i = (Ta)ijxj , (9.5)

which span the d-dimensional group tangent space at state space point x, parametrized
by δφ.

For continuous groups the Lie algebra, i.e., the algebra spanned by the set ofN gen-
erators Ta of infinitesimal transformations, takes the role that the |G| group elements
play in the theory of discrete groups (see figure 9.2).

9.1.1 Invariants
One constructs the irreps of finite groups by identifying matrices that commute with
all group elements, and using their eigenvalues to decompose arbitrary representation
of the group into a unique sum of irreps. The same strategy works for the compact Lie
groups, (9.9), and is indeed the key idea that distinguishes the invariance groups clas-
sification developed in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [8]
from the 19th century Cartan-Killing classification of Lie algebras.

Definition. The vector q ∈ V is an invariant vector if for any transformation g ∈ G

q = Gq . (9.6)
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(a) (b)

Manifold traced out by action of G
for all possible group elements g

xx’

g

Figure 9.2: (a) Lie algebra fields {t1, · · · , tN} span the tangent space of the group
orbitMx at state space point x, see (9.5) (figure from WikiMedia.org). (b) A global
group transformation g : x → x′ can be pieced together from a series of infinitesimal
steps along a continuous trajectory connecting the two points. The group orbit of state
space point x ∈ Rd is the N -dimensional manifold of all actions of the elements of
group G on x.

Definition. A tensor x ∈ V p ⊗ V̄ q is an invariant tensor if for any g ∈ G

x
a1a2...ap
b1...bq

= Ga1c1G
a2
c2 . . . Gb1

d1 . . . Gbq
dqx

c1c2...cp
d1...dq

. (9.7)

If a bilinear form m(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = Ga

cGbdMc
d (9.8)

is an invariant matrix. Multiplying with Gbe and using the unitary, we find that the
invariant matrices commute with all transformations g ∈ G:

[G,M] = 0 . (9.9)

Definition. An invariance group G is the set of all linear transformations (9.7) that
preserve the primitive invariant relations (and, by extension, all invariant relations)

p1(x, ȳ) = p1(Gx, ȳG†)

p2(x, y, z, . . .) = p2(Gx,Gy,Gz . . .) , . . . . (9.10)

Unitarity guarantees that all contractions of primitive invariant tensors, and hence all
composed tensors h ∈ H , are also invariant under action of G. As we assume unitary
G, it follows that the list of primitives must always include the Kronecker delta.

Example 2. If paqa is the only invariant of G

p′
a
q′a = pb(G†G)b

cqc = paqa , (9.11)

then G is the full unitary group U(n) (invariance group of the complex norm |x|2 =
xbxaδ

a
b ), whose elements satisfy

G†G = 1 . (9.12)

Example 3. If we wish the z-direction to be invariant in our 3-dimensional space,
q = (0, 0, 1) is an invariant vector (9.6), and the invariance group is O(2), the group of
all rotations in the x-y plane.
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9.1.2 Discussion
2017-11-07 Qimen Xu Please explain when one keeps track of the order of tensorial

indices?

2017-11-07 Predrag In a tensor, upper, lower indices are separately ordered - and that
order matters. The simplest example: if some indices form an antisymmetric
pair, writing them in wrong order gives you a wrong sign. In a matrix represen-
tation of a group action, one has to distinguish between the “in” set of indices –
the ones that get contracted with the initial tensor, and the “out” set of indices
that label the tensor after the transformation. Only if the matrix is Hermitian the
order does not matter. If you understand Eq. (3.22) in birdtracks.eu, you get it.
Does that answer your question?

9.1.3 Infinitesimal transformations, Lie algebras
A unitary transformation G infinitesimally close to unity can be written as

Ga
b = δba + iDb

a , (9.13)

where D is a hermitian matrix with small elements, |Db
a| � 1. The action of g ∈ G on

the conjugate space is given by

(G†)b
a = Gab = δab − iDa

b . (9.14)

D can be parametrized by N ≤ n2 real parameters. N , the maximal number of inde-
pendent parameters, is called the dimension of the group (also the dimension of the Lie
algebra, or the dimension of the adjoint rep).

Here we shall consider only infinitesimal transformations of form G = 1 + iD,
|Da

b | � 1. We do not study the entire group of invariant transformation, but only the
transformations connected to the identity. For example, we shall not consider invari-
ances under coordinate reflections.

The generators of infinitesimal transformations (9.13) are hermitian matrices and
belong to the Da

b ∈ V ⊗ V̄ space. However, not any element of V ⊗ V̄ generates an
allowed transformation; indeed, one of the main objectives of group theory is to define
the class of allowed transformations.

This subspace is called the adjoint space, and its special role warrants introduction
of special notation. We shall refer to this vector space by letter A, in distinction to
the defining space V . We shall denote its dimension by N , label its tensor indices by
i, j, k . . ., denote the corresponding Kronecker delta by a thin, straight line,

δij = , i, j = 1, 2, . . . , N , (9.15)

and the corresponding transformation generators by

(CA)i,
a
b =

1√
a

(Ti)
a
b = a, b = 1, 2, . . . , n

i = 1, 2, . . . , N .
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Matrices Ti are called the generators of infinitesimal transformations. Here a is an
(uninteresting) overall normalization fixed by the orthogonality condition

(Ti)
a
b (Tj)

b
a = tr (TiTj) = a δij

= a . (9.16)

For every invariant tensor q, the infinitesimal transformations G = 1 + iD must satisfy
the invariance condition (9.6). ParametrizingD as a projection of an arbitrary hermitian
matrix H ∈ V ⊗V̄ into the adjoint space, D = PAH ∈ V ⊗V̄ ,

Da
b =

1

a
(Ti)

a
b εi , (9.17)

we obtain the invariance condition which the generators must satisfy: they annihilate
invariant tensors:

Tiq = 0 . (9.18)

To state the invariance condition for an arbitrary invariant tensor, we need to define
the action of generators on the tensor reps. By substituting G = 1 + iε · T + O(ε2)
and keeping only the terms linear in ε, we find that the generators of infinitesimal
transformations for tensor reps act by touching one index at a time:

(Ti)
a1a2...ap
b1...bq

, dq...d1cp...c2c1 = (Ti)
a1
c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq
bq

+δa1c1 (Ti)
a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq
bq

+ . . .+ δa1c1 δ
a2
c2 . . . (Ti)

ap
cp δ

d1
b1
. . . δ

dq
bq

− δa1c1 δ
a2
c2 . . . δ

ap
cp (Ti)

d1
b1
. . . δ

dq
bq
− . . .− δa1c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . (Ti)

dq
bq
. (9.19)

This forest of indices vanishes in the birdtrack notation, enabling us to visualize the
formula for the generators of infinitesimal transformations for any tensor representa-
tion:

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

T =
��
��
��
��

��
��
��
��

��
��
��
��

+
��
��
��
��

��
��
��
��

��
��
��
��

− , (9.20)

with a relative minus sign between lines flowing in opposite directions. The reader will
recognize this as the Leibnitz rule.

The invariance conditions take a particularly suggestive form in the birdtrack no-
tation. Equation (9.18) amounts to the insertion of a generator into all external legs of
the diagram corresponding to the invariant tensor q:

0 = + −

+ − . (9.21)
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The insertions on the lines going into the diagram carry a minus sign relative to the
insertions on the outgoing lines.

As the simplest example of computation of the generators of infinitesimal transfor-
mations acting on spaces other than the defining space, consider the adjoint rep. Where
does the ugly word “adjoint” come from in this context is not obvious, but remem-
ber it this way: this is the one distinguished representation, which is intrinsic to the
Lie algebra, with the explicit matrix elements (Ti)jk of the adjoint rep given by the
the fully antisymmetric structure constants iCijk of the algebra (i.e., its multiplication
table under the commutator product). It’s the continuous groups analogoue of the mul-
tiplication table, or the regular representation for the finite groups. The factor i ensures
their reality (in the case of hermitian generators Ti), and we keep track of the overall
signs by always reading indices counterclockwise around a vertex:

− iCijk = (9.22)

= − �����
�
�
�
�
�

�
�
�
�
�
�

. (9.23)

As all other invariant tensors, the generators must satisfy the invariance conditions
(9.21):

0 = − + − .

Redrawing this a little and replacing the adjoint rep generators (9.22) by the structure
constants, we find that the generators obey the Lie algebra commutation relation

i j

− = (9.24)

In other words, the Lie algebra commutator

TiTj − TjTi = iCijkTk . (9.25)

is simply a statement that Ti, the generators of invariance transformations, are them-
selves invariant tensors. Now, honestly, do you prefer the three-birdtracks equation (9.24),
or the mathematician’s page-long definition of the adjoint rep? It’s a classic example
of bad notation getting into way of understanding a relation of beautiful simplicity. The
invariance condition for structure constants Cijk is likewise

0 = + + .

PHYS-7143-17 week9 114 2017-11-16

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-17/SCHEDULE.HTML
http://jakobschwichtenberg.com/adjoint-representation/
https://www.encyclopediaofmath.org/index.php/Adjoint_representation_of_a_Lie_group


GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

Rewriting this with the dot-vertex (9.22), we obtain

− = . (9.26)

This is the Lie algebra commutator for the adjoint rep generators, known as the Jacobi
relation for the structure constants

CijmCmkl − CljmCmki = CimlCjkm . (9.27)

Hence, the Jacobi relation is also an invariance statement, this time the statement that
the structure constants are invariant tensors.

9.1.4 Discussion
2017-10-17 Lin Xin Please explain the Mµν,δρ generators of SO(n).

2017-11-07 Predrag Let me know if you understand the derivation of Eqs. (4.51) and
(4.52) in birdtracks.eu. Does that answer your question?
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9.2 Birdtracks - updated history
Predrag Cvitanović November 7, 2017

Young tableaux and (non-Hermitian) Young projection operators were introduced by
Young [20] in 1933 (Tung monograph [19] is a standard exposition). In 1937 R. Bra-
uer [3] introduced diagrammatic notation for δij in order to represent “Brauer algebra”
permutations, index contractions, and matrix multiplication diagrammatically. R. Pen-
rose’s papers were the first to cast the Young projection operators into a diagrammatic
form. In 1971 monograph [13] Penrose introduced diagrammatic notation for sym-
metrization operators, Levi-Civita tensors [15], and “strand networks” [12]. Penrose
credits Aitken [1] with introducing this notation in 1939, but inspection of Aitken’s
book reveals a few Brauer diagrams for permutations, and no (anti)symmetrizers. Pen-
rose’s [14] 1952 initial ways of drawing symmetrizers and antisymmetrizers are very
aesthetical, but the subsequent developments gave them a distinctly ostrich flavor [14].
In 1974 G. ’t Hooft introduced a double-line notation for U(n) gluon group-theory
weights [18]. In 1976 Cvitanović [7] introduced analogous notation for SU(N), SO(n)
and Sp(n). For several specific, few-index tensor examples, diagrammatic Young pro-
jection operators were constructed by Canning [5], Mandula [11], and Stedman [17].

The 1975–2008 Cvitanović diagrammatic formulation of the theory of all semi-
simple Lie groups [8] as a way to compute group theoretic wights without any recourse
to symbols goes conceptually and profoundly beyond the Penrose notation (indeed,
Cvitanović “birdtracks” bear no resemblance to Penrose’s “fornicating ostriches” [14]).

A chapter in Cvitanović 2008 monograph [8] sketches how birdtrack (diagram-
matic) Young projection operators for arbitrary irreducible representation of SU(N)
could be constructed (this text is augmented by a 2005 appendix by Elvang, Cvi-
tanović and Kennedy [9] which, however, contains a significant error). Keppeler and
Sjödahl [10] systematized the construction by offering a simple method to construct
Hermitian Young projection operators in the birdtrack formalism. Their iteration is
easy to understand, and the proofs of Hermiticity are simple. However, in practice, the
algorithm is inefficient - the expression balloon quickly, the Young projection operators
soon become unwieldy and impractical, if not impossible to implement.

The Alcock-Zeilinger algorithm, based on the simplification rules of ref. [2], leads
to explicitly Hermitian and drastically more compact expressions for the projection op-
erators than the Keppeler-Sjödahl algorithm [10]. Alcock-Zeilinger fully supersedes
Cvitanović’s formulation, and any future exposition of reduction of SU(N) tensor
products into irreducible representations will be based on the Alcock-Zeilinger algo-
rithm.

References
[1] A. Aitken, Determinants & Matrices (Oliver & Boyd, Edinburgh, 1939).

[2] J. Alcock-Zeilinger and H. Weigert, “Compact Hermitian Young projection op-
erators”, J. Math. Phys. 58, 051702 (2017).

PHYS-7143-17 week9 116 2017-11-16

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-17/SCHEDULE.HTML
http://books.google.com/books?vid=ISBN9781473347106
http://dx.doi.org/10.1063/1.4983478
http://dx.doi.org/10.1063/1.4983478
http://dx.doi.org/10.1063/1.4983478


GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

[3] R. Brauer, “On algebras which are connected with the semisimple continuous
groups”, Ann. Math. 38, 857 (1937).
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EXERCISES

Exercises
9.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(9.28)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e(k)

1 − i e(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?

9.2. Reduction of a product of two SO(2) irreps. Determine the Clebsch-Gordan series for
SO(2). Hint: Abelian group has 1-dimensional characters. Or, you are just multiplying
terms in Fourier series.

9.3. Irreps of O(2). O(2) is a group, but not a Lie group, as in addition to continuous
transformations generated by (9.28) it has, as a group element, a parity operation

σ =

[
1 0
0 −1

]
which cannot be reached by continuous transformations.

(a) Is this group Abelian, i.e., does T commute with R(kθ)? Hint: evaluate first the
[T, σ] commutator and/or show that σD(k)(θ)σ−1 = D(k)(−θ) .

(b) What are the equivalence (i.e., conjugacy) classes of this group?

(c) What are irreps of O(2)? What are their dimensions?
Hint: O(2) is the n→∞ limit ofDn, worked out in exercise 4.4 Irreducible repre-
sentations of dihedral group Dn. Parity σ maps an SO(2) eigenvector into another
eigenvector, rendering eigenvalues of any O(2) commuting operator degenerate.
Or, if you really want to do it right, apply Schur’s first lemma to improper rotations

R
′
(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
σ =

(
cos kθ sin kθ
sin kθ − cos kθ

)
to prove irreducibility for k 6= 0.

(d) What are irreducible characters of O(2)?

(e) Sketch a fundamental domain for O(2).

9.4. Reduction of a product of two O(2) irreps. Determine the Clebsch-Gordan series for
O(2), i.e., reduce the Kronecker product D(k)⊗D(`) .
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9.5. A fluttering flame front.

(a) Consider a linear partial differential equation for a real-valued field u = u(x, t)
defined on a periodic domain u(x, t) = u(x+ L, t):

ut + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.29)

In this equation t ≥ 0 is the time and x is the spatial coordinate. The subscripts x
and t denote partial derivatives with respect to x and t: ut = ∂u/d∂, uxxxx stands
for the 4th spatial derivative of u = u(x, t) at position x and time t. Consider the
form of equations under coordinate shifts x→ x+ ` and reflection x→ −x. What
is the symmetry group of (9.29)?

(b) Expand u(x, t) in terms of its SO(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.29) as a set of linear ODEs for the expansion coefficients. What
are the eigenvalues of the time evolution operator? What is their degeneracy?

(c) Expand u(x, t) in terms of its O(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.29) as a set of linear ODEs. What are the eigenvalues of the
time evolution operator? What is their degeneracy?

(d) Interpret u = u(x, t) as a ‘flame front velocity’ and add a quadratic nonlinearity to
(9.29),

ut + 1
2
(u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.30)

This nonlinear equation is known as the Kuramoto-Sivashinsky equation, a baby
cousin of Navier-Stokes. What is the symmetry group of (9.30)?

(e) Expand u(x, t) in terms of its O(2) irreducible components (see exercise 9.3) and
rewrite (9.30) as an infinite tower of coupled nonlinear ODEs.

(f) What are the degeneracies of the spectrum of the eigenvalues of the time evolution
operator?

9.6. O(2) fundamental domain for Kuramoto-Sivashinsky equation. You have C2

discrete symmetry generated by flip σ, which tiles the space by two tiles.

• Is there a subspace invariant under this C2? What form does the tower of ODEs
take in this subspace?

• How would you restrict the flow (the integration of the tower of coupled ODEs) to
a fundamental domain?

This problem is indeed hard, a research level problem, at least for me and the grad students
in our group. Unlike the beautiful full-reducibility, character-orthogonality representation
theory of linear problems, in nonlinear problems symmetry reduction currently seems to
require lots of clever steps and choices of particular coordinates, and we am not at all sure
that our solution is the optimal one. Somebody looking at the problem with a fresh eye
might hit upon a solution much simpler than ours. Has happened before :)
Burak Budanur’s solution is written up in Budanur and Cvitanović [4] Unstable mani-
folds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-
Sivashinsky system sect. 3.2 O(2) symmetry reduction, eq. (17) (get it here).

9.7. Lie algebra from invariance. Derive the Lie algebra commutator and the Jacobi
identity as particular examples of the invariance condition, using both index and birdtracks
notations. The invariant tensors in question are “the laws of motion,” i.e., the generators
of infinitesimal group transformations in the defining and the adjoint representations.
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Week 9 solutions: Continuous groups
Solution 9.1 - Irreps of SO(2). Read D. Vvedensky group theory notes, chapter 8,
sects. 8.1 and 8.2.

Solution 9.2 - Reduction of product of two SO(2) irreps. The corresponding
Clebsch-Gordan series for SO(2) is very simple because the group is Abelian, and irreps
are 1-dimensional: the product of 2 irrep characters is the character of their Clebsch-
Gordan product.

Solution 9.3 - Irreps of O(2). The group C1v contains all two-dimensional rotations
and a reflection line in the x - z plane. Since this reflection changes the parity of the
coordinate system, it changes the sense of the rotation angle θ. Thus, a rotation by
θ in the original coordinate system corresponds to a rotation by −θ in the transformed
coordinate system. Denoting the reflection operator by S , we then must have that
σR(θ)σ−1 = R(−θ). We can see this explicitly for the two-dimensional rotation matrix
R(θ), where the matrix on the right-hand side of this equation is R(−θ). This shows that
(i) the group is not Abelian, and (ii) the conjugacy classes correspond to rotations by θ
and −θ.

Solution 9.4 - Reduction of product of two O(2) irreps. The corresponding Clebsch-
Gordan series for O(2) is ...

Solution 9.5 - A fluttering flame front. ChaosBook.org has a whole chapter on this.

Solution 9.6 - O(2) fundamental domain for Kuramoto-Sivashinsky equation. Bu-
rak Budanur’s solution is written up in Budanur and Cvitanović [4] Unstable manifolds of
relative periodic orbits in the symmetry-reduced state space of the Kuramoto-Sivashinsky
system sect. 3.2 O(2) symmetry reduction, eq. (17) (get it here).

Solution 9.7 - Lie algebra from invariance. The derivation is given in Group Theory
Birdtracks, Lie’s, and Exceptional Groups, Sect. 4.5 Lie algebra.
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http://ChaosBook.org
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