
group theory - week 10

O(2) symmetry sliced

Georgia Tech PHYS-7143
Homework HW10 due Thursday, November 2, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 10.1 Conjugacy classes of SO(3) 2 points (+ 2 bonus points, if complete)
Exercise 10.2 The character of SO(3) 3-dimensional representation 1 point
Exercise 10.4 The orthonormality of SO(3) characters 2 point
Exercise 10.5 U(1) equivariance of two-modes system for finite angles 3 points
Exercise 10.7 SO(2) or harmonic oscillator slice 2 points

Bonus points
Exercise 10.6 Integrate the two-modes system 4 point
Exercise 10.8 Invariant subspace of the two-modes system 1 point
Exercise 10.9 Slicing the two-modes system 1 point
Exercise 10.10 The symmetry reduced two-modes flow (difficult) 6 points

Total of 10 points = 100 % score.
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GROUP THEORY - WEEK 10. O(2) SYMMETRY SLICED

2017-10-24 Predrag Lecture 18 Lie groups, algebras Bridging the step
from discrete to continuous compact groups: invariant integration measures,
characters, character orthonormality and completeness relations.

Reading: ChaosBook.org Chap. Continuous symmetry factorization (last up-
dated October 26, 2017), only Sect 26.1 Compact groups.

2017-10-26 Predrag Lecture 19 O(2) symmetry sliced
Reading: sect. 10.3 Two-modes SO(2)-equivariant flow. For the long version,
see ChaosBook.org Chap. Relativity for cyclists (last updated October 26, 2017),
and ChaosBook.org Chap. Slice & dice (last updated October 26, 2017), Sect.
13.1 Only dead fish go with the flow to Sect. 13.5 First Fourier mode slice. This
is difficult material, so it is OK if you do not get it this time around. None of this
will be on the final - the main point is that once you face a nonlinear problem,
nothing is easy - not even rotations on a circle.

10.1 Literature

C. K. Wong Group Theory notes, Chap 6 1D continuous groups, works out in full detail
the representations and Haar measures for 1-dimensional Lie groups, and explains the
difference between rotations and translations.

Chen, Ping and Wang [1] Group Representation Theory for Physicists, Sect 5.3
Lie algebras and Sect 5.4 Finite transformations work out several SU(2) and O(3)
examples. Sects 5.5, 5.6 and 5.7 also merit a quick read.

In his group theory notes D. Vvedensky, chapter 8, sect. 8.3 Axis–angle represen-
tation of proper rotations in three dimensions, has a very nice discussion of the (10.2)
parametrization of the SO(3) 3-dimensional group manifold: the parameter space cor-
responds to the interior of a sphere of radius π, and the over the classes of SO(3) is
given by integral over spherical shells. In sect. 8.4 he derives the Haar measure (without
calling it so).

In sect. 8.5 Vvedensky says: “For SO(2), we were able to determine the characters
of the irreducible representations directly, i.e., without having to determine the basis
functions of these representations. The structure of SO(3), however, does not allow for
such a simple procedure, so we must determine the basis functions from the outset.”
That I disagree with; in birdtracks.eu sect. 15.1 Reps of SU(2) I construct the irreps and
label them by their Young tableaus with no recourse to spherical harmonics.

10.2 SO(3) character orthogonality

In 3 Euclidean dimensions, a rotation around z axis is given by the SO(2) matrix

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 = expϕ

0 −1 0
1 0 0
0 0 0

 . (10.1)
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GROUP THEORY - WEEK 10. O(2) SYMMETRY SLICED

An arbitrary rotation in R3 can be represented by

Rn(ϕ) = e−iϕn·L L = (L1, L2, L3) , (10.2)

where the unit vector n determines the plane and the direction of the rotation by angle
ϕ. Here L1, L2, L3 are the generators of rotations along x, y, z axes respectively,

L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 , (10.3)

with Lie algebra relations
[Li, Lj ] = iεijkLk . (10.4)

All SO(3) rotations (10.2) by the same angle θ around different rotation axis n are
conjugate to each other,

exercise 10.1

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L , (10.5)

with eiφn2·L and e−iθn2·L mapping the vector n1 to n3 and back, so that the rotation
around axis n1 by angle θ is mapped to a rotation around axis n3 by the same θ. The
conjugacy classes of SO(3) thus consist of rotations by the same angle about all distinct
rotation axes, and are thus labelled the angle θ. As the conjugacy class depends only on

exercise 10.2
θ, the characters can only be a function of θ. For the 3-dimensional special orthogonal
representation, the character is

χ = 2 cos(θ) + 1 . (10.6)

For an irrep labeled by j, the character of a conjugacy class labeled by θ is
exercise 10.3

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(10.7)

To check that these characters are orthogonal to each other, one needs to define
the group integration over a parametrization of the SO(3) group manifold. A group
element is parametrized by the rotation axis n and the rotation angle θ ∈ (−π, π] ,
with n a unit vector which ranges over all points on the surface of a unit ball. Note
however, that a π rotation is the same as a −π rotation (n and −n point along the
same direction), and the n parametrization of SO(3) is thus a 2-dimensional surface of
a unit-radius ball with the opposite points identified.

The Haar measure for SO(3) requires a bit of work, here we just use note that after
the integration over the solid angle (characters do not depend on it), the Haar measure
is

dg = dµ(θ) =
dθ

2π
(1− cos(θ)) =

dθ

π
sin2(θ/2) . (10.8)

With this measure the characters are orthogonal, and the character orthogonality the-
exercise 10.4

orems follow, of the same form as for the finite groups, but with the group averages
replaced by the continuous, parameter dependant group integrals

1

|G|
∑
g∈G
→
∫
G

dg .
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GROUP THEORY - WEEK 10. O(2) SYMMETRY SLICED
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Figure 10.1: Two-modes flow before (a) and after (b) symmetry reduction by first
Fourier mode slice. Here a long trajectory (red and blue) starting on the unstable man-
ifold of the TW1 (red), until it falls on to the strange attractor (blue) and the shortest
relative periodic orbit 1 (magenta). Note that the relative equilibrium becomes an equi-
librium, and the relative periodic orbit becomes a periodic orbit after the symmetry
reduction.

The good news is that, as explained in ChaosBook.org Chap. Relativity for cyclists
(and in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [2]), one never needs
to actually explicitly construct a group manifold parametrizations and the correspond-
ing Haar measure.

10.3 Two-modes SO(2)-equivariant flow
Consider the pair of U(1)-equivariant complex ODEs

ż1 = (µ1 − i e1) z1 + a1 z1|z1|2 + b1 z1|z2|2 + c1 z1 z2

ż2 = (µ2 − i e2) z2 + a2 z2|z1|2 + b2 z2|z2|2 + c2 z
2
1 , (10.9)

with z1, z2 complex, and all parameters real valued.
This system is a generic example of a few-modes truncation of a Fourier represen-

tation of some physical flow, such as fluid dynamics convection flow, truncated in such
a way that the model exhibits the same symmetries as the full original problem, while
being drastically simpler to study. It is a merely a toy model with no physical interpre-
tation, just like the iconic Lorenz flow. We use it to illustrate the effects of continuous
symmetry on chaotic dynamics.

We refer to this toy model as the two-modes system. It belongs to the family of
simplest ODE systems that we know that (a) have a continuous U(1) / SO(2), but no
discrete symmetry (if at least one of ej 6= 0). (b) models ‘weather’, in the same sense
that Lorenz equation models ‘weather’, (c) exhibits chaotic dynamics, (d) can be easily
visualized, in the dimensionally lowest possible setting required for chaotic dynamics,
with the full state space of dimension d = 4, and the SO(2)-reduced dynamics taking
place in 3 dimensions, and (e) for which the method of slices reduces the symmetry by
a single global slice hyperplane.
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GROUP THEORY - WEEK 10. O(2) SYMMETRY SLICED

The model has an unreasonably high number of parameters. After some experi-
mentation we fix or set to zero various parameters, and in the numerical examples that
follow, we settle for parameters set to

µ1 = −2.8 , µ2 = 1 , e1 = 0 , e2 = 1 ,

a1 = −1 , a2 = −2.66 , b1 = 0 , b2 = 0 , c1 = −7.75 , c2 = 1 , (10.10)

unless explicitly stated otherwise. For these parameter values the system exhibits
chaotic behavior. Experiment! If you find a more interesting behavior for some other
parameter values, please let us know. The simplified system of equations can now be
written as a 3-parameter {µ1, c1, a2} two-modes system,

ż1 = µ1 z1 − z1|z1|2 + c1 z1 z2

ż2 = (1− i) z2 + a2 z2|z1|2 + z2
1 . (10.11)

In order to numerically integrate and visualize the flow, we recast the equations in real
variables by substitution z1 = x1 + i y1, z2 = x2 + i y2. The two-modes system (10.9)
is now a set of four coupled ODEs

exercise 10.6

ẋ1 = (µ1 − r2)x1 + c1 (x1x2 + y1y2) , r2 = x2
1 + y2

1

ẏ1 = (µ1 − r2) y1 + c1 (x1y2 − x2y1)

ẋ2 = x2 + y2 + x2
1 − y2

1 + a2x2r
2

ẏ2 = −x2 + y2 + 2x1y1 + a2y2r
2 . (10.12)

Try integrating (10.12) with random initial conditions, for long times, times much
beyond which the initial transients have died out. What is wrong with this picture?
Figure 10.3 (a) is a mess. As we show here, the attractor is built up by a nice ‘stretch
& fold’ action, hidden from the view by the continuous symmetry induced drifts. That

exercise 10.7
is fixed by ‘quotienting’ model’s SO(2) symmetry, and reducing the dynamics to a

exercise 10.8
3-dimensional symmetry-reduced state space, figure 10.3 (b).

exercise 10.9
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EXERCISES

Exercises
10.1. Conjugacy classes of SO(3): Show that all SO(3) rotations (10.2) by the same angle

θ around any rotation axis n are conjugate to each other:

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L (10.13)

Check this for infinitesimal φ, and argue that from that it follows that it is also true for
finite φ. Hint: use the Lie algebra commutators (10.4).

10.2. The character of SO(3) 3-dimensional representation: Show that for the 3-dimensional
special orthogonal representation (10.2), the character is

χ = 2 cos(θ) + 1 . (10.14)

Hint: evaluating the character explicitly for Rx(θ), Ry(θ) and Rz(θ).

10.3. The characters of SO(3) representations: Show that for an irrep labeled by j, the
character of a conjugacy class labeled by θ can be obtained by taking the trace of Rjz(θ),
and that the character is

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
. (10.15)

Verify that for j = 1 this character is the three dimensional special orthogonal represen-
tation character (10.14).

10.4. The orthonormality of SO(3) characters: Verify that given the Haar measure (10.8),
the characters (10.15) are orthogonal:

〈χ(j)|χ(j′)〉 =

∫
G

dg χ(j)(g−1)χ(j′)(g) = δjj′ . (10.16)

10.5. U(1) equivariance of two-modes system for finite angles: Show that the vector field
in two-modes system (10.9) is equivariant under (9.1), the unitary group U(1) acting on
R4 ∼= C2 as the k = 1 and 2 modes:

g(θ)(z1, z2) = (eiθz1, e
i2θz2) , θ ∈ [0, 2π) . (10.17)

10.6. Integrate the two-modes system: Integrate (10.12) and plot a long trajectory of two-
modes in the 4d state space, (x1, y1, y2) projection, as in figure 10.3 (a). To save you time
(typing in (10.12) is tedious), we have prepared for you python code, and online graded
problem set here. If you do this exercise, please get started early, in order to make sure
that the autograder is working, and forward to us the grades that you receive from the
autograder.

10.7. SO(2) or harmonic oscillator slice: Construct a moving frame slice for action of
SO(2) on R2

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write out explicitly the group
transformation that brings any point back to the slice. What invariant is preserved by this
construction?

10.8. Invariant subspace of the two-modes system: Show that (0, 0, x2, y2) is a flow invari-
ant subspace of the two-modes system (10.12), i.e., show that a trajectory with the initial
point within this subspace remains within it forever.
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EXERCISES

10.9. Slicing the two-modes system: Choose the simplest slice template point that fixes the
1. Fourier mode,

x̂′ = (1, 0, 0, 0) . (10.18)

(a) Show for the two-modes system (10.12), that the velocity within the slice, and the
phase velocity along the group orbit are

v̂(x̂) = v(x̂)− φ̇(x̂)t(x̂) (10.19)

φ̇(x̂) = −v2(x̂)/x̂1 (10.20)

(b) Determine the chart border (the locus of point where the group tangent is either not
transverse to the slice or vanishes).

(c) What is its dimension?

(d) What is its relation to the invariant subspace of exercise 10.8?

(e) Can a symmetry-reduced trajectory cross the chart border?

10.10. The symmetry reduced two-modes flow: Pick an initial point x̂(0) that satisfies
the slice condition for the template choice (10.18) and integrate (10.19) & (10.20). Plot
the three dimensional slice hyperplane spanned by (x1, x2, y2) to visualize the symmetry
reduced dynamics. Does it look like figure 10.3 (b)?
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