group theory - week 11

SU(2) and SO(3)

Georgia Tech PHYS-7143

Homework HW11 due Tuesday, November 7, 2017

== show all your work for maximum credit,

== put labels, title, legends on any graphs

== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 The characters of SO(3) representations 1 point
Exercise 11.2 Lie algebra of SO(4) and SU(2) @ SU(2) 6 points
Exercise 11.5 SO(n) Clebsch-Gordan series for V@V. 3 points

Bonus points
Exercise 11.3 Real and pseudo-real representations of SO(3) 4 points
Exercise 11.4 Total spin of N particles 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

2017-10-31 Predrag Lecture 20 SU(2) and SO(3)

Gutkin notes, Lect. 9 SU(2), SO(3) and their representations, Sects. 1-3.2;
sect. 11.1 SU(2) — SO(3) correspondence below.

2017-11-02 Predrag Lecture 21 SO(3) birdtracks
Birdtrack notation [ 1] is explained here.

You can fetch clippings on irreps of SU(n) and SO(n) from Predrag’s mono-
graph [1] here. Go through Sect. 2.2 First example: SU(n), Sect. 6.1 Sym-
metrization, Sect. 6.2 Antisymmetrization, Sect. 9.1 Two-index tensors. Skim
through Sect. 9.2 Three-index tensors, and Table 9.1. There is also a glimpse of
a some birdtracking (still to be written up) in sect. 11.2 Irreps of SO(n).

Reading for the next week: Sect. 9.3 Young tableaux.

11.1 SU(2) - SO(3) correspondence
Notes by Kimberly Y. Short

Angular momentum L = r X p has three components, the operators that generate SU(2)
and satisfy [Lq, Lo] = iLs. If we define e = Ly + iLo, f = L1 — iLo, and h = 2L,
then we have the following algebra:

[h,e] =2e, [h,f]==2f, [e,fl=h (11.1D)

S N () NS B

Matrices e and f act as the raising and lowering (also called ‘ladder’) operators L. in
this representation. (The set {e, f, h} forms an ‘sl,-triple’.)

We observe that there are n? — 1 = 3 such operators satisfying this algebra, which
is the Lie algebra of SU(n), where n = 2. The eigenvalues of h are integers separated
by 2, and the eigenvalues of L3 must be half-integers separated by 1. Consequently,
the representation with highest L3 eigenvalue given by [ must have dimension 2/ + 1
(note: 21 is A\jpqz for h).

Further, L? = L - L commutes with L1, L, and L3 and hence, by Schur’s Lemma,
L? = Ml in this representation, so every vector is an eigenvector of L?. For example,
we’ve seen in quantum mechanics,

where

LAY =11+ 1)R* Y™ (11.3)

And since the spherical harmonics Y, (6, ¢) constitute an orthonormal basis of the
Hilbert space of square-integrable functions, any vector can be expanded in a basis of
Y6, ¢). L+ acton Y;™ in the following way:

LaY™ = h/I(1+ 1) —m(m £+ 1) Y/ EL (11.4)
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

An element of SU(2) can be written as
eioia/2 (11.5)

where o is a Pauli matrix and o is a number. (The exponentiation of the Pauli ma-
trices gives SU(2).) What is the importance of the 1/2 factor in the argument of the
exponential. First, consider a generic position vector r = zé; + yé; + zé;. We may
construct a matrix of the form

o1 = 0T+oyy+o.2
= (o)l 96 %)
_ (I j " x :;y> (11.6)
The determinant,
det <x _i iy x:zzy) =—(2® +y* +2%) = —2? (11.7)

is an expression for the length of a vector.
Now consider a unitary transformation of this matrix. For example,

Ule-r\UT = ou(0-1)0s
= (Vo) 62w 20 )

T — 1y z

Taking this determinant, we find the same expression as before:

—z x99, 2y_ 2
det (x_z.y ; )— (®4+y +2°)=—x (11.9)
We observe that, like SO(3), SU(2) preserves the lengths of vectors.

The correspondence between SO(3) and SU(2) can be made more explicit. To see
this, consider an SU(2) transformation on a two-component object called a spinor ¢

where
e
Y = </3) , (11.10)

and

2

p= 5B —a?), y=-1(®+5), z=ap. (L

One may check that an SU(2) transformation on ¢ is equivalent to an SO(3) transfor-
mation on x. From this equivalence, one sees that an SU(2) transformation has three
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real parameters that correspond to the three rotation angles of SO(3). If we label the
“angles” for the SU(2) transformation by «, 3, and ~, we observe, for a “rotation”
about

isina/2  cosa/2

Us(a) = (cosa/2 zsma/2> . (11.12)
Likewise for an SU(2) transformation about §:

[ cosf/2 sinf/2
Uy(5)<—sin,6’/2 COSB/Q) (1.13)

And for the final rotation, the SU(2) transformation about Z:

iy/2 0
U.(v) = (e 0 e_i7/2> (11.14)

Compare these three matrices to the corresponding SO(3) rotation matrices:

1 0 0 cos¢p 0 sing
R,(()=10 cos¢ sin¢ |, Ry(¢) = 0 1 0
0 —sin¢ cos( —sing 0 cos¢
cosf sinf 0
R.(0) = [ —sin® cosf 0O (11.15)
0 0 1

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

In this context, the eigenvalue equation for L3 and for L? are differential equations
whose solutions are the spherical harmonics Y, which take the form

eim(z)fjlm<COS(9), —1 <m< l (1]16)

in spherical coordinates and which determine the shape of electron orbitals and their
probabilities to be found in a given region.

In quantum mechanics, the possible results of a measurement are determined by
the possible eigenvalues of an operator. As such, the possible measurable values of
the z-component of angular momentum correspond to the allowed values of Ls. The
measurement outcomes are not arbitrary; the largest one, [, must be a half-integer, and
there are 2/ + 1 eigenvectors. Applying the lowering operator L_ one-by-one, we can
find the possible outcomes to be m € {l,] — 1,...,—1}. The angular dependence of
the corresponding wave function goes as ~ €% P/™(cos §). In addition, higher values
of [ correspond to higher energy, so the different values of | correspond to different
electron orbitals in order of increasing energy.
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Young tableaux [ x[] = . + H + T

2 n(n—1) (n+2)(n—1)

Dimensions n = 1 + B (nt2)n-1)
Projectors = %) C + I + { _ %) C}

Table 11.1: SO(n) Clebsch-Gordan series for V@V.

+

11.2  Irreps of SO(n)

The dimension of SO(n) is given by the trace of the adjoint projection operator:

N=tuP, = :@. (11.17)

Dimensions of the other reps are listed in table 11.1.
References

[1] P.Cvitanovi¢, Group Theory - Birdtracks, Lie’s, and Exceptional Groups (Prince-
ton Univ. Press, Princeton, NJ, 2008).
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EXERCISES

Exercises

11.1. The characters of SO(3) representations:  Show that for an irrep labeled by j, the
character of a conjugacy class labeled by 6

O gy — S0 +1/2)0 1118
X0 = =567 (11.18)
can be obtained by taking the trace of R (0). Verify that for j = 1 this character is the
three dimensional special orthogonal representation character (10.6).

11.2. Lie algebra of SO(4) and SU(2) ® SU(2).  One particle Hamiltonian with a central
potential has in general SO(3) symmetry group. It turns out, however, that for Coulomb
potential the symmetry group is actually larger - SO(4), rather than SO(3). This explains
why the energy level degeneracies in the hydrogen atom are anomalously large. So SO(4)
and its representations are of a special importance in atomic physics.

(a) Show that the Lie algebra so(4) of the group SO(4) is generated by real antisym-
metric 4 X 4 matrices.
(b) What is the dimension of s0(4)?
A natural basis in s0(4) is provided by antisymmetric matrices M., u,v € 1,2,3,4,

1 # v, generators of SO(4) rotations which leave invariant the pv-plane. The elements
of these matrices are given by

2]

(c) Check that these matrices satisfy the following commutation relationship:

[Mab7 Mc ] = Madgbc + Mbc5ad - Mac(sbd - Mbdéac-
(d) Show that Lie algebras of the groups SO(4) and SU(2) x SU(2) are isomorphic.
Path:

(d.i) Define matrices

1
Jk = 55kijMi7j7 Kk = Mk47 k= 1,2,3

and

1

N | =

(d.ii) Show that A and B satisfy the same commutation relations as two copies of
su(2).

(e) How does one construct irreps of s0(4) out of irreps of su(2)?

(f) Are groups SO(4) and SU(2) ® SU(2) isomorphic to each other?

(B. Gutkin)
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11.3.

11.5.

Real and pseudo-real representations of SO(3). Recall (Gutkin notes, Lect. 4
Representation Theory II, Sect. 5 5. Three types of representations) that there are exist
three types of representation which can be distinguished by the indicator:

+1 real

/du(g)Xl(g2) =< 0 complex . (11.20)
@ —1 pseudo-real

Determine for which values of I = 0,1/2,1,3/2,2... the representation D; of SO(3)
is real or pseudo-real.

Hint: The characters and Haar measure (10.8) of SO(3) are given by

sin ([1+ 3] 6) do

xi(g) = sn(30) du(g):?sin2(9/2) 1121

where 6 is rotation angle for the group element g.
(B. Gutkin)

. Total spin of N particles. Consider a system of four particles with spin 1/2. Assuming

that all (except spin) degrees of freedom are frozen the Hilbert space of the system is given
by V.= Vi3 @ Vi/2 ® V1,2 ® V12, with V} 5 being two-dimensional space for each
spin. V' = @V, can be decomposed then into different sectors Vs having the total spin s
ie., 5%v = s(s 4 1)v, forany v € Vi. Here 5% = (37_, §;)? and 3; = (57,5Y,57) is
spin operator for ¢-th particle.

(a) What are possible values s for the total spin of the system?

(b) Determine dimension of the subspace of 1 with O total spin. In other words: how

many times trivial representation enters into product:

D=D1/®D1/2® D12 ® D127 (11.22)

(c) What is the answer to the above questions for N spins?
Hint: it is convenient to use (11.21) to decompose D into irreps.
(B. Gutkin)
SO(n) Clebsch-Gordan series for V®V.

(a) Show that the product of two n-dimensional reps of SO(n) decomposes into three
irreps:

D CITH{IT D e

(b) Compute the dimensions of the three irreps.
(c) Which one is the adjoint one, and why? Hint: check the invariance condition.

. Splitting of degeneracies in a central potential. Hamiltonian Hy has rotational

symmetry of SO(3).
(a) What are the possible energy level degeneracies of Ho?

A weak perturbation V' with a symmetry 73 of full tetrahedron group is added (e.g., V' is
a potential created by lattice of atoms with a symmetry of 7g).
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(b) What will be the degeneracies of new Hamiltonian Ho + V'?

(c) Assuming that the total angular momentum of the system before the perturbation is
l = 2. How the degeneracies of the corresponding energy level will be split after
the perturbation is applied?

(B. Gutkin)

11.7. Quadrupole transitions.
a) Write Q1 = zy, Q2 = zy, Q3 = z° — y? and Q4 = 22% — x? — y? as components of
spherical tensor of rank 2. Hint: use spherical harmonics Y, (6, ).

b) The last quantity ()4 is known as quadrupole moment. What are the selection rules for
transitions induced by Q4 in a system with SO(3) symmetry? In other words, for which
m, [ and k, j the transition rates:

Ptk ~ [(m1|Qalj k)|

are non-zero?

¢) By using Wigner-Eckart theorem write down the relationship between |(m 1|Qa|j k)|?
and |(m 1|Q1]j k)|? in terms of Clebsch-Gordan coefficients.

(B. Gutkin)
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