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group theory - week 1

Linear algebra

Georgia Tech PHYS-7143
Homework HW1 due Tuesday, August 29, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 1.1 Trace-log of a matrix 4 points
Exercise 1.2 Stability, diagonal case 2 points
Exercise 1.3 Time-ordered exponentials 4 points

Bonus points
Exercise 1.4 Real representation of complex eigenvalues 4 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

2017-08-29 Predrag Lecture 1 Linear algebra - a brief recap
Course start: If I am allowed to teach group theory video (click here), then

read Predrag notes - derivation of e(1) eigenvector; sketch eigenvectors.
Sect. 1.3 Matrix-valued functions
Sect. 1.4 A linear diversion
Sect. 1.5 Eigenvalues and eigenvectors

2017-08-31 Predrag Lecture 2 (with spill over into lecture 3)

Recap from Lecture 1: state Hamilton-Cayley equation, projection operators
(1.33), any matrix function is evaluated by spectral decomposition (1.36).
Work through example 1.6

Predrag notes: Right (column) and left (row) eigenvectors

Predrag notes on moment of inertia tensor,

Predrag handwritten notes are not on the web, for those stretches you might want
to take your own notes in the lecture.

1.1 Special projects
Several people have been interested in taking a special project, instead of the final in
the course. If you propose to work out in detail some group-theory needed for your
own research (but you have not taken the time to master the theory), that would be
ideal.

1. Here is an example of what an interesting topic would be (i.e., something that
Predrag would like to learn from you:) – the talk by David Weitz on melting
of crystal lattices. Can you do a calculation on a Wigner lattice or a graphene,
or a silicon carbide polytype used as a substrate in our graphene lab (ask Claire
Berger about it), using our group theory methods as applied to space groups (2-
or 3-D lattices)?

2. If you are really wild about string theory, then you can read Giles and Thorn [5]
Lattice approach to string theory, and write up what you have learned as the
project report. The Giles-Thorn (GT) discretization of the worldsheet begins
with a representation of the free closed or open string propagator as a light-
cone worldsheet path integral defined on a lattice. The sequel Papathanasiou and
Thorn [11] Worldsheet propagator on the lightcone worldsheet lattice gives in
Appendix B 2D lattice Neumann open string, Dirichlet open string, and closed
string propagators. Discrete Green’s functions are explained, for example, by
Chung and Yau [2] who give explicitly, in their Theorem 6, a 2-dimensional lat-
tice Green’s function for a rectangular region R[`1×`2]. The paper is cited over
100 times, maybe there is a better, more up-to-date one to read in that list.

I recommend that you take a final, as these are hard and time-consuming projects,
and the faculty does not want to overburden you with course work. However, if a
project dovetails with your research interests, it might be worth it. Fly it by me.
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

1.2 Literature
Mopping up operations are the activities that engage most sci-
entists throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolutions

The subject of linear algebra generates innumerable tomes of its own, and is way
beyond what we can exhaustively cover. We have added to the course homepage some
linear operators and matrices reading: Stone and P. Goldbart [12], Mathematics for
Physics: A Guided Tour for Graduate Students, Appendix A. This is an advanced
summary where you will find almost everything one needs to know. More pedestrian
and perhaps easier to read is Arfken and Weber [1] Mathematical Methods for Physi-
cists: A Comprehensive Guide, Chapter 3.

1.3 Matrix-valued functions
What is a matrix?

—Werner Heisenberg (1925)
What is the matrix?

—-Keanu Reeves (1999)
Why should a working physicist care about linear algebra? Physicists were bliss-

fully ignorant of group theory until 1920’s, but with Heisenberg’s sojourn in Helgoland,
everything changed. Quantum Mechanics was formulated as

φ(t) = Û tφ(0) , Û t = e−
i
~ tĤ , (1.1)

where φ(t) is the quantum wave function t, Û t is the unitary quantum evolution opera-
tor, and Ĥ is the Hamiltonian operator. Fine, but what does this equation mean? In the
first lecture we deconstruct it, make Û t computationally explicit as a the time-ordered
product (1.25).

The matrices that have to be evaluated are very high-dimensional, in principle in-
finite dimensional, and the numerical challenges can quickly get out of hand. What
made it possible to solve these equations analytically in 1920’s for a few iconic prob-
lems, such as the hydrogen atom, are the symmetries, or in other words group theory,
which start sketching out in the second lecture (and fill in the details in the next 27
lectures).

Whenever you are confused about an “operator”, think “matrix”. Here we recapit-
ulate a few matrix algebra concepts that we found essential. The punch line is (1.44):
Hamilton-Cayley equation

∏
(M− λi1) = 0 associates with each distinct root λi of a

matrix M a projection onto ith vector subspace

Pi =
∏
j 6=i

M− λj1
λi − λj

.

What follows - for this week - is a jumble of Predrag’s notes. If you understand the
examples, we are on the roll. If not, ask :)
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

How are we to think of the quantum operator

Ĥ = T̂ + V̂ , T̂ = p̂2/2m, V̂ = V (q̂) , (1.2)

corresponding to a classical Hamiltonian H = T + V , where T is kinetic energy, and
V is the potential?

Expressed in terms of basis functions, the quantum evolution operator is an infinite-
dimensional matrix; if we happen to know the eigenbasis of the Hamiltonian, the prob-
lem is solved already. In real life we have to guess that some complete basis set is
good starting point for solving the problem, and go from there. In practice we truncate
such operator representations to finite-dimensional matrices, so it pays to recapitulate
a few relevant facts about matrix algebra and some of the properties of functions of
finite-dimensional matrices.

Matrix derivatives. The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′ij(x) =

d

dx
Aij(x) . (1.3)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB

dx
. (1.4)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (1.5)

The derivative of the inverse of a matrix, if the inverse exists, follows from d
dx (AA−1) =

0:
d

dx
A−1 = − 1

A

dA

dx

1

A
. (1.6)

Matrix functions. A function of a single variable that can be expressed in terms of
additions and multiplications generalizes to a matrix-valued function by replacing the
variable by a matrix.

In particular, the exponential of a constant matrix can be defined either by its series
expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1

k!
Ak , A0 = 1 (1.7)

= lim
N→∞

(
1 +

1

N
A

)N
(1.8)

The first equation follows from the second one by the binomial theorem, so these in-
deed are equivalent definitions. That the terms of order O(N−2) or smaller do not
matter for a function of a single variable follows from the bound(

1 +
x− ε
N

)N
<

(
1 +

x+ δxN
N

)N
<

(
1 +

x+ ε

N

)N
,
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not contribute. A
proof for matrices would probably require defining the norm of a matrix (and, more
generally, a norm of an operator acting on a Banach space) first. If you know an easy
proof, let us know.

Logarithm of a matrix. The logarithm of a matrix is defined by the power series

ln(1−A) = −
∞∑
k=1

Ak

k
. (1.9)

log det = tr log matrix identity. Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))
N
.

To the leading order in 1/N

det (1 + A/N) = 1 +
1

N
trA +O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1

N
trA +O(N−2)

)N
= lim
N→∞

(
1 +

trA
N

)N
= etrA (1.10)

Defining M = eA we can write this as

ln detM = tr lnM . (1.11)

Functions of several matrices. Due to non-commutativity of matrices, generaliza-
tion of a function of several variables to a function of several matrices is not as straight-
forward. Expression involving several matrices depend on their commutation relations.
For example, the Baker-Campbell-Hausdorff commutator expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (1.12)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger pic-
tures of quantum mechanics, follows by recursive evaluation of t derivatives

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Expanding exp(A+B), expA, expB to first few orders using (1.7) yields

e(A+B)/N = eA/NeB/N − 1

2N2
[A,B] +O(N−3) , (1.13)

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(1.14)

2017-11-30 9 PHYS-7143-17 week1
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

In particular, we can now make sense of the quantum evolution operator (1.1) as a
succession of short free flights (kinetic term) interspersed by small acceleration kicks
(potential term),

e−itĤ = lim
N→∞

(
e−i∆t T̂ e−i∆t V̂

)N
, ∆t = t/N , (1.15)

where we have set ~ = 1.

1.4 A linear diversion
Linear is good, nonlinear is bad.

—Jean Bellissard

(Notes based of ChaosBook.org/chapters/stability.pdf)

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are good for all times. The state
space for linear differential equations is M = Rd, and the equations of motion are
written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (1.16)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

How do we solve the linear differential equation (1.16)? If instead of a matrix
equation we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order to solve
the d-dimensional matrix case, it is helpful to rederive this solution by studying what
happens for a short time step ∆t. If time t = 0 coincides with position x(0), then

x(∆t)− x(0)

∆t
= λx(0) , (1.17)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1 +
t

m
λ

)m
x(0) ≈ etλx(0) . (1.18)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps ∆t = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (1.17):

x(∆t)− x(0)

∆t
= Ax(0) . (1.19)

PHYS-7143-17 week1 10 2017-11-30
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

A representative point x is now a vector in Rd acted on by the matrix A, as in (1.16).
Denoting by 1 the identity matrix, and repeating the steps (1.17) and (1.18) we obtain
Euler’s formula (1.8) for the exponential of a matrix:

x(t) = J tx(0) , J t = etA = lim
m→∞

(
1 +

t

m
A

)m
, (1.20)

where J t = J(t) is a short hand for exp(tA). We will find this definition for the
exponential of a matrix helpful in the general case, where the matrix A = A(x(t))
varies along a trajectory.

Now that we have some feeling for the qualitative behavior of linear flows, we are
ready to return to the nonlinear case. How do we compute the exponential (1.20)?

x(t) = f t(x0) , δx(x0, t) = J t(x0) δx(x0, 0) . (1.21)

The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integral step by step. The Jacobian matrix is com-
puted by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (1.22)

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit (1.20):

etA =

∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t

m
A

)m
. (1.23)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to J t is therefore given by a
generalization of the Euler product (1.23):

J t = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.24)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,

where δt = (t− t0)/m, and xn = x(t0 +nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→∞ limit of this procedure is the formal integral

J tij(x0) =
[
Te

∫ t
0
dτA(x(τ))

]
ij
, (1.25)
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

where T stands for time-ordered integration, defined as the continuum limit of the
successive multiplications (1.24). This integral formula for J t is the finite time com-

exercise 1.3
panion of the differential definition. The definition makes evident important properties
of Jacobian matrices, such as their being multiplicative along the flow,

J t+t
′
(x) = J t

′
(x′) J t(x), where x′ = f t(x0) , (1.26)

which is an immediate consequence of the time-ordered product structure of (1.24).
However, in practice J is evaluated by integrating differential equation along with the
ODEs that define a particular flow.

1.5 Eigenvalues and eigenvectors
10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.27)

Given a nonsingular matrix M, with all λi 6= 0, acting on d-dimensional vectors x, we
would like to determine eigenvectors e(i) of M on which M acts by scalar multiplica-
tion by eigenvalue λi

Me(i) = λie
(i) . (1.28)

If λi 6= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values and eigenspaces, which we assume have been computed by some method, and
ordered by their real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct, e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.29)

However, r, the number of distinct eigenvalues, is in general smaller than the dimension
of the matrix, r ≤ d (see example 1.4).

From (1.28) it follows that

(M− λi1) e(j) = (λj − λi) e(j) ,

matrix (M−λi1) annihilates e(i), the product of all such factors annihilates any vector,
and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.30)
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GROUP THEORY - WEEK 1. LINEAR ALGEBRA

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.29) onto the corresponding
eigenspace: ∏

j 6=i

(M− λj1)x =
∏
j 6=i

(λi − λj)xie(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j 6=i

M− λj1
λi − λj

, (1.31)

which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑
i=1

Pi = 1 , (1.32)

with the dimension of the ith subspace given by di = trPi . For each distinct eigen-
value λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.33)

the colums/rows of Pj are the right/left eigenvectors e(j), e(j) of M which (provided
M is not of Jordan type, see example 1.4) span the corresponding linearized subspace.
Once the distinct non-zero eigenvalues {λi} are computed, projection operators are
polynomials in M which need no further diagonalizations or orthogonalizations.

It follows from the characteristic equation (1.33) that λi is the eigenvalue of M on
Pi subspace:

MPi = λiPi (no sum on i) . (1.34)

Using M = M1 and completeness relation (1.32) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.35)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition

f(M) =
∑
i

f(λi)Pi . (1.36)

This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (1.33) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.32), they are mutually orthogonal,

e(i) · e(j) = cj δ
j
i . (1.37)

The non-zero constant c is convention dependent and not worth fixing, unless you feel
nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is convenient
to collect all left and right eigenvectors into a single matrix as follows.
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Example 1.1. Fundamental matrix. If A is constant in time, the system (1.22) is
autonomous, and the solution is

x(t) = eA tx(0) ,

where exp(At) is defined by the Taylor series for exp(x). As the system is linear, the
sum of any two solutions is also a solution. Therefore, given d independent initial con-
ditions, x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition
based on its projection on to this set,

x(t) = F(t)F(0)−1x(0) = eAtx(0) ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system.

Fundamental matrix (take 1). As the system is a linear, a superposition of any two
solutions to x(t) = Jtx(0) is also a solution. One can take any d independent initial
states, x(1)(0), x(2)(0), . . . , x(d)(0), assemble them as columns of a matrix Φ(0), and
formally write the solution for an arbitrary initial condition projected onto this basis,

x(t) = Φ(t)Φ(0)−1x(0) (1.38)

where Φ(t) = [x(1)(t), x(2)(t), · · · , x(d)(t)]. Φ(t) is called the fundamental matrix of
the system, and the Jacobian matrix Jt = Φ(t)Φ(0)−1 can thus be fashioned out of d
trajectories {x(j)(t)}. Numerically this works for sufficiently short times.

Fundamental matrix (take 2). The set of solutions x(t) = Jt(x0)x0 for a system of
homogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and dimension d
forms a d-dimensional vector space. A basis {e(1)(t), . . . , e(d)(t)} for this vector space
is called a fundamental system. Every solution x(t) can be written as

x(t) =

d∑
i=1

ci e
(i)(t) .

The [d×d] matrix F−1
ij = e

(j)
i whose columns are the right eigenvectors of Jt

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (1.39)

is the inverse of a fundamental matrix.

Jacobian matrix. The Jacobian matrix Jt(x0) is the linear approximation to a differ-
entiable function f t(x0), describing the orientation of a tangent plane to the function
at a given point and the amount of local rotation and shearing caused by the transfor-
mation. The inverse of the Jacobian matrix of a function is the Jacobian matrix of the
inverse function. If f is a map from d-dimensional space to itself, the Jacobian matrix is
a square matrix, whose determinant we refer to as the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t0 to the
basis at time t1,

Jt1−t0(x0) = F(t1)F(t0)−1 . (1.40)

Then the matrix form of (1.37) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian matrix
is the identity. (J. Halcrow)

exercise 1.4
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Example 1.2. Linear stability of 2-dimensional flows: For a 2-dimensional flow
the eigenvalues λ1, λ2 of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp(tλj), or form a complex conjugate pair λ1 = µ + iω , λ2 =
µ− iω , leading to a circular or spiral motion in the [x1, x2] plane, see example 1.3.

Figure 1.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2
contracts exponentially. This behavior, called a saddle, is sketched in figure 1.1, as are
the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0; whereas, the phase velocity ω controls its oscillations.

If eigenvalues λ1 = λ2 = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.4. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[dα×dα] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 1.1 and 1.2.

Example 1.3. Complex eigenvalues: in-out spirals. As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → A, the block A is a
sum of the rescaling×identity and the generator of SO(2) rotations in the {Re e(1), Im e(1)}
plane.

A =

[
µ −ω
ω µ

]
= µ

[
1 0
0 1

]
+ ω

[
0 −1
1 0

]
.

Trajectories of ẋ = Ax, given by x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-
directions)

Jt = etA = etµ
[

cos ωt − sin ωt
sin ωt cos ωt

]
, (1.41)
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saddle

××
6

-

out node

××
6

-

in node

××
6
-

center

×
×

6
-
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Figure 1.2: Qualitatively distinct types of exponents {λ(1), λ(2)} of a [2×2] Jaco-
bian matrix. Here the eigenvalues of the Jacobian matrix are multipliers Λ(j), and the
exponents are defined as the deformation rates λ(j) = log(Λ(j))/t.

spiral in/out around (x, y) = (0, 0), see figure 1.1, with the rotation period T and the
radial expansion /contraction multiplier along the e(j) eigen-direction per a turn of the
spiral:

exercise 1.4
T = 2π/ω , Λradial = eTµ . (1.42)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).

Example 1.4. Degenerate eigenvalues. While for a matrix with generic real
elements all eigenvalues are distinct with probability 1, that is not true in presence of
symmetries, or spacial parameter values (bifurcation points). What can one say about
situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (1.30) now takes form

r∏
α=1

(M− λα1)dα = 0 ,
∑
α

dα = d . (1.43)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (1.43) can be re-
placed by the minimal polynomial,

r∏
α=1

(M− λα1) = 0 , (1.44)

where the product includes each distinct eigenvalue only once. Matrix M acts multi-
plicatively

Me(α,k) = λie
(α,k) , (1.45)

on a dα-dimensional subspace spanned by a linearly independent set of basis eigen-
vectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case. Luckily, if the degeneracy is
due to a finite or compact symmetry group, relevant M matrices can always be brought
to such Hermitian, diagonalizable form.
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M can only be brought to upper-triangular, Jordan form. This is the messy case,
so we only illustrate the key idea in example 1.5.

Example 1.5. Decomposition of 2-dimensional vector spaces: Enumeration of ev-
ery possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest
case, a general [2×2] non-singular matrix

M =

[
M11 M12

M21 M22

]
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1

2
trM± 1

2

√
(trM)2 − 4 detM (1.46)

are the roots of the characteristic (secular) equation (1.27):

det (M− λ1) = (λ1 − λ)(λ2 − λ)

= λ2 − trMλ+ detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators (see example 1.6)

P1 =
M− λ21

λ1 − λ2
, P2 =

M− λ11

λ2 − λ1
, λ1 6= λ2 . (1.47)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case. (b) M can be brought to Jordan form,
with zeros everywhere except for the diagonal, and some 1’s directly above it; for a [2×2]
matrix the Jordan form is

M =

[
λ 1
0 λ

]
, e(1) =

[
1
0

]
, v(2) =

[
0
1

]
.

v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector,
as Mv(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one
eigenvector per block. Noting that

Mm =

[
λm mλm−1

0 λm

]
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u

v

)
= etλ

(
u+ tv

v

)
(1.48)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent).
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Example 1.6. Projection operator decomposition in 2 dimensions: Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix [8]

M =

[
4 1
3 2

]
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (1.46):

det (M− λ1) = λ2 − 6λ+ 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:[

4 1
3 2

]2
− 6

[
4 1
3 2

]
+ 5

[
1 0
0 1

]
=

[
0 0
0 0

]
.

Associated with each root λi is the projection operator (1.47)

P1 =
1

4
(M− 1) =

1

4

[
3 1
3 1

]
(1.49)

P2 = −1

4
(M− 5 · 1) =

1

4

[
1 −1
−3 3

]
. (1.50)

Matrices Pi are orthonormal and complete. The dimension of the ith subspace is given
by di = trPi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation MPi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

[
58591 19531
58593 19529

]
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
[
1
1

]
,

[
1
−3

]
}

{e(1), e(2)} = {
[
3
1

]
,

[
1
−1

]
} ,

with overall scale arbitrary. The matrix is not symmetric, so {e(j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e(j) · e(k), however, are orthogonal
as in (1.37), by inspection. (Continued in example 1.8.)

Example 1.7. Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp


λ1t

λ2t

. . .
λdt

 =


eλ1t

eλ2t

. . .
eλdt

 .
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If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor se-
ries for ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

[
λ 0
0 µ

]
, B =

[
λ 1
0 λ

]
, B =

[
µ −ω
ω µ

]
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

[
eλt 0
0 eµt

]
, eBt = eλt

[
1 t
0 1

]
, eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to
one of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

Figure 1.3: The stable/unstable manifolds
of the equilibrium (xq, xq) = (0, 0) of 2-
dimensional flow (1.51).

y

x

Example 1.8. A simple stable/unstable manifolds pair: Consider the 2-dimensional
ODE system

dx

dt
= −x, dy

dt
= y + x2 , (1.51)

The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e
−t, y(t) = (y0 + x20/3) et − x20 e−2t/3 . (1.52)

Linear stability of the flow is described by the stability matrix

A =

(
−1 0
2x 1

)
. (1.53)
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The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 =
−1, and area preserving. The right eigenvectors at the point (x, y),

e(1) =

(
0
1

)
, e(2) =

(
1
−x

)
, (1.54)

can be obtained by acting with the projection operators (see example 1.5 Decomposition
of 2-dimensional vector spaces)

Pi =
A− λj1
λi − λj

: P1 =

[
0 0
x 1

]
, P2 =

[
1 0
−x 0

]
(1.55)

on an arbitrary vector. Matrices Pi are orthonormal and complete. The left eigenvectors
are

e(1) = (x, 1) , e(2) = (1, 0) , (1.56)

and e(i)e
(j) = δji . The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0),

with eigenvalues (stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1),
e(2) = (1, 0). The unstable manifold is the y axis, and the stable manifold is given by
(see figure 1.3)

y0 +
1

3
x20 = 0⇒ y(t) +

1

3
x(t)2 = 0 . (1.57)

(N. Lebovitz)

1.5.1 Yes, but how do you really do it?
As M has only real entries, it will in general have either real eigenvalues (over-damped
oscillator, for example), or complex conjugate pairs of eigenvalues (under-damped os-
cillator, for example). That is not surprising, but also the corresponding eigenvectors
can be either real or complex. All coordinates used in defining the flow are real num-
bers, so what is the meaning of a complex eigenvector?

If two eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω},
they are in a sense degenerate: while a real λk characterizes a motion along a line, a
complex λk characterizes a spiralling motion in a plane. We determine this plane by
replacing the corresponding complex eigenvectors by their real and imaginary parts,
{e(k), e(k+1)} → {Re e(k), Im e(k)}, or, in terms of projection operators:

Pk =
1

2
(R + iQ) , Pk+1 = P∗k ,

where R = Pk + Pk+1 is the subspace decomposed by the kth complex eigenvalue
pair, and Q = (Pk −Pk+1)/i, both matrices with real elements. Substitution[

Pk
Pk+1

]
=

1

2

[
1 i
1 −i

] [
R
Q

]
,

brings the λkPk + λk+1Pk+1 complex eigenvalue pair in the spectral decomposition
into the real form,

[PkPk+1]

[
λ 0
0 λ∗

] [
Pk

Pk+1

]
= [RQ]

[
µ −ω
ω µ

] [
R
Q

]
, (1.58)
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where we have dropped the superscript (k) for notational brevity.
To summarize, spectrally decomposed matrix M acts along lines on subspaces cor-

responding to real eigenvalues, and as a [2×2] rotation in a plane on subspaces corre-
sponding to complex eigenvalue pairs.

Commentary
Remark 1.1. Projection operators. The construction of projection operators given in
sect. 1.5.1 is taken from refs. [3, 4]. Who wrote this down first we do not know, lineage cer-
tainly goes all the way back to Lagrange polynomials [10], but projection operators tend to get
drowned in sea of algebraic details. Arfken and Weber [1] ascribe spectral decomposition (1.36)
to Sylvester. Halmos [6] is a good early reference - but we like Harter’s exposition [7–9] best,
for its multitude of specific examples and physical illustrations. In particular, by the time we
get to (1.33) we have tacitly assumed full diagonalizability of matrix M. That is the case for
the compact groups we will study here (they are all subgroups of U(n)) but not necessarily in
other applications. A bit of what happens then (nilpotent blocks) is touched upon in example 1.5.
Harter in his lecture Harter’s lecture 5 (starts about min. 31 into the lecture) explains this in great
detail - its well worth your time.
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[3] P. Cvitanović, “Group theory for Feynman diagrams in non-Abelian gauge the-
ories”, Phys. Rev. D 14, 1536–1553 (1976).
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Exercises
1.1. Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary nonsingular finite dimensional matrix M , detM 6= 0.

1.2. Stability, diagonal case. Verify that for a diagonalizable matrix A the exponential is
also diagonalizable

Jt = etA = U−1etADU , AD = UAU−1 . (1.59)

1.3. Time-ordered exponentials. Given a time dependent matrix A(t), show that the time-
ordered exponential

J(t) = Te
∫ t
0 dτA(τ)

may be written as

J(t) = 1 +

∞∑
m=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtmA(t1)A(t2) · · ·A(tm) . (1.60)

(Hint: for a warmup, consider summing elements of a finite-dimensional symmetric ma-
trix S = S>. Use the symmetry to sum over each matrix element once; (1.60) is a con-
tinuous limit generalization, for an object symmetric in m variables. If you find this hint
confusing, ignore it:) Verify, by using this representation, that J(t) satisfies the equation

J̇(t) = A(t)J(t),

with the initial condition J(0) = 1.

1.4. Real representation of complex eigenvalues. (Verification of example 1.3.) λk, λk+1

eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω}. Show that

(a) corresponding projection operators are complex conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1

2
(R + iQ) ,

where R = Pk + Pk+1 and Q are matrices with real elements.
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(c) [
Pk

Pk+1

]
=

1

2

[
1 i
1 −i

] [
R
Q

]
.

(d) The · · ·+ λkPk + λ∗kPk+1 + · · · complex eigenvalue pair in the spectral decom-
position (1.35) is now replaced by a real [2×2] matrix

· · · +

[
µ −ω
ω µ

] [
R
Q

]
+ · · ·

or whatever you find the clearest way to write this real representation.
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group theory - week 2

Finite groups - definitions

Georgia Tech PHYS-7143
Homework HW2 due Tuesday, September 5, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 2.1 Gx ⊂ G 1 point
Exercise 2.2 Transitivity of conjugation 1 point
Exercise 2.3 Isotropy subgroup of gx 1 points
Exercise 2.5 C4-invariant potential 7 (+2) points

Total of 10 points = 100 % score.

Bonus points
Exercise 2.X: fix the errors in example 2.3 Vibrational spectra of molecules.
LaTeX source code 3 points
Exercise 2.8 Three masses on a loop 6 points
Exercise 2.7 An arrangement of five particles 4 points

Extra points accumulate, can help you later if you miss a few problems.
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2017-08-29 Predrag Lecture 3 Don’t wonna know group theory
Today’s example 2.3 whiteboard derivation of normal-modes of the ring of N
asymmetric pairs of oscillators is taken from Gutkin lecture notes example 5.1
Cn symmetry. The corresponding projection operators (1.31) are worked out in
example 2.4.

2017-08-31 Predrag Lecture 4 Finite groups
Groups, permutations, rearrangement theorem, subgroups, cosets, all exempli-
fied by the S3 = C3v = D3 symmetries of an equilateral triangle. This lec-
ture follows closely Chapter 1 Basic Mathematical Background: Introduction of
Dresselhaus et al. textbook [1] ( click here, ask for password if you have for-
gotten it). This book (or Tinkham [3]) is good on discrete and space groups,
but perhaps not so good on continuous groups. The MIT course 6.734 online
version contains much of the same material.

If instead, bedside crocheting is your thing, click here.

2.1 Using group theory without knowing any
It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read sect. A.6 Gruppenpest of ref. [2]). So what we
will do first is work out a few examples of physical applications of group theory that
you already know without knowing that you have been using “Group Theory.”

Example 2.1. Discrete symmetries in physics:

• Point groups i.e., subgroups of O(3).

• Point groups + discrete translations e.g., symmetry groups of crystals.

• Permutation groups

SΨ(x1, x2, . . . xn) = Ψ(x2, x1, . . . xn).

• Boson wave functions are symmetric while fermion wave functions are anti-symmetric
under exchange of variables.

(B. Gutkin)

Example 2.2. Reflection and discrete rotation symmetries:

(a) Reflection symmetry V (x) = PV (x) = V (−x):(
− ~2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Enψ(x) (2.1)

(see figure 2.1). If ψ(x) is solution then Pψ(x) is also solution. From this and non-
degeneracy of the spectrum follows that either Pψ(x) = ψ(x) or Pψ(x) = −ψ(x).
The first case corresponds to symmetric functions while the second one to anti-
symmetric one. Thus the whole spectrum can be decomposed in accordance to
a symmetry of the Hamiltonian (equations of motion).
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L R

Figure 2.1: (left) A reflection-symmetric double-well potential. (right) A 1/3rd-circle
rotation-symmetric plane billiard (infinite wall potential in 2D). (B. Gutkin)

(b) Rotation symmetry V (x) = gV (x), G = {e, g, g2}: By the same argument we
have three possibilities:

gψ(x) = ψ(x); gψ(x) = ei2π/3ψ(x); g−1ψ(x) = e−i2π/3ψ(x).

In addition, by the time reversal symmetry if ψ(x) is solution then ψ∗(x) is solu-
tion with the same eigenvalue as well. From this follows that the spectrum must
be degenerate. The spectrum is split into a real eigenfunction {ψ1(x)}, and a
degenerate pair of real eigenfunctions

ψ2(x) = ψ(x) + ψ∗(x);ψ3(x) = i(ψ(x)− ψ∗(x)) , where gψ(x) = ei2π/3ψ(x)

invariant under rotations by 1/3-rd of a circle.

(B. Gutkin)

Example 2.3. Vibrational spectra of molecules: In the linear, harmonic oscillator
approximation the classical dynamics of the molecule is governed by the Hamiltonian

H =

N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x>i Vijxj ,

where {xi} are small deviations from the resting the equilibrium, resting points of the
molecules labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form
by an orthogonal transformation, a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =

N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.2)

Consider now the ring of pair-wise interactions of two kinds of molecules sketched in
figure 2.2 (a), given by the potential

V (z) =
1

2

N∑
i=1

(
k1(xi − yi)2 + k2(xi+1 − yi)2

)
, zi =

(
xi
yi

)
, (2.3)
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whose [2N×2N ] matrix form is (aside for the cognoscenti: kind of a Toeplitz matrix):

Vij =
1

2



k1 + k2 −k1 0 0 0 . . . 0 0 −k2
−k1 k1 + k2 −k2 0 0 . . . 0 0 0

0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1
−k2 0 0 0 0 . . . 0 −k1 k1 + k2


This potential matrix is a holy mess. How do we find an orthogonal transformation (2.2)
that diagonalizes it? Look at figure 2.2 (a). Molecules lie on a circle, so that suggests
we should use a Fourier representation. As the i = 1 labelling of the starting molecule
on a ring is arbitrary, we are free to relabel them, for example use the next molecule
pair as the starting one. This relabelling is accomplished by the [2N×2N ] permutation
matrix (or ‘one-step shift’, ‘stepping’ or ‘translation’ matrix) M of form

(a)

X

X

X

Y

Y

Y

n

n
1

1

2

2

(b)

k

−n/2 n/2

acoustic

optical m−1

ω

(c)

x

y

y

x

y
x

1

1

2

2

3

3

Figure 2.2: (a) Chain with circular symmetry. (b) Dependance of frequency on the
representation wavenumber k. (c) Molecule with D3 symmetry. (B. Gutkin)


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

M


z1
z2
z3
...
zn

 =


zn
z1
z2
...

zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi
yi

)
(2.4)

Projection operators corresponding to M are worked out in example 2.4. They are N
distinct [2N×2N ] matrices,

Pk =



I λ̄I λ̄2I . . . λ̄N−2I λ̄N−1I
λI I λ̄I . . . λ̄N−3I λ̄N−2I
λ2I λI I . . . λ̄N−4I λ̄N−3I

...
...

...
. . .

...
...

λN−2I λN−3I λN−4I . . . I λ̄I
λN−1I λN−2I λN−2I . . . λI I


, λ = exp

(
2πi

N
k

)

(2.5)
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which decompose the 2N -dimensional configuration space of the molecule ring into
a direct sum of N 2-dimensional spaces, one for each discrete Fourier mode k =
0, 1, 2, · · · , N − 1.

The system (2.3) is clearly invariant under the cyclic permutation relabelling M ,
[V,M ] = 0 (though checking this by explicit matrix multiplications might be a bit tedious),
so the Pk decompose the the interaction potential V as well, and reduce its action to the
kth 2-dimensional subspace. Thus the [2N×2N ] diagonalization (2.2) is now reduced to
a [2×2] diagonalization which one can do by hand. The resulting kth space is spanned
by two 2N -dimensional vectors, which we guess to be of form:

η1 =
1√
n



1
0
λ
0
...

λn−1

0


, η2 =

1√
n



0
1
0
λ
...
0

λn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

V η1 = (k1 + k2)η1 − (k1 + k2λ)η2 , V η2 = (k1 + k2)η2 − (k1 + k2λ̄)η1 .

The corresponding eigenfrequencies are determined by the equation:

0 = det
((

k1 + k2 −(k1 + k2λ)
−(k1 + k2λ̄) k1 + k2

)
− ω2

2
I

)
=⇒

1

2
ω2
±(k) = k1 + k2 ± |k1 + k2λ

k| , (2.6)

one acoustic (ω(0) = 0), one optical, see figure 2.2 (b) and the acoustic and optical
phonons wiki. (B. Gutkin)

Example 2.4. Projection operators for cyclic group CN .
Consider a cyclic group CN = {e, g, g2, · · · gN−1}, and let M = D(g) be a [2N×2N ]

representation of the one-step shift g. In the projection operator formulation (1.31),
the N distinct eigenvalues of M , the N th roots of unity λn = λn, λ = exp(i 2π/N),
n = 0, . . . N − 1, split the 2N -dimensional space into N 2-dimensional subspaces by
means of projection operators

Pn =
∏
m 6=n

M − λm I
λn − λm

=

N−1∏
m=1

λ−nM − λm I
1− λm , (2.7)

where we have multiplied all denominators and numerators by λ−n. The numerator is
now a matrix polynomial of form (x − λ)(x − λ2) · · · (x − λN−1) , with the zeroth root
(x− λ0) = (x− 1) quotiented out from the defining matrix equation MN − 1 = 0. Using

1− xN

1− x = 1 + x+ · · ·+ xN−1 = (x− λ)(x− λ2) · · · (x− λN−1)

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.31)),

Pn =
1

N

N−1∑
m=0

ei
2π
N
nmMm .
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This form of the projection operator is the simplest example of the key group theory tool,
projection operator expressed as a sum over characters,

Pn =
1

|G|
∑
g∈G

χ̄(g)D(g) ,

upon which stands all that follows in this course. (B. Gutkin and P. Cvitanović)

Example 2.5. D3 symmetry: Reflactions and rotations of a triangle, figure 2.2 (c)

D(T ) =


0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , D(σ1) =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0

 (2.8)

D(σ2) =


0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0

 , D(σ3) =


0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


(2.9)

G = {[e]; [g, g2]; [σ1, σ2, σ3]}, χ(1) = {1, 1, 1}, χ(2) = {1, 1,−1}, χ(3) = {2,−1, 0}

ri = χ(e)χ(i)(e)/6; ri = {1, 1, 2} =⇒ D = 2E ⊕A1 ⊕A2.

Pi =
1

3

∑
g∈G

χ(i)(g)D(g)

P1 =
1

3


0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1

 , P2 =
1

3


1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0

 (2.10)

The vibrational modes associated with the two 1-dimensional representations are given
by

P1V = α


0
1
0
1
0
1

 and P2V = β


1
0
1
0
1
0

 ,
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respectively. Here P1V represents symmetric mode shown in figure 2.3 (red). The sec-
ond mode P2V corresponds to the rotations of the whole system. Finally the projection
operator for the two-dimensional representation is

P3 =
2

6
(2D(I)−D(T )−D(T 2)) =

1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

 (2.11)

From this we have to separate two vectors corresponding to shift in x and y directions.

ηx =



1
0
−1/2√

3/2
−1/2

−
√

3/2

 , ηy =



0
1

−
√

3/2
−1/2√

3/2
−1/2



P3V =


α

1√
6


2
0
−1
0
−1
0


︸ ︷︷ ︸

ξ1

+β
1√
2


0
0
1
0
−1
0


︸ ︷︷ ︸

ξ2

+γ
1√
6


0
2
0
−1
0
−1


︸ ︷︷ ︸

ξ3

+δ
1√
2


0
0
0
1
0
−1


︸ ︷︷ ︸

ξ4


,

where ηx =
√

3/2(ξ4 + ξ1), ηy =
√

3/2(ξ3 − ξ2) (ξi are just columns of P3 and their
linear combinations.) The orthogonal vectors are given by

ν1 =
√

3/2(ξ1 − ξ4) =



1
0
−1/2

−
√

3/2
−1/2√

3/2

 , ν2 =
√

3/2(ξ2 + ξ3) =



0
1√
3/2
−1/2

−
√

3/2
−1/2

 .

νν
1 2

3(ν1
−ν)2 2

Figure 2.3: Modes of a molecule with D3 symmetry. (B. Gutkin)

(B. Gutkin)
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2.2 Discussion
2017-08-31 Michael Meehan <xmeehan@gatech.edu>, writes: When talking about

the cosets of a subgroup we demonstrated multiplication between cosets with a
specific example, but this wasn’t leading to something along the lines of that the
set of all left cosets of a subgroup (or the set of all the right cosets of a subgroup)
form a group, correct? It didn’t appear so in the example since the “unit” {E,A}
we looked appears to only have the properties of an identity with multiplication
from one direction (the direction depending on if it is the set of left cosets or the
set of right cosets). In the context of the lecture I think this point was related
to Lagrange’s theorem (although we didn’t call it that) and I vaguely remember
cosets being used in the proof of Lagrange’s theorem but I wasn’t connecting it
today. Are we going to cover that in a future lecture?

2017-08-31 Predrag You are right - Lagrange’s theorem (see the wiki) simply says
the order of a subgroup has to be a divisor of the order of the group. We used
cosets to partition elements ofG to prove that. But what we really need cosets for
is to define (see Dresselhaus et al. [1] Sect. 1.7) Factor Groups whose elements
are cosets of a self-conjugate subgroup (click here). I will not cover that in a
subsequent lecture, so please read up on it yourself.

2017-08-31 Michael Meehan You talked about the period of an element X , and said
that that period is the set

{E,X, · · · , Xn−1} , (2.12)

where n is the order of the element X . I had thought that set was the subgroup
generated by the elementX and that the period of the elementX was a synonym
for the order of the element X? Is that incorrect?

2017-09-04 Predrag To keep things as simple as possible, in Thursday’s lecture I fol-
lowed Sect. 1.3 Basic Definitions of Dresselhaus et al. textbook [1], to the letter.
In Def. 3 the order of an elementX is the smallest n such thatXn = E, and they
call the set (2.12) the period of X . I do not like that usage (and do not remember
seeing it anywhere else). As you would do, in ChaosBook.org Chap. Flips,
slides and turns I also define the smallest n to be the period of X and refer to
the set (2.12) as the orbit generated by X . When we get to compact continuous
groups, the orbit will be a (great) circle generated by a given Lie algebra element,
and look more like what we usually think of as an orbit.

I am not using my own ChaosBook.org here, not to confuse things further by
discussing both time evolution and its discrete symmetries. Here we focus on the
discrete group only (typically spatial reflections and finite angle rotations).

References
[1] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to

the Physics of Condensed Matter (Springer, New York, 2007).

PHYS-7143-17 week2 32 2017-12-04

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-17/SCHEDULE.HTML
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)
http://chaosbook.org/library/Dresselhaus07.pdf
http://chaosbook.org/paper.shtml#finiteGr
http://chaosbook.org/paper.shtml#finiteGr
http://ChaosBook.org
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1007/978-3-540-32899-5


EXERCISES

[2] R. Mainieri and P. Cvitanović, “A brief history of chaos”, in Chaos: Classical
and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and
G. Vattay (Niels Bohr Inst., Copenhagen, 2017).
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Exercises
2.1. Gx ⊂ G. The maximal set of group actions which maps a state space point x into itself,

Gx = {g ∈ G : gx = x} , (2.13)

is called the isotropy group (or stability subgroup or little group) of x. Prove that the set
Gx as defined in (2.13) is a subgroup of G.

2.2. Transitivity of conjugation. Assume that g1, g2, g3 ∈ G and both g1 and g2 are
conjugate to g3. Prove that g1 is conjugate to g2.

2.3. Isotropy subgroup of gx. Prove that for g ∈ G, x and gx have conjugate isotropy
subgroups:

Ggx = g Gx g
−1

2.4. D3: symmetries of an equilateral triangle. Consider group D3
∼= C3v , the symmetry

group of an equilateral triangle:

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 4.1)

2.5. C4-invariant potential. Consider the Schrödinger equation for a particle moving
in a two-dimensional bounding potential V , such that the spectrum is discrete. As-
sume that V is CN -invariant, i.e., V remains invariant under the rotation R by the an-
gle 2π/N . For N = 3 case, figure 2.4 (a), the spectrum of the system can be split
into two sectors: {E0

n} non-degenerate levels corresponding to symmetric eigenfunctions
φn(Rx) = φn(x) and doubly degenerate levels {E±n } corresponding to non-symmetric
eigenfunctions φn(Rx) = e±2πi/3φn(x).

2017-12-04 33 PHYS-7143-17 week2

http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist
http://dx.doi.org/10.1016/c2013-0-01646-5


EXERCISES

Q 1 What is the spectral structure in the case of N = 4, figure 2.4 (b)?
How many sectors appear and what are their degeneracies?

Q 2 What is the spectral structure for general N?

Q 3 A constant magnetic field normal to the 2D plane is added to V .
How will it affect the spectral structure?

Q 4 (bonus question) Figure out the spectral structure if the symmetry group of potential
is D3 (also includes 3 reflections), figure 2.4 (c).

(Boris Gutkin)

(a) (b) (c)

Figure 2.4: Hard wall potential with (a) symmetry C3, (b) symmetry C4, and (c) symmetry
D3.

2.6. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the conjugacy classes of S3?

(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

A"C"

C" C"

C"

Figure 2.5: 4 identical particles of type C lie on the vertices of a square. In the center
of the square, but out of the plane, is a particle of type A. (K. Y. Short)

2.7. Arrangement of five particles. Consider the arrangement of particles illustrated in
figure 2.5: on each corner (vertex) of a rigid square lies a particle C; in the center of the
square, but out of the plane on the z axis, is the particle A.
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(a) What are the symmetries of this arrangement?

(b) Find its multiplication table.

(c) Find its subgroups.

(d) Determine the corresponding left and right cosets.

(e) Determine its conjugacy classes.

(f) Which subgroups are self-conjugate?

(g) Describe their factor groups.

(K. Y. Short)

2.8. Three masses on a loop. Three identical masses, connected by three identical springs,
are constrained to move on a circle hoop as shown in figure 2.6. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (K. Y. Short)

Figure 2.6: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.
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group theory - week 3

Group representations

Georgia Tech PHYS-7143
Homework HW3 due September 14, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 3.1 1-dimensional representation of anything 1 point
Exercise 3.2 2-dimensional representation of S3 4 points
Exercise 3.3 3-dimensional representations of D3 5 points

Bonus points
Exercise 3.4 Abelian groups 1 point
Exercise 3.5 Representations of CN 1 point

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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EXERCISES

2017-09-05 Predrag Lecture 5 Representation theory
Irreps, unitary reps and Schur’s Lemma.

This lecture covers Chapter 2 Representation Theory and Basic Theorems of
Dresselhaus et al. textbook [1] (click here), up to the proof of Schur’s Lemma.
The exposition (or the corresponding chapter in Tinkham [2]) comes from Wigner’s
classic Group Theory and Its Application to the Quantum Mechanics of Atomic
Spectra [3], which is a harder going, but the more group theory you learn the
more you’ll appreciate it. Eugene Wigner got the 1963 Nobel Prize in Physics,
so by mid 60’s gruppenpest was accepted in finer social circles.

2017-09-07 Predrag Lecture 6 Schur’s Lemma
This lecture covers Sects. 2.5 and 2.6 Schur’s Lemma of Dresselhaus et al. text-
book [1] (click here).

3.1 Literature
The structure of finite groups was understood by late 19th century. A full list of finite
groups was another matter. The complete proof of the classification of all finite groups
takes about 3 000 pages, a collective 40-years undertaking by over 100 mathematicians,
read the wiki.

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs. (Check the previous week notes sect. 5.1 Literature for links to the Ree group
and the whole classification.)

References
[1] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to

the Physics of Condensed Matter (Springer, New York, 2007).

[2] M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).

[3] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra (Academic, New York, 1931).

Exercises
3.1. 1-dimensional representation of anything. Let D(g) be a representation of a group

G. Show that d(g) = detD(g) is one-dimensional representation of G as well.
(B. Gutkin)

3.2. 2-dimensional representation of S3.
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(i) Show that the group S3 can be generated by two permutations:

a =

(
1 2 3
1 3 2

)
, d =

(
1 2 3
3 1 2

)
.

(ii) Show that matrices:

ρ(e) =

(
1 0
0 1

)
, ρ(a) =

(
0 1
1 0

)
, ρ(d) =

(
z 0
0 z2

)
,

with z = ei2π/3, provide proper (faithful) representation for these elements and
find representation for the remaining elements of the group.

(iii) Is this representation irreducible?

(B. Gutkin)

3.3. 3-dimensional representations of D3. The group D3 is the symmetry group of the
equilateral triangle. It has 6 elements

D3 = {E,C,C2, σ(1), σ(2), σ(3)},

where C is rotation by 2π/3 and σ(i) is reflection along one of the 3 symmetry axes.

(i) Prove that this group is isomorphic to S3

(ii) Show that matrices

D(E) =

 1 0 0
0 1 0
0 0 1

 ,D(C) =

 z 0 0
0 1 0
0 0 z2

 ,D(σ(1)) =

 0 0 1
0 −1 0
1 0 0

 ,

(3.1)
generate a 3-dimensional representation D of D3. Hint: Calculate products for

representations of group elements and compare with the group table (see lecture).

(iii) Show that this is a reducible representation which can be split into one dimensional
A and two-dimensional representation Γ. In other words find a matrix R such that

RD(g)R−1 =

(
A(g) 0

0 Γ(g)

)
for all elements g of D3. (Might help: D3 has only one (non-equivalent) 2-dim
irreducible representation).

(B. Gutkin)

3.4. Abelian groups. Let G be a group with only one-dimensional irreducible representa-
tions. Show that G is Abelian.

(B. Gutkin)

3.5. Representations of CN . Find all irreducible representations of CN .
(B. Gutkin)
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group theory - week 4

Hard work builds character

Georgia Tech PHYS-7143
Homework HW4 due Tuesday, September 19, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 4.3 All irreducible representations of D4 10 points

Bonus points
Exercise 4.4 Irreducible representations of dihedral group Dn 2 points
Exercise 4.5 Perturbation of Td symmetry 6 points
Exercise 4.7 Two particles in a potential 4 points

Total of 10 points = 100 % score. Bonus points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 4. HARD WORK BUILDS CHARACTER

2017-09-12 Tropic Depression Irma Lecture 7

Character orthogonality theorem
Please study Dresselhaus [1] (click here) sects. 2.7 “Wonderful Orthogonality
Theorem,” 2.8 “Representations and vector spaces,” 3.1 “Definition of Charac-
ter” and 3.2 “Characters and Class.” Tinkham [5] covers the same material in
Chapter 3 Theory of Group Representations, in a more compact way.

2017-09-14 Predrag Lecture 8

Hard work builds character
Complete Dresselhaus et al. [1] (click here) sects. 3.3 “Wonderful Orthogonality
Theorem for Characters” to 3.8 “Setting up Character Tables”. This material is
also covered in Tinkham [5] Chapter 3 Theory of Group Representations.

4.1 Literature
I enjoyed reading Mathews and Walker [4] Chap. 16 Introduction to groups. You can
download it from here. Goldbart writes that the book is “based on lectures by Richard
Feynman at Cornell University.” Very clever. Try working through the example of
fig. 16.2: deadly cute, you get explicit eigenmodes from group theory alone. The main
message is that if you think things through first, you never have to construct the rep-
resentation matrices in explicit form - recasting the calculation in terms of invariants,
such characters, will get you there much faster.

You might find Gutkin notes useful:
Lect. 4 Representation Theory II, up to Sect. 4.5 Three types of representations:

Character tables. Dual character orthogonality. Regular Representation. Indicators for
real, pseudo-real and complex representations. See example 4.1 “Irreps for quaternion
multiplication table.”

Lect. 5 Applications I. Vibration modes go through Wigner’s theorem, Cn symme-
try and D3 symmetry. Study Example 5.1. Cn symmetry. More quantum mechanics
applications follow in

Lect. 6 Applications II. Quantum Mechanics, Sect. 2. Perturbation theory.
Does the proof in the Lect. 4 Representation Theory II Appendix that the number

of irreps equals the number of classes make sense to you? For an easy argument, see
Vedensky Theorem 5.2 The number of irreducible representations of a group is equal
to the number of conjugacy classes of that group. For a proof, work though Murnaghan
Theorem 7. If you prefer a proof that your professor cannot understand, click here.

For the record (I retract the heady claim I made in class):
Mathworld.Wolfram.com: “A character table often contains enough information to
identify a given abstract group and distinguish it from others. However, there exist
nonisomorphic groups which nevertheless have the same character table, for example
D4 (the symmetry group of the square) and Q8 (the quaternion group).”

exercise 4.3
Fun read along these lines: Hart and Segerman [2] discuss the distinction between

abstract groups and symmetry groups of objects. They exhibit two very different ob-
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GROUP THEORY - WEEK 4. HARD WORK BUILDS CHARACTER

jects with D4 = 〈g, σ|g4 = σ2 = e, gσ = σg3〉 symmetry, and explain the Cayley
graph for D4 (its edges with arrows correspond to rotations, the other edges corre-
spond to reflections). For quaternions they discuss a 1-dimensional space group built
of “monkey blocks” (but do not identify its crystallographic name). Q8 is a subgroup of
the symmetries of the 3-dimensional sphere S3 , the unit sphere in R4. They offer a vi-
sualisation of the action ofQ8 on a hypercube and construct a sculpture whose symme-
try group is Q8, using stereographic projection from the unit sphere in 4-dimensional
space. Q8 is discussed here in example 4.1.

Example 4.1. Quaternions: Quaternion multiplication table is

{±1,±i,±j,±k} i2 = j2 = k2; ij = k.

This group has five conjugate classes:

{1}, {−1}, {±i}, {±j}, {±k}.

The only possible solution for the equation
∑5
i=1m

2
i = 8 is mi = 1, i = 1, . . . 4, m5 = 2.

In addition to fully symmetric representation, the other three one-dimensional represen-
tations are easy to find: χ(1) = 1, χ(−1) = 1, while χ(i) = −1, χ(j) = −1, χ(k) = 1;
χ(i) = −1, χ(k) = −1, χ(j) = 1 or χ(k) = −1, χ(j) = −1, χ(i) = 1. The two-
dimensional representation can be find by the orthogonality relation:

2 + χ(−1)± χ(k)± χ(i)± χ(j) = 0,=⇒ χ(−1) = −2, χ(k) = χ(i) = χ(j) = 0 .

Since the indicator equals

Ind = (2χ(1) + 6χ(−1))/8 = −1,

the last representation is pseudo-real. Note that this representation can be realized
using Pauli matrices:

{±I,±σx,±σy,±σz}.

References
[1] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to

the Physics of Condensed Matter (Springer, New York, 2007).

[2] V. Hart and H. Segerman, The quaternion group as a symmetry group, in Proc.
Bridges 2014: Mathematics, Music, Art, Architecture, Culture, edited by G. H.
G. Greenfield and R. Sarhangi (2014), pp. 143–150.

[3] L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Perg-
amon Press, Oxford, 1959).

[4] J. Mathews and R. L. Walker, Mathematical Methods of Physics (W. A. Ben-
jamin, Reading, MA, 1970).

[5] M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).
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EXERCISES

Exercises
4.1. Characters of D3. (continued from exercise 2.4) D3

∼= C3v , the group of symmetries
of an equilateral triangle: has three irreducible representations, two one-dimensional and
the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a permutation group or one of its sub-
groups, and elements of the permutation group can be expressed as cycles. Express
the elements of the group D3 as cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2→ 3, and 3→ 1.

(b) Use your representation from exercise 2.4 to compute the D3 character table.

(c) Use a more elegant method from the group-theory literature to verify your D3 char-
acter table.

(d) Two D3 irreducible representations are one dimensional and the third one of multi-
plicity 2 is formed by [2×2] matrices. Find the matrices for all six group elements
in this representation.

4.2. Decompose a representation of S3. Consider a reducible representation D(g), i.e.,
a representation of group element g that after a suitable similarity transformation takes
form

D(g) =


D(a)(g) 0 0 0

0 D(b)(g) 0 0

0 0 D(c)(g) 0

0 0 0
. . .

 ,

with character for class C given by

χ(C) = ca χ
(a)(C) + cb χ

(b)(C) + cc χ
(c)(C) + · · · ,

where ca, the multiplicity of the ath irreducible representation (colloquially called “ir-
rep”), is determined by the character orthonormality relations,

ca = χ(a)∗ χ =
1

h

class∑
k

Nkχ
(a)(C−1

k ) χ(Ck) . (4.1)

Knowing characters is all that is needed to figure out what any reducible representation
decomposes into!
As an example, let’s work out the reduction of the matrix representation of S3 permuta-
tions. The identity element acting on three objects [a b c] is a 3× 3 identity matrix,

D(E) =

1 0 0
0 1 0
0 0 1


Transposing the first and second object yields [b a c], represented by the matrix

D(A) =

0 1 0
1 0 0
0 0 1


since 0 1 0

1 0 0
0 0 1

ab
c

 =

ba
c
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1. Find all six matrices for this representation.

2. Split this representation into its conjugacy classes.

3. Evaluate the characters χ(Cj) for this representation.

4. Determine multiplicities ca of irreps contained in this representation.

5. (bonus) Construct explicitly all irreps.

6. (bonus) Explain whether any irreps are missing in this decomposition, and why.

4.3. All irreducible representations of D4. Dihedral group D4, the symmetry group of
a square, consists of 8 elements: identity, rotations by π/2, π, 3π/2, and 4 reflections
across symmetry axes: D4 = 〈g, σ|g4 = σ2 = e, gσ = σg3〉

(a) Find all conjugacy classes.

(b) Determine the dimensions of irreducible representations using the relationship∑
i

d2i = |G|, (4.2)

where di is the dimension of ith irreducible representation.

(c) Determine the remaining items of the character table.

(d) Compare with the character table of quaternions, example 4.1. Are they the same
or different?

(e) Determine the indicators for all irreps of D4. Are they the same as for the irreps of
the quaternion group?

If you are at loss how to proceed, take a look at Landau and Lifschitz [3] Vol.3: Quantum
Mechanics

(Boris Gutkin)

4.4. Irreducible representations of dihedral group Dn.

(a) Determine the dimensions of all irreps of dihedral group Dn, n odd.

(b) Determine the dimensions of all irreps of dihedral group Dn, n even.

This exercise is meant to be easy - guess the answer from the irreps dimension sum rule
(4.2), and what you already know about D1, D3 and D4. Working out also D2 case
(cut a disk into two equal halves) might be helpful. A more serious attempt would require
counting conjugacy classes first. This exercise might help you later, when you are looking
at irreps of the orthogonal groups O(n); turns out they are different for n odd or even
n, and that has physical consequences: what you learn by working out a problem in 2
dimensions might be misleading for working it out in 3 dimensions.

4.5. Perturbation of Td symmetry.
A non-relativistic charged particle moves in an infinite bound potential V (x) with Td
symmetry. Consult exercise 5.1 Vibration Modes of CH4 for the character table and other
Td details.

(a) What are the degeneracies of the quantum energy levels? How often do they appear
relative to each other (i.e., what is the level density)?

A weak constant electric field is now added now along one of the 2π/3 rotation axes,
splitting energy levels into multiplets.
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(b) What is the symmetry group of the system now?

(c) How are the levels of the original system split? What are the new degeneracies?

(Boris Gutkin)

4.6. Selection rules for Td symmetry.
The setup is the same as in exercise 4.5, but now assume that instead of a constant field, a
time dependent electric field E0 cos(ωt) is added to the system, with E0 not necessarily
directed along any of the symmetry axes. In general, when |En − Em| = ~ω, such
time-dependent perturbation induces transitions between energy levels En and Em.

(a) What are the selection rules? Between which energy levels of the system are tran-
sitions possible?

(b) Would the answer be different if a magnetic field B0 cos(ωt) is added instead?
Explain how and why.

4.7. Two particles in a potential.
Two distinguishable particles of the same mass move in a 2-dimensional potential V (r)
having D4 symmetry. In addition they interact with each other with the term λW (|r1 −
r2|).

(a) What is the symmetry group of the Hamiltonian if λ = 0? If λ 6= 0?.

(b) What are the degeneracies of the energy levels if λ = 0?

(c) Assuming that λ � 1 (weak interaction), describe the energy level structure, i.e.,
degeneracies and quasi-degeneracies of the energy levels. What will be the answer
if the interaction is strong?

Hint: when interaction is weak we can think about it as perturbation. (Boris Gutkin)
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group theory - week 5

It takes class

Georgia Tech PHYS-7143
Homework HW5 due Tuesday, September 26, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 5.1 Vibration modes of CH4 8 points
Exercise 5.2 Keep it classy (a) 2 points

Bonus points
Exercise 5.1 Vibration modes of CH4 , part (c) ii 2 points
Exercise 5.2 Keep it classy (b) 2 points
Exercise 5.2 Keep it classy (c) 4 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 5. IT TAKES CLASS

Show class, have pride, and display character. If you do, win-
ning takes care of itself.

— Paul Bryant

2017-09-19 Predrag Lecture 9 Irreducible reps decomposition
Gutkin notes, Lect. 5 Applications I. Vibration modes: Example 5.1. Cn sym-
metry completed.

2017-09-21 Predrag Lecture 10 It takes class
In week 1 we introduced projection operators (1.33). How are they related to
the character projection operators constructed in the previous lecture? While the
character orthogonality might be wonderful, it is not very intuitive - it’s a set of
solutions to a set of symmetry-consistent orthogonality relations. You can learn
a set of rules then enables you to construct a character table, but it does not tell
you what it means. Similar thing will happen again when we turn to the study of
continuous groups: all semisimple Lie groups are likewise classified by Killing
and Cartan by a more complex set of orthogonality and integer-dimensionality
(Diophantine) constraints. You obtain all possible Lie algebras, but have no idea
what their geometrical significance is.

In my own Group Theory book [1] I (almost) get all simple Lie algebras using
projection operators constructed from invariant tensors. What that means is eas-
ier to understand for finite groups, and here I like the Harter’s exposition [3]
best. Harter constructs ‘class operators’, shows that they form the basis for the
algebra of ‘central’ or ‘all-commuting’ operators, and uses their characteristic
equations to construct the projection operators (1.33) from the ‘structure con-
stants’ of the finite group, i.e., its class multiplication tables. Expanded, these
projection operators are indeed the same as the ones obtained from character
orthogonality.

I find Harter’s Sect. 3.3 Second stage of non-Abelian symmetry analysis par-
ticularly illuminating. It shows how physically different (but mathematically
isomorphic) higher-dimensional irreps are constructed corresponding to differ-
ent subgroup embeddings. One chooses the irrep that corresponds to a particular
sequence of physical symmetry breakings

You might want to have a look at Harter [4] Double group theory on the half-
shell. Read appendices B and C on spectral decomposition and class algebras.
Article works out some interesting examples.

See also remark 1.1 Projection operators and perhaps watch Harter’s online
lecture from Harter’s online course.

5.1 Literature
Continuing reading Mathews and Walker [5], now Chap. 14. Porter works out nicely
the normal modes of the D3 springs and masses (again!).
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GROUP THEORY - WEEK 5. IT TAKES CLASS

Not all finite groups are as simple or easy to figure out as D3. For example, the order
of the Ree group 2F4(2)′ is 212(26 + 1)(24− 1)(23 + 1)(2− 1)/2 = 17 971 200 .

5.2 William G. Harter
Who is Bill Harter? He was a prodigy who at age 16 taught himself group theory by
reading Hamermesh [2]. He was a graduate student at Caltech (1964-65), together with
Ron Fox. They hated the atmosphere there and the teaching was terrible (Feynman did
not teach that year but Harter and Feynman were good friends). Harter and Fox shared
an interest in group theory and discovered that most of the group theory books in the
physics library had been checked out in 1960-62 by Gell-Mann, Zweig and Glashow.
That only half of the entering students were meant to complete their PhD’s there led to
lots of ugly competition. Harter transferred to UC Irvine, and, upon graduation, got a
job at USC in LA. After a few years he suggested in a faculty meeting that the way they
could improve their quality as a department was “to get rid of all the old farts." These
same “old farts" soon voted to deny him tenure. He ended up in Campinas, Brazil. Fox
rescued him from there by bringing him for an interview at Georgia Tech, where he
was hired in late 1970’s. He was brilliant, an asset for teaching, making all sorts of
demonstration devices. He built a giant rotating table upon which he placed billiard
balls, a wonderful demonstration of mechanical analogues for charged particle motion
in crossed E and B fields. Everyone (except for one nefarious character) liked him, his
work, and especially his devices. The faculty unanimously supported his promotion
to tenure. He did not, however, think much of the Director of School of Physics, and
made that clear. After an argument with the Director, he stormed out, offended. So, he
was denied tenure and moved in 1985 to University of Arkansas where he is a professor
today.

In 1987 Harter and Weeks used Harter’s theory of the rotational dynamics of mole-
cules to calculate the rotational-vibrational spectra of the soccer ball-shaped molecule
Buckminsterfullerene, C60, or “buckyball." C60 had been proposed in 1985 by chemists,
who had seen a mass-spectra peak of atomic mass 720. By 1989 the Harter theory cal-
culations led to a realization that chemists had been making C60 since the early 1970s.
In 1992 Science named C60 “Molecule of the Year," and in 1996 Curl, Kroto and
Smalley were awarded the Nobel Prize in Chemistry for their discovery of fullerenes.

You can find here many Soft Elegant Educational tools developed by Harter, and
follow his lectures on line. He is a great teacher. Georgia Tech’s loss.

5.3 Discussion
2017-09-25 Lin Xin <lxin9@gatech.edu> I have a few questions about the exercise 5.1

part (d) Vibration modes of CH4: Find all modes of the methane molecule.

1. When we use the angle of improper rotation, is it true that reflection equals
to the π improper rotation?

2. I assume it is π and it gives me other characters are zero. In the case of all
symmetry, this will give the , which we usually get non-negative integer.
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GROUP THEORY - WEEK 5. IT TAKES CLASS

As a result, I’m not perfectly sure that the character formulas you give are
correct.

3. Moreover seems it’s in the representation of [12 × 12] matrices instead of
[24× 24] matrices.

2017-09-25 Predrag The solution set is very detailed, so how about waiting Tuesday
afternoon, when it gets posted on T-square? Then –if it is still unclear– we
continue the discussion.

1. If g ∈ SO(3) is a rotation, andD(i)r = −r is the inversion transformation,
then rotation combined with the inversion g i is an improper rotation g i ∈
O(3). If g ∈ T (a discrete tetrahedron rotation) then g i is an improper
element of Td.

2. ? (check the solution set).

3. The proper rotations group T of order 12 is a normal subgroup. However, I
do not think you can have an improper rotations subgroup of Td, as gi igj i
is a proper rotation.
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EXERCISES

a) b)

Figure 5.1: a) Two classes of rotational symmetries, and a class of reflection symme-
tries of a tetrahedron. (left) Hold the Tetra Pak by a tip, turn it by a third. (middle)
Hold the Tetra Pak by the midpoints of a pair of opposing edges, make a half-turn.
(right) Exchange the vertices outside the reflection plane. b) Methane molecule with
the symmetry Td.

Exercises
5.1. Vibration modes of CH4. Tetrahedral group T describes rotational symmetries of a

tetrahedron. The order of the group is |G| = 12, and its conjugacy classes are:

• The identity mapping.

• Four rotations by ϕ = 2π/3, with each of the four rotation axes going through a
vertex, and piercing the midpoint of the triangle opposite.

• Four inverse rotations by ϕ = −2π/3.

• Three rotations by ϕ = π, one for each of the three rotation axes going through
midpoints of opposing edges.

The full group of tetrahedron symmetries Td includes also reflections. This is the sym-
metry group of molecules such as methane CH4, see figure 5.1).

(a) What is the order of the group Td? Show that the group is isomorphic to i) the
group of permutations S4; ii) to the group O of rotational symmetries of the cube.
iii) Show that T is normal subgroup of Td.

(b) Find all conjugacy classes of the group. Which of these classes correspond to proper
(detR(ϕ) = +1), improper (detR(ϕ) = −1) rotations ?
Information on T might help. Note that ϕ might be also 0.

(c) i) Find all irreducible representations of the group & build the character table.
A shortcut: find all one-dimensional representations, assume that characters are
integers, then use the orthogonality relationship between characters.
ii) Really compute the character table, without assuming that characters are integers
(2 bonus points).
One-dimensional representations + orthogonality of characters is not enough to
build the whole character table for Td. One needs more black magic, such as rep-
resentation of permutation group by matrices.

(d) Find all modes of the methane molecule. Which of them correspond to vibrations,
translations and rotations? What are the degeneracies?
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EXERCISES

Figure 5.2: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
all symmetries of the equations of motion.

Path: Find characters of the full (reducible) representation by using formulas from
the lecture:

χ(g) =

{
ng(1 + 2 cos(ϕ)) rotation,
ng(−1 + 2 cos(ϕ)) improper rotation .

Here ng is the number of atoms staying at the same place under the action of g, ϕ is
the rotation angle corresponding to g = R(ϕ). Then decompose this representation
into irreducible representations. Identify the rotational and translational parts.

(e) To what representation corresponds the most symmetric ”breezing“ mode and why?
Is it infrared active, i.e., can this mode can be excited by electromagnetic field?

(B. Gutkin)

5.2. Keep it classy. Check out Harter’s PowerPoint presentation :)

(a) Go through the derivation of the three projection operators for D3 = C3v .

(b) Decompose P 3 = P 3
1 + P 3

2 . Construct P 3
ij . Verify that they are idempotent.

(d) Compute the [2×2] irreducible matrix representationD3
ij(g) for a few typical group

elements g, in the spirit of Harter’s slides 13-8 and 13-9.

5.3. Three masses on a loop. (Exercise 2.8 revisited.) Three identical masses, connected
by three identical springs, are constrained to move on a circle hoop as shown in figure 5.2.

(a) Find all symmetries of the equations of motion.

(b) Find the normal modes using group-theoretic decompositions to irreps and charac-
ter orthonormality.

(c) How many eigenvalues are there in all?

(d) Interpret the eigenvalues and eigenvectors from a group-theoretic, symmetry point
of view.
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group theory - week 6

For fundamentalists

Georgia Tech PHYS-7143
Homework HW6 due Tuesday, October 3, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 6.1 3-disk symbolic dynamics 2 points
Exercise 6.2 Reduction of 3-disk symbolic dynamics to binary 3 points
Exercise 6.3 3-disk fundamental domain cycles 2 points
Exercise 6.4 C2-equivariance of Lorenz system 3 points

Bonus points
Exercise 6.5 Proto-Lorenz system 10 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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2017-09-26 Predrag Lecture 11 Symmetries and dynamics
So far we have covered what any QM fixated Group Theory textbook since
1930’s and on covers. Today to turn to what we actually use group theory for
today, here, in Howey, and for that there is no book but ChaosBook.org.

Many fundamental problems of fluid dynamics and more generally non-linear
field theories are studied in experimental settings equipped with symmetries.
That is the subject of dynamical systems theory (of which classical, quantum
and stochastic mechanics and field theories are but specialized branches). We
start gently, with perhaps the simplest physical example, the three disk game of
pinball.

Read ChaosBook.org Chapter 10 Flips, slides and turns. There is also Chaos-
Book.org Appendix 10 Discrete symmetries of dynamics that you probably do
not need. You already know much of the material covered in the text, so best to
go straight to
example 10.7 Subgroups, cosets of D3,
example 11.6 3-disk game of pinball - symmetry-related orbits,
example 11.7 3-disk game of pinball - cycle symmetries,
example 11.10 3-disk game of pinball in the fundamental domain,
and then work your way backward, if there is something you do not understand
off the bat..

2017-09-28 Predrag Lecture 12 Fundamental domain
Lorenz flow example. Read ChaosBook.org Chapter 11 World in a mirror.
Maybe start with example 10.6 Equivariance of the Lorenz flow, example 11.8
Desymmetrization of Lorenz flow, and then work your way back if needed.

The reading and the homework for this week, is augmented by - if you find that
helpful - by ‘live’ online blackboard lectures: click here.

6.1 Discussion
Some discussion of eigenfunctions over fundamental domains - maybe of interest to
Kevin, but feel free to ignore...

2017-10-05 Predrag Heilman and Strichartz [1] Homotopies of Eigenfunctions and
the Spectrum of the Laplacian on the Sierpinski Carpet, arXiv:0908.2942, is
not an obvious read for us, but they compute a spectrum on a square domain,
and we might have to be mindful of it: “ Since all of our domains are invariant
under the D4 symmetry group, we can simplify the eigenfunction computations
by reducing to a fundamental domain. On this domain we impose appropriate
boundary conditions according to the rep-resentation type. For the 1-dimensional
representation, we restrict to the sector 0 ≤ θ ≤ π/4 . Recall that the functions
will extend evenly when reflected about θ = 0 in the 1++ and 1– cases, and oddly
in the 1-+ and 1+- cases. Note that performing an even extension across a ray
is equivalent to imposing Neumann boundary conditions on that ray. Similarly,
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the odd extension is equivalent to Dirichlet conditions. For the 2-dimensional
representation our fundamental domain is the sector 0 ≤ θ ≤ π/2 , and we
impose Neumann boundary conditions on the ray θ = 0 and Dirichlet conditions
on the ray θ = π/2. Note that our fundamental domains are simply connected. ”

This seems to be saying that one gets the 2-dimensional representation by dou-
bling the fundamental domain and mixing boundary conditions. Do you under-
stand that?

2016-02-21 Boris Here is my present understanding of the fundamental domains is-
sue: If you want simple boundary conditions like Dirichlet or Neumann you stick
to 1d representations only. They connect eigenfunction to itself at the fundamen-
tal domain boundaries – otherwise you would need to connect pair of functions
(would be something like boundary conditions for spinor in case of 2d repre-
sentations.) So what you do is the following: take the largest abelian subgroup
Z2 × Z2 (for D4 ) and split its spectrum with respect to its fundamental do-
main defined as 1/4 of the square (twice the fundamental domain of the full
group). Then your see that Dirichlet-Dirichlet and Neumann-Neumann Hamil-
tonians still have Z2 symmetry so your split them further into the Hamiltonians
of the 1/8 fundamental domain. But Dirichlet-Neumann remains 1/4th of the
square.

2016-02-22 Predrag Your argument is in the spirit of Harter’s class operators con-
struction of higher-dimensional representations by using particular chains of sub-
groups, but I am not able to visualize how that larger fundamental domain (of
the lower-order subgroup) folds back into the small fundamental domain of the
whole group. How I think of the fundamental domain is explained in my online
lectures, Week 14, in particular the snippet Regular representation of permuting
tiles. Unfortunately - if I had more time, that would have been shorter, this goes
on and on, Week 15, lecture 29. Discrete symmetry factorization, and by the
time the dust settles, I have the symmetry factorization of the determinants that
we need, but I do not have a gut feeling for the boundary conditions that you do,
when it comes to higher-dimensional irreps.

Copied here are a few snippets from this week’s lecture notes, needed here just
because exercises refer to them - read the full lecture notes instead.

Definition: Flow invariant subspace. A typical point in fixed-point subspaceMH

moves with time, but, due to equivariance

f(gx) = gf(x) , (6.1)

its trajectory x(t) = f t(x) remains within f(MH) ⊆MH for all times,

hf t(x) = f t(hx) = f t(x) , h ∈ H , (6.2)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach to
seeking compact invariant solutions. The larger the symmetry subgroup, the smaller
MH , easing the numerical searches, so start with the largest subgroups H first.
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(a) (b)

Figure 6.1: (a) The pair of full-space 9-cycles, the counter-clockwise 121232313 and
the clockwise 131323212 correspond to (b) one fundamental domain 3-cycle 001.

We can often decompose the state space into smaller subspaces, with group acting
within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂M is an invariant subspace if

{Mα | gx ∈Mα for all g ∈ G and x ∈Mα} . (6.3)

{0} and M are always invariant subspaces. So is any Fix (H) which is point-wise
invariant under action of G.

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces un-
der the action of G are {0} andMα is called irreducible.

Example 6.1. Equivariance of the Lorenz flow. The velocity field in Lorenz equa-
tions [2] ẋ

ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 =

 −σ σ 0
ρ −1 0
0 0 −b

 x
y
z

+

 0
−xz
xy

 (6.4)

is equivariant under the action of cyclic group C2 = {e, C1/2} acting on R3 by a π
rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (6.5)

Example 6.2. Desymmetrization of Lorenz flow: (continuation of example 6.1) Lorenz
equation (6.4) is equivariant under (6.5), the action of order-2 group C2 = {e, C1/2},
where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (6.6)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible sub-
spaces M = M+ ⊕ M−, the z-axis M+ and the [x, y] plane M−, with projection
operators onto the two subspaces given by

P+ =
1

2
(1 + C1/2) =

 0 0 0
0 0 0
0 0 1

 , P− =
1

2
(1− C1/2) =

 1 0 0
0 1 0
0 0 0

 . (6.7)
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Table 6.1: D3 correspondence between the binary labeled fundamental domain prime cycles
p̃ and the full 3-disk ternary labeled cycles p, together with the D3 transformation that maps
the end point of the p̃ cycle into the irreducible segment of the p cycle. White spaces in the
above ternary sequences mark repeats of the irreducible segment; for example, the full space
12-cycle 1212 3131 2323 consists of 1212 and its symmetry related segments 3131, 2323. The
multiplicity of p cycle ismp = 6np̃/np. The shortest pair of fundamental domain cycles related
by time reversal (but no spatial symmetry) are the 6-cycles 001011 and 001101.
p̃ p gp̃
0 1 2 σ12

1 1 2 3 C
01 12 13 σ23

001 121 232 313 C
011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12

00001 12121 23232 31313 C
00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p gp̃
000001 121212 131313 σ23

000011 121212 313131 232323 C2

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C
010111 121312 313231 232123 C2

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C
0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

so (
ẋ−
ẏ−

)
=

(
−σ σ
ρ −1

)(
x−
y−

)
+

(
0

−z x−

)
ż+ = −b z+ +

1

4
(x+ + x−)(y+ + y−) , (6.8)

where z+ = z. As (ẋ+, ẏ+) = (0, 0), values of (x+, y+) are conserved parts of the initial
condition. We define the fundamental domain by the (arbitrary) condition x̂− ≥ 0, and
whenever exits the domain,we replace the function dependence by the corresponding
fundamental domain coordinates,

(x−, y−) = C1/2(x̂−, ŷ−) = (−x̂−,−ŷ−) if x− < 0 ,

and record that we have applied C1/2 (that is the ‘reconstruction equation’ in the case of
a discrete symmetry). When we integrate (6.8), the trajectory coordinates (x̂−(t), ŷ−(t))
are discontinuous whenever the trajectory crosses the fundamental domain border.
That, however, we do not care about - the only thing we need are the Poincaré sec-
tion points and the Poincaré return map in the fundamental domain.

Poincaré section hypersurface can be specified implicitly by a single condition, through
a function U(x) that is zero whenever a point x is on the Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (6.9)

In order that there is only one copy of the section in the fundamental domain, this con-
dition has to be invariant, U(gx̂) = U(x̂) for g ∈ G, or, equivalently, the normal to it has
to be equivariant

∂jU(gx̂) = g∂jU(x̂) for g ∈ G . (6.10)
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(a) (b)

Figure 6.2: (a) Lorenz flow cut by y = x Poincaré section plane P through the z axis
and both E1,2 equilibria. Points where flow pierces into section are marked by dots.
To aid visualization of the flow near the E0 equilibrium, the flow is cut by the second
Poincaré section, P ′, through y = −x and the z axis. (b) Poincaré sections P and P ′
laid side-by-side. (E. Siminos)

There are two kinds of compact (finite-time) orbits. Periodic orbits x(Tp) = x(Tp)
are either self dual under rotation C1/2, or appear in pairs related by C1/2; in the funda-
mental domain there is only one copy x̂(Tp) = x̂(Tp) of each. Relative periodic orbits
(or ‘pre-periodic orbits’) x̂(Tp) = C1/2x(Tp) they are periodic orbits.

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at E0, A com-
mutes with C1/2, and the E0 stability matrix A decomposes into [x, y] and z blocks.

The 1-dimensionalM+ subspace is the fixed-point subspace, with the z-axis points
left point-wise invariant under the group action

M+ = Fix (C2) = {x ∈M | g x = x for g ∈ {e, C1/2}} (6.11)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A C2-fixed point x(t)
in Fix (C2) moves with time, but according to (6.2) remains within x(t) ∈ Fix (C2) for all
times; the subspaceM+ = Fix (C2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (6.4) is
reduced to the exponential contraction to the E0 equilibrium,

ż = −b z . (6.12)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy−bz
in the Lorenz equation (6.4) send all initial conditions within M− = (x(0), y(0), 0) into
the full, z(t) 6= 0 state spaceM/M+.

By taking as a Poincaré section any C1/2-equivariant, non-self-intersecting surface
that contains the z axis, the state space is divided into a half-space fundamental domain
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(a) (b)

Figure 6.3: (a) Lorenz attractor plotted in [x̂, ŷ, z], the doubled-polar angle coordinates
(6.13), with points related by π-rotation in the [x, y] plane identified. Stable eigen-
vectors of E0: e(3) and e(2), along the z axis (6.12). Unstable manifold orbit Wu(E0)
(green) is a continuation of the unstable e(1) of E0. (b) Blow-up of the region near E1:
The unstable eigenplane of E1 defined by Re e(2) and Im e(2), the stable eigenvector
e(3). The descent of the E0 unstable manifold (green) defines the innermost edge of
the strange attractor. As it is clear from (a), it also defines its outermost edge. (E.
Siminos)

M̃ = M/C2 and its 180o rotation C1/2M̃. An example is afforded by the P plane
section of the Lorenz flow in figure 6.1. Take the fundamental domain M̃ to be the half-
space between the viewer and P. Then the full Lorenz flow is captured by re-injecting
back into M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental domain’
is here largely mater of taste. For purposes of visualization it is convenient to make
the double-cover nature of the full state space by M̃ explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (x, y) in polar coordinates (x, y) =
(r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar angle representation:’

(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (6.13)

as in figure 6.1 (a). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant. In this representa-
tion the M̃ = M/C2 fundamental domain flow is a smooth, continuous flow, with (any
choice of) the fundamental domain stretched out to seamlessly cover the entire [x̂, ŷ]
plane.

(E. Siminos and J. Halcrow)
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Exercises
6.1. 3-disk symbolic dynamics. As periodic trajectories will turn out to be our main tool to

breach deep into the realm of chaos, it pays to start familiarizing oneself with them now
by sketching and counting the few shortest prime cycles. Show that the 3-disk pinball has
3 · 2n−1 itineraries of length n. List periodic orbits of lengths 2, 3, 4, 5, · · · . Verify that
the shortest 3-disk prime cycles are 12, 13, 23, 123, 132, 1213, 1232, 1323, 12123, · · · .
Try to sketch them. (continued in exercise 6.3)
A comment about exercise 6.1, exercise 6.2, and exercise 6.3: If parts of these problems
seem trivial - they are. The intention is just to check that you understand what these
symbolic dynamics codings are - the main message is that the really smart coding (fun-
damental domain) is 1-to-1 given by the group theory operations that map a point in the
fundamental domain to where it is in the full state space. This observation you might not
find deep, but it is - instead of absolute labels, in presence of symmetries one only needs to
keep track of relative motions, from domain to domain, does not matter which domain in
absolute coordinates - that is what group actions do. And thus the word ‘relative’ creeps
into this exposition.

6.2. Reduction of 3-disk symbolic dynamics to binary. (continued from exercise 6.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · · ,
correspond to the fundamental domain cycles 0, 1, 01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 6.1 by drawing them both in the full
3-disk system and in the fundamental domain, as in figure 6.1.

(c) Optional: Can you see how the group elements listed in table 6.1 relate irreducible
segments to the fundamental domain periodic orbits?

(continued in exercise 6.3)

6.3. 3-disk fundamental domain cycles. Try to sketch 0, 1, 01, 001, 011, · · · . in the
fundamental domain, and interpret the symbols {0, 1} by relating them to topologically
distinct types of collisions. Compare with table 6.1. Then try to sketch the location of
periodic points in the Poincaré section of the billiard flow. The point of this exercise is
that while in the configuration space longer cycles look like a hopeless jumble, in the
Poincaré section they are clearly and logically ordered. The Poincaré section is always to
be preferred to projections of a flow onto the configuration space coordinates, or any other
subset of state space coordinates which does not respect the topological organization of
the flow.
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6.4. C2-equivariance of Lorenz system. Verify that the vector field in Lorenz equations
(6.4)

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (6.14)

is equivariant under the action of cyclic group C2 = {e, C1/2} acting on R3 by a π
rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 6.1.

6.5. Proto-Lorenz system. Here we quotient out the C2 symmetry by constructing an
explicit “intensity” representation of the desymmetrized Lorenz flow.

1. Rewrite the Lorenz equation (6.4) in terms of variables

(u, v, z) = (x2 − y2, 2xy, z) , (6.15)

show that it takes form u̇
v̇
ż

 =

 −(σ + 1)u+ (σ − r)v + (1− σ)N + vz
(r − σ)u− (σ + 1)v + (r + σ)N − uz −Nz

v/2− bz


N =

√
u2 + v2 . (6.16)

2. Show that this is the (Lorenz)/C2 quotient map for the Lorenz flow, i.e., that it
identifies points related by the π rotation (6.6).

3. Show that (6.15) is invertible. Where does the inverse not exist?

4. Compute the equilibria of proto-Lorenz and their stabilities. Compare with the
equilibria of the Lorenz flow.

5. Plot the strange attractor both in the original form (6.4) and in the proto-Lorenz
form (6.16)
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for the Lorenz parameter values σ = 10, b = 8/3, ρ = 28. Topologically, does it
resemble more the Lorenz, or the Rössler attractor, or neither? (plot by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is either a periodic orbit or a relative
periodic orbit of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How do the Floquet multipliers of
relative periodic orbits of the Lorenz flow relate to the Floquet multipliers of the
proto-Lorenz?

9 Show that the coordinate change (6.15) is the same as rewriting

ṙ =
r

2
(−σ − 1 + (σ + ρ− z) sin 2θ

+(1− σ) cos 2θ)

θ̇ =
1

2
(−σ + ρ− z + (σ − 1) sin 2θ

+(σ + ρ− z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (6.17)

in variables
(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x+ iy, z2 = u+ iv.
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group theory - week 7

Lorenz to Van Gogh

Georgia Tech PHYS-7143
Homework HW7 due Thursday, October 12, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 7.1 Product of two groups 2 points
Exercise 7.2 Space group 2 points
Work through example 24.2 Unrestricted symbolic dynamics 6 points

Total of 12 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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EXERCISES

2017-10-03 Predrag Lecture 13 Fundamentalist vision
How I think of the fundamental domain is explained in my online lectures, Week
14, in particular the snippet Regular representation of permuting tiles. Unfor-
tunately - if I had more time, that would have been shorter, this goes on and on,
Week 15, lecture 29. Discrete symmetry factorization, and by the time the dust
settles, I do not have a gut feeling for the boundary conditions when it comes to
higher-dimensional irreps (see also last week’s sect. 6.1 Discussion).

2017-10-05 Predrag Lecture 14 Diffusion confusion
Read ChaosBook.org Chapter 24 Deterministic diffusion. You also might find
my online lectures, Week 13 helpful. I have also added ChaosBook.org Ap-
pendix A24 Deterministic diffusion, but you probably do not need to read that.

Exercises
7.1. Product of two groups. Let G1 and G2 be two finite groups. The elements of the

product set G = G1 ×G2 are defined as pairs (g1, g2), g1 ∈ G1 g2 ∈ G2.

(a) Show that G is a group with the multiplication operation (g1, g2) · (g′1, g
′
2) =

(g1g
′
1, g2g

′
2).

Let D1 be an irreducible representation of G1 and let D2 be an irreducible representation
of G2. For each g = (g1, g2) ∈ G define D(g) = D1(g1)×D2(g2)

(b) Show that D = D1 × D2 is an irreducible representation of G. What are the
characters of D?

7.2. Space group.

(a) Show that for any space group, the translations by vectors from Bravais lattice form
a normal subgroup.

(b) Can rotations of the lattice at a fixed point constitute a normal subgroup of a space
group?

(B. Gutkin)
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group theory - week 8

Space groups

Georgia Tech PHYS-7143
Homework HW8 due Tuesday, October 17, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Band structure of a square lattice 8 points

Bonus points
Exercise 8.2 Tight binding model 8 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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2017-10-12 Predrag Lecture 15 Space groups
Gutkin lecture notes Lecture 7 Applications III. Energy Band Structure, Sects. 1.
Lattice symmetries and 2. Band structure. Also good reads: Dresselhaus et
al. [11] (click here) chapter 9. Space Groups in Real Space, and Cornwell [9]
(click here) chapter 7. Crystallographic Space Groups. Walt De Heer learned
this stuff from Herzberg [15] Molecular Spectra and Molecular Structure. Con-
densed matter people like Kittel [21] Introduction to Solid State Physics, but I
am not a fan, because simple group theoretical facts are there presented as con-
densed matter phenomena. Quinn and Yi [24] Solid State Physics: Principles
and Modern Applications introduction to space groups looks compact and sensi-
ble.

If you are curious about graphene, work out Gutkin lecture notes Lecture 7
Applications III. Energy Band Structure, Sect. 7.3 Band structure of graphene.

This week’s notes are long, because I’m fascinated why –of all fields of physics
where problems are formulated on lattices– only condensed matter utilizes the the-
ory of irreps of space groups. For the course itself, read sect. 8.1 Space groups and
sect. 8.1.1 Wallpaper groups - the rest is speculations, mostly.

Why do I care? In this course we are learning theory of space groups as applied to
quantum mechanics of crystals - rather than diagonalizing the Hamiltonian and com-
puting energy levels, one works on the reciprocal lattice, and computes energy bands
(continuum limit of finely spaced discrete eigenvalues of finite, periodic lattices). If
fluctuations from strict periodicity are small, one can often identify the crystal by mea-
suring the intensities of Bragg peaks.

Then there are other kinds of lattices. In computational field theory (classical
and quantum) one discretizes the space-time, often on a cubic lattice; one example is
worked out here in sect. 8.2 Elastodynamic equilibria of 2D solids. The there are Ising
models in one, two, three dimensions, problems like deterministic diffusion on periodic
lattices of scatterers, coupled maps lattices. None of that literature ever (to best of my
knowledge) reduces the computations to the reciprocal space Brilluion zone. Why?

The funny thing is - I know the answer since 1976, but the siren song of classi-
cal crystallography is so enchanting that it has blinded me with science. I think that
is due to a deep and under-appreciated “chaos / turbulence” physics underlying these
problems. If deviations from the strict periodic structure are small (the basic “long
wavelength” assumption of sect. 8.2), the “integrable” thinking in terms of normal
modes applies, and you should use the crystallography described here. If the symmetry
of the law you are studying is a space group, but the deviations of typical solutions
are large (our deterministic diffusion, Ising models, ...), we have to think again. One
fundamental thing we learned in studies of transitions to chaos is that the traditional
Fourier analysis is useless - it just yields broad, shapeless continuous spectra. The pow-
erful way to think about these problems is Poincaré’s qualitative theory of solutions of
differential equations : analyse the geometry of their flows in their state space. I know
for a fact (from a study of cat maps and spatiotemporal cat maps - those I would have
to explain one-on-one, as the papers are unpublished) that in that case the translational
eigenfunctions are hyperbolic sinhes and coshes, rather than the sines and cosines we
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are used to as Cn eigenfunctions. For finite discrete symmetries you saw that irreps
were fine for linear problems, like coupled arrays of springs, but symmetry reduction
for a nonlinear problem like Lorenz equations required quite different techniques. For
space group symmetries the analogous nonlinear problems seem still quite unexplored.

8.1 Space groups
A space group, a subgroup of the group of rotations and translations in three dimen-
sions, is the set of transformations that leave a crystal invariant. A space group operator
is commonly denoted as

{R|t} , (8.1)

where t belongs to the infinite set of discrete translations, and R is one of the finite
number of discrete orientation (point group) symmetries. Translation symmetry, i.e.,
the periodicity of a crystal, manifests itself physically through phonons, magnons, and
other smooth, long-wavelength deformations. Discrete orientation symmetry manifests
itself through macroscopic anisotropies of crystals, and its natural faces. The experi-
mental challenge is to determine the crystal structure, typically by diffraction (study of
the reciprocal lattice). It is a challenge, as one measures only the intensities of Bragg
peaks, not their phases, but the answer should be one of the 230 space groups listed in
the International Tables for Crystallography, the “Bible” of crystallographers.

Unless you have run into a quasicrystal :)
Understanding the Bible requires much more detail than what we can cover in a

week or two (it could take a lifetime), and has been written up many places. I found
Dresselhaus et al. [11] Chapter 9. Space Groups in Real Space (click here) quite
clear on matrix representation of space groups. (The MIT course 6.734 online version
contains much of the same material.) I also found Béatrice Grenier’s overview over
crystallography helpful. Many online tools are available to ease the task, for example
the FullProf suite of crystallographic programs. The Bible was completed in 19th
century, but the field is undergoing a revival, as the study of topological insulators
requires diving deeper into crystallography than simply looking up the tables.

The translation group T , the set of translations t that put the crystallographic struc-
ture in coincidence with itself, constitutes the lattice. T is a normal subgroup of G. It
defines the Bravais lattice. Translations are of the form

t = tn = n1a1 + n2a2 + n3a3 , nj ∈ Z .

The basis vectors aj span the unit cell. There are 6 simple (or primitive) unit cells
that contain a single point, specified by the lengths of the unit translations a, b, c and
pairwise angles α, β, γ between them. The most symmetric among them is the cubic
cell, with a = b = c and α = β = γ = 90o.

The lattice unit cell is always a generating region (a tile that tiles the entire space),
but the smallest generating region –the fundamental domain– may be smaller than the
lattice unit. At each lattice point the identical group of “atoms” constitutes the motif.
A primitive cell is a minimal region repeated by lattice translations. The lattice and the
motif completely characterize the crystal.
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The cosets by translation subgroup T (the set all translations) form the factor (AKA
quotient) group G/T , isomorphic to the point group g (rotations). All irreducible rep-
resentations of a space group G can be constructed from irreducible representations of
g and T . This step, however, is tricky, as, due to the non-commutativity of translations
and rotations, the quotient group G/T is not a normal subgroup of the space group G.

The quantum-mechanical calculations are executed by approximating the infinite
crystal by a triply-periodic one, and going go to the reciprocal space by deploying CNj
discrete Fourier transforms. This implements the G/T quotienting by translations and
reduces the calculation to a finite Brilluoin zone. That is the content of the ‘Bloch
theorem’ of condensed matter physics. Further work is then required to reduce the
calculations to the point group irreps.

Point symmetry operations leave at least one point fixed. They are (a) inversion
through a point, (b) rotation around an axis, (c) roto-inversion around an axis and
through a point and (d) reflection through a mirror plane. The rotations have to be
compatible with the translation symmetry: in 3 spatial dimensions they can only be of
orders 1, 2, 3, 4, or 6. They can be proper (det = +1) or improper (det = −1).

The spectroscopists’ Schoenflies notation labels point groups as: cyclic Cn, dihe-
dral Cn′ , tetrahedral T and octahedralO rotation point groups, of order n = 1, 2, 3, 4, 6,
respectively. The superscript

′
refers to either v (parallel mirror plane) or h (perpen-

dicular mirror plane). The crystallographer’s preferred classification is, however, the
international crystallographic (Hermann-Mauguin) notation.

8.1.1 Wallpaper groups
Pedagogically, it pays to start with a discussion of two-dimensional space groups, or
wallpaper groups (there are 17 of those).

For wallpaper groups the Hermann-Mauguin notation begins with either p or c, for
a primitive cell or a face-centred cell. This is followed by a digit, n, indicating the
highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold.
The first, resp. second of the next two symbols indicates the symmetry relative to one
translation axis of the pattern, referred to as the main, resp. second one. The symbols
are either m, g, or 1, for mirror, glide reflection, or none.

Section 9.3 Two-Dimensional Space Groups of Dresselhaus et al. [11] discusses
the most symmetric of the wallpaper groups, the tiling of a plane by squares, which in
the international crystallographic notation is denoted by #11, with point group p4mm.
We work out this space group in exercise 8.1. The largest invariant subgroup of C4v is
C4. In that case, the space group is p4, or #10. Prefix p indicates that the unit cell is
primitive (not centered). This is a ‘simple’, or symmorphic group, which makes calcu-
lations easier. There is, however, the third, non-symmorphic two-dimensional square
space group p4g or #12 (p4gm), see Table B.10 of ref. [11]. If someone can explain
its ‘Biblical’ diagram to me, I would be grateful. The wiki explanation, reproduced
here as figure 8.1 (b), is the best one that I have found so far, but I’m still scratching
my head:) The Bravais lattice ‘unit cell’ is a square in all three cases. In the crystallo-
graphic literature the ChaosBook’s ‘fundamental domain’ makes an appearance only in
the reciprocal lattice, as the Brilloun zone depicted for p4mm in figure 8.1 (a). How-
ever, the ‘wallpaper groups’ wiki does call ‘fundamental domain’ the smallest part of
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(a) (b)

Figure 8.1: The shaded (or yellow) area indicates a fundamental domain, i.e., the
smallest part of the pattern whose repeats tile the entire plane. (a) For the most sym-
metric 2D square lattice, with point group p4mm, the fundamental domain is indicated
by the shaded triangle ΓΛRSX∆Γ which constitutes 1/8 of the Brillouin zone, and
contains the basic wave vectors and the high symmetry points (Fig. 10.2 of Dressel-
haus et al. [11]). (b) For the 2D square lattice with the glide and reflect point group
p4g the fundamental domain is indicated by the yellow triangle (Figure drawn by M.
von Gagern).

the configuration pattern that, when repeated, tiles the entire plane.
The quantum-mechanical calculations are carried out in the reciprocal space, in our

case with the full Γ point, k = 0, wave vector symmetry (see Table 10.1 of ref. [11]),
and ‘Large Representations’.

Sect. 10.5 Characters for the Equivalence Representation look like those for the
point group, sort of.

8.1.2 One-dimensional line groups

One would think that the one-dimensional line groups, which describe systems exhibit-
ing translational periodicity along a line, such as carbon nanotubes, would be simpler
still. But even they are not trivial – there are 13 of them.

The normal subgroup of a line group L is its translational subgroup T , with its fac-
tor group L/T isomorphic to the isogonal point group P of discrete symmetries of its
1-dimensional unit cell x ∈ (−a/2, a/2]. In the reciprocal lattice k takes on the values
in the first Brillouin zone interval (−π/a, π/a]e. In Irreducible representations of the
symmetry groups of polymer molecules. I, Božović, Vujičić and Herbut [7] construct
all the reps of the line groups whose isogonal point groups are Cn, Cnv, Cnh, S2n, and
Dn. For some of these line groups the irreps are obtained as products of the reps of the
translational subgroup and the irreps of the isogonal point group.

According to W. De Heer, the Mintmire, Dunlap and White [23] paper Are Fullerene
tubules metallic? which took care of chiral rotations for nanotubes by a tight-binding
calculation, played a key role in physicists’ understanding ofline groups.
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8.1.3 Time reversal symmetry
Consequences of time-reversal symmetry on line groups are discussed by Božović [6];
In the case when the Hamiltonian is invariant under time reversal [14], the symmetry
group is enlarged: L + θL. It is interesting to learn if the degeneracy of the levels is
doubled or not.

Johnston [19] Group theory in solid state physics is one of the many reviews that
discusses Wigner’s time-reversal theorems for a many-electron system, including the
character tests for time-reversal degeneracy, the double space groups, and the time-
reversal theorems (first discussed by Herring [14] in Effect of time-reversal symmetry
on energy bands of crystals).

8.2 Elastodynamic equilibria of 2D solids
Artificial lattices are often introduced to formulate classical field theories (described
by partial differential equations) and quantum field theories (described by path inte-
grals) as finite-dimensional problems, either for theoretical reasons (QM in a periodic
box), or in order to port them to computers. For example, lattice QCD approximates
Quantum Chromodynamics by a 4-dimensional cubic crystal. What follows is a simple
example of such formulation of a classical field theory, taken from Mehran Kardar’s
MIT course, Lecture 23.

Consider a perfect two-dimensional solid at T = 0. The equilibrium configuration
of atoms forms a lattice,

r0(m,n) = me1 + ne2 ,

where e1 and e2 are basis vectors, a = |ej | is the lattice spacing, and {m,n} are inte-
gers. At finite temperatures, the atoms fluctuate away from their equilibrium position,
moving to

r(m,n) = r0(m,n) + u(m,n) ,

As the low temperature distortions do not vary substantially over nearby atoms, one can
define a coarse-grained distortion field u(x), where x = (x1, x2) is treated as continu-
ous, with an implicit short distance cutoff of the lattice spacing a. Due to translational
symmetry, the elastic energy depends only on the strain matrix,

uij(x) = 1
2 (∂iuj + ∂jui) .

Kardar picks the triangular lattice, as its elastic energy is isotropic (i.e., invariant under
lattice rotations, see Landau and Lifshitz [22]). In terms of the Lamé coefficients λ and
µ,

βH =
1

2

∫
d2x (2µuijuij + λuiiujj)

= −1

2

∫
d2xui[2µ� δij + (µ+ λ) ∂i∂j ]uj . (8.2)

(here we have assumed either infinite or doubly periodic lattice, so no boundary terms
from integration by parts), with the equations of motion something like (FIX!)

∂2
t ui = [2µ� δij + (µ+ λ) ∂i∂j ]uj . (8.3)
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(Note that Kardar keeps time continuous, but discretizes space. In numerical compu-
tations time is discretized as well.) The symmetry of a square lattice permits an addi-
tional term proportional to ∂2

xu
2
x+∂2

yu
2
y. In general, the number of independent elastic

constants depends on the dimensionality and rotational symmetry of the lattice in ques-
tion. In two dimensions, square lattices have three independent elastic constants, and
triangular lattices are “elastically isotropic” (i.e., elastic properties are independent of
direction and thus have only two [22]).

The Goldstone modes associated with the broken (PC: why “broken”?) transla-
tional symmetry are phonons, the normal modes of vibrations. Eq. (8.3) supports two
types of lattice normal modes, transverse and longitudinal.

The order parameter describing broken translational symmetry is

ρG(x) = eiG·r(x) = eiG·u(x) ,

where G is any reciprocal lattice vector. Since, by definition, G · r0 is an integer
multiple of 2π, ρG = 1 at zero temperature. Due to the fluctuations,

〈ρG(x)〉 = 〈eiG·u(x)〉

decreases at finite temperatures, and its correlations decay as 〈ρG(x)ρ∗G(0)〉 . This is
the order parameter ChaosBook and Gaspard use in deriving formulas for deterministic
diffusion. Kardar computes this in Fourier space by approximating G · q with its
angular average G2q2/2, ignoring the rotationally symmetry-breaking term cos q · x,
and getting only the asymptotics of the correlations right (the decay is algebraic).

The translational correlations are measured in diffraction experiments. The scat-
tering amplitude is the Fourier transform of ρG, and the scattered intensity at a wave-
vector q is proportional to the structure factor. At zero temperature, the structure factor
is a set of delta-functions (Bragg peaks) at the reciprocal lattice vectors.

The orientational order parameter that characterizes the broken rotational symmetry
of the crystal can be defined as

Ψ(x) = e6iθ(x) ,

where θ(x) is the angle between local lattice bonds and a reference axis. The factor of 6
accounts for the equivalence of the 6 possible C3v orientations of the triangular lattice.
(Kardar says the appropriate choice for a square lattice is exp(4iθ(x)) - shouldn’t the
factor be 8, the order of C4v?) The order parameter has unit magnitude at T = 0, and
is expected to decrease due to fluctuations at finite temperature. The distortion u(x)
leads to a change in bond angle given by

θ(x) = − 1
2 (∂xuy − ∂yux) .

(This seems to be dimensionally wrong? For detailed calculations, see the above Kar-
dar lecture notes.)

8.3 Literature, reflections
2017-10-17 Predrag The story of quantum scattering off crystals, I believe, starts with

the Bouckaert, Smoluchowski and Wigner (1936) paper [5].
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To understand the order of the full group Oh of symmetries of the cube, exer-
cise 5.1 a.ii, it is instructive to look at figure 8.2 (figs. 8.8 and 8.12 in Joshi [20]).
When a cube is a building block that tiles a 3D cubic lattice, it is referred to as
the ‘elementary’ or ‘Wigner-Seitz’ cell, and its Fourier transform is called ‘the
first Brillouin zone’ in ‘the reciprocal space’. The special points and the lines
of symmetry in the Brillouin zone are shown in figure 8.2 (a). The tetrahedron
ΓXMR, an 1/48th part of the Brillouin zone, is the fundamental domain, as the
action of the 48 elements of the point group Oh on it tiles the Brillouin zone
without any gaps or overlaps.

(a) (b)

Figure 8.2: (a) The special points and the lines of symmetry in the first Brillouin zone of a
simple cubic lattice define its fundamental domain, the tetrahedron ΓXMR. (b) Just not to get
any ideas that this is easy: the fundamental domain for the first Brillouin zone of a bcc lattice.
(From Joshi [20].)

2016-10-17 Predrag OK, I’ll confess. The reason why it is lovely to teach graduate
level physics is that one is allowed to learn new things while doing it. I’ll now
sketch one, perhaps wild, direction that you are completely free to ignore.

Here is the problem of space groups in the nutshell. The Euclidean invari-
ance on Newtonian space-time (including its subgroups, such as the discrete
space groups), and the Poincaré invariance of special-relativistic space-time is a
strange brew: the space is non-compact (homogeneity), while rotations are com-
pact (isotropy). That leads to the conceptually awkward situation of mixing a
group of additions (translations) with a group of multiplications (rotations). To
work with such group we first translate objects to the origin and then rotate them
with the respect to the origin. That’s not nice, because by translation invariance
any point is as good as any other, there is no preferred origin. There is no reason
why one should translate first, rotate second. What one needs is a formalism that
implements translations and rotations on the same footing.

If I understand Hestenes [16] right (also David Finkelstein and perhaps Holger
Beck Nielsen have told me things in this spirit) a way to accomplish that is to
replace the flat translational directions by a compact manifold where translations
and rotations are non-commuting multiplicative group operations.

A part of the Hestenes program is redoing crystallography. I have read Hestenes [17]
paper (but not the Hestenes and Holt [18] follow up). It looks very interesting,
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but I will spare you from my comments here, as I do not know how to make this
formalism work for our purposes (character; explicit computations), so I should
not waste your time on that. If you do have a look at his, or at Coxeter [10]
discussion of planar tilings, please do report back to me.

2016-10-19 Predrag Graphene is a two-dimensional sheet of carbon in which the car-
bon atoms are arranged in a honeycomb lattice: each carbon atom is connected
to three neighbors. It was exfoliated by Schafhaeutl [3, 26] in 1840 (more re-
cently, a con man got a Nobel Prize for that), and formally defined for chemists
by Boehm [4] in 1986. In 1947 Wallace [30] calculated the electronic struc-
ture of graphene, as a preliminary exercise to calculating electronic structure of
graphite, and noted that the velocity of the electrons was independent of their en-
ergies: they all travel at the same speed (about 100 km per second, about 1/3000
of the speed of light): plot of the energy of the electrons in graphene as a func-
tion of its momentum (which is inversely proportional to its wavelength) is V
shaped since the energy of the electron is linearly proportional to its momentum
(Wallace [30] Eq. 3.1). The energy of a free electron is proportional to the square
of its momentum, but not so in a crystal. As this is reminiscent of massless ele-
mentary particles like photons and neutrino’s, it has been renamed since ‘Dirac
cones’, but Dirac has nothing whatsoever to do with that. To learn more, talk to
people from the Claire Berger and Walt De Heer’s group [2] - I have extracted
above history of graphene from De Heer’s notes (the “con man” is my own angle
on what went down with this particular Nobel prize).

2017-10-01 Predrag Martin Mourigal found the Presqu’île Giens, May 2009 Con-
tribution of Symmetries in Condensed Matter Summer School very useful. Vil-
lain [29] Symmetry and group theory throughout physics gives a readable overview.
The overheads are here, many of them are of potential interest. Mourigal rec-
ommends

Canals and Schober [8] Introduction to group theory. It is very concise and
precise, a bastard child of Bourbaki and Hamermesh [13]. Space groups show
up only once, on p. 24: “By working with the cosets we have effectively factored
out the translational part of the problem.”

Ballou [1] An introduction to the linear representations of finite groups appears
rather formal (and very erudite).

Grenier, B. and Ballou [12] Crystallography: Symmetry groups and group rep-
resentations.
The word crystal stems from Greek ‘krustallas’ and means “solidified by the
cold.”

Schober [27] Symmetry characterization of electrons and lattice excitations gives
an eminently readable discussion of space groups.

Rodríguez-Carvajal and Bourée [25] Symmetry and magnetic structures

Schweizer [28] Conjugation and co-representation analysis of magnetic struc-
tures deals with black, white and gray groups that Martin tries not to deal with,
so all Mourigal groups are gray.
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Villain discusses graphene in the Appendix A of Symmetry and group theory
throughout physics [29].
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EXERCISES

Figure 8.3: Square lattice of atoms

Exercises
8.1. Band structure of a square lattice. A charged particle (without spin) moves in a po-

tential created by an infinite square lattice of atoms, see figure 8.3.

(a) What are the symmetry groups of the Bravais and reciprocal lattices?

(b) Plot the 1st Brillouin zone. What is its symmetry? What is the corresponding
fundamental domain?

Let k be quasi-momentum and En(k) the energy of the nth band.

(c) At which points of the Brillouin zone is the group G(k) (the group which leaves
vector k invariant) nontrivial? What is it?

(d) What is the symmetry ofEn(k) as a function of k? At which points of the Brillouin
zone is the group velocity∇En(k) equal 0?

(e) At which points of the Brillouin zone neighboring bands (generically) stick to each
other? How many bands can stick? Explain from the group theory prospective.

(f) Assume now that the lattice is slightly squeezed along one of the axis. What will
be the new symmetry of the system and its 1st Brillouin zone? Will the sticking
between bands be lifted or persiss?

(B. Gutkin)

8.2. Tight binding model. Verify your solution of exercise 8.1 within the 2-state tight bind-
ing model. Assume that particle can hop either from corner to corner of the square lattice
with coefficient t1 or from corner to the middle of the square with coefficient t2 (and vice
versa).

(a) Show the obtained energy bands Ei(k) as both contour- and 3-dimensional plots.

(b) Compare with the results from exercise 8.1.
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Continuous groups

Georgia Tech PHYS-7143
Homework HW9 due Tuesday, October 24, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.1 Irreps of SO(2) 2 points
Exercise 9.2 Reduction of product of two SO(2) irreps 1 point
Exercise 9.3 Irreps of O(2) 2 points
Exercise 9.4 Reduction of product of two O(2) irreps 1 point
Exercise 9.5 A fluttering flame front 4 points

Bonus points
Exercise 9.6 O(2) fundamental domain for Kuramoto-Sivashinsky equation (difficult)
10 points

Total of 10 points = 100 % score.
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2017-10-17 Predrag Lecture 16 Continuous groups
This lecture is not taken from any particular book, it’s about basic ideas of how
one goes from finite groups to the continuous ones that any physicist should
know. The main idea comes from discrete groups. We have worked one ex-
ample out in week 2, the discrete Fourier transform of example 2.4 Projection
operators for cyclic group CN . The cyclic group CN is generated by the pow-
ers of the rotation by 2π/N , and in general, in the N → ∞ limit one only
needs to understand the algebra of T`, generators of infinitesimal transforma-
tions, D(θ) = 1 + i

∑
` θ`T`. Applied to functions, they turn out to be partial

derivatives.

2017-10-19 Predrag Lecture 17 Lie groups. Matrix representa-
tions
The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of U(1) ' SO(2), but from then on this way of thinking about
continuous symmetries gets to be increasingly awkward. So we need a fresh
restart; that is afforded by matrix groups, and in particular the unitary group
U(n) = U(1) ⊗ SU(n), which contains all other compact groups, finite or con-
tinuous, as subgroups.

Reading: Chen, Ping and Wang [6] Group Representation Theory for Physicists,
Sect 5.2 Definition of a Lie group, with examples.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2). In particular, note that while geometrically intu-
itive representation is the set of rotation [2×2] matrices, they split into pairs of
1-dimensional irreps. Also, not covered in the lectures, but worth a read: Sect.
6.6 completes discussion of Fourier analysis as continuum limit of cyclic groups
Cn, compares SO(2), discrete translations group, and continuous translations
group.

Sect. 9.1 that follows is a very condensed extract of chapters 3 Invariants and reducibil-
ity and 4 Diagrammatic notation from Group Theory - Birdtracks, Lie’s, and Excep-
tional Groups [8]. I am usually reluctant to use birdtrack notations in front of graduate
students indoctrinated by their professors in the 1890’s tensor notation, but today I’m
emboldened by the very enjoyable article on The new language of mathematics by Dan
Silver [16]. Your professor’s notation is as convenient for actual calculations as -let’s
say- long division using roman numerals. So leave them wallowing in their early pro-
gressive rock of 1968, King Crimsons of their youth. You chill to beats younger than
Windows 98, to grime, to trap, to hardvapour, to birdtracks.

9.1 Lie groups for pedestrians
[...] which is an expression of consecration of angular momen-
tum.

— Mason A. Porter’s student
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Figure 9.1: Circle group S1 = SO(2), the symmetry group of a circle with directed
rotations, is a compact group, as its natural parametrization is either the angle φ ∈
[0, 2ß), or the perimeter x ∈ [0, L).

Definition: A Lie group is a topological group G such that (i) G has the structure of
a smooth differential manifold, and (ii) the composition map G × G → G : (g, h) →
gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make a living.
The compact Lie groups that we will deploy here are a generalization of the theory of
SO(2) ' U(1) rotations, i.e., Fourier analysis. By a ‘smooth differential manifold’
one means objects like the circle of angles that parameterize continuous rotations in
a plane, figure 9.1, or the manifold swept by the three Euler angles that parameterize
SO(3) rotations.

By ‘compact’ one means that these parameters run over finite ranges, as opposed
to parameters in hyperbolic geometries, such as Minkowsky SO(3, 1). The groups
we focus on here are compact by default, as their representations are linear, finite-
dimensional matrix subgroups of the unitary matrix group U(d).

Example 1. Circle group. A circle with a direction, figure 9.1, is invariant under rota-
tion by any angle θ ∈ [0, 2π), and the group multiplication corresponds to composition
of two rotations θ1 + θ2 mod 2π. The natural representation of the group action
is by a complex numbers of absolute value 1, i.e., the exponential eiθ. The composi-
tion rule is then the complex multiplication eiθ2eiθ1 = ei(θ1+θ2) . The circle group is
a continuous group, with infinite number of elements, parametrized by the continuous
parameter θ ∈ [0, 2π). It can be thought of as the n→∞ limit of the cyclic group Cn.
Note that the circle divided into n segments is compact, in distinction to the infinite
lattice of integers Z, whose limit is a line (noncompact, of infinite length).

An element of a [d×d] -dimensional matrix representation of a Lie group continu-
ously connected to identity can be written as

g(φ) = eiφ·T , φ · T =

N∑
a=1

φaTa , (9.1)

where φ · T is a Lie algebra element, Ta are matrices called ‘generators’, and φ =
(φ1, φ2, · · · , φN ) are the parameters of the transformation. Repeated indices are summed
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throughout, and the dot product refers to a sum over Lie algebra generators. Sometimes
it is convenient to use the Dirac bra-ket notation for the Euclidean product of two real
vectors x, y ∈ Rd, or the product of two complex vectors x, y ∈ Cd, i.e., indicate
complex x-transpose times y by

〈x|y〉 = x†y =

d∑
i

x∗i yi . (9.2)

Finite unitary transformations exp(iφ · T ) are generated by sequences of infinitesimal
steps of form

g(δφ) ' 1 + iδφ · T , δφ ∈ RN , |δφ| � 1 , (9.3)

where Ta, the generators of infinitesimal transformations, are a set of linearly indepen-
dent [d×d] hermitian matrices (see figure 9.2 (b)).

The reason why one can piece a global transformation from infinitesimal steps is
that the choice of the “origin” in coordinatization of the group manifold sketched in
figure 9.2 (a) is arbitrary. The coordinatization of the tangent space at one point on the
group manifold suffices to have it everywhere, by a coordinate transformation g, i.e.,
the new origin y is related to the old origin x by conjugation y = g−1xg, so all tangent
spaces belong the same class, they are geometrically equivalent.

Unitary and orthogonal groups are defined as groups that preserve ‘length’ norms,
〈gx|gx〉 = 〈x|x〉, and infinitesimally their generators (9.3) induce no change in the
norm, 〈Tax|x〉+ 〈x|Tax〉 = 0 , hence the Lie algebra generators Ta are hermitian for,

T †a = Ta . (9.4)

The flow field at the state space point x induced by the action of the group is given by
the set of N tangent fields

ta(x)i = (Ta)ijxj , (9.5)

which span the d-dimensional group tangent space at state space point x, parametrized
by δφ.

For continuous groups the Lie algebra, i.e., the algebra spanned by the set ofN gen-
erators Ta of infinitesimal transformations, takes the role that the |G| group elements
play in the theory of discrete groups (see figure 9.2).

9.1.1 Invariants
One constructs the irreps of finite groups by identifying matrices that commute with
all group elements, and using their eigenvalues to decompose arbitrary representation
of the group into a unique sum of irreps. The same strategy works for the compact Lie
groups, (9.9), and is indeed the key idea that distinguishes the invariance groups clas-
sification developed in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [8]
from the 19th century Cartan-Killing classification of Lie algebras.

Definition. The vector q ∈ V is an invariant vector if for any transformation g ∈ G

q = Gq . (9.6)
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(a) (b)

Manifold traced out by action of G
for all possible group elements g

xx’

g

Figure 9.2: (a) Lie algebra fields {t1, · · · , tN} span the tangent space of the group
orbitMx at state space point x, see (9.5) (figure from WikiMedia.org). (b) A global
group transformation g : x → x′ can be pieced together from a series of infinitesimal
steps along a continuous trajectory connecting the two points. The group orbit of state
space point x ∈ Rd is the N -dimensional manifold of all actions of the elements of
group G on x.

Definition. A tensor x ∈ V p ⊗ V̄ q is an invariant tensor if for any g ∈ G

x
a1a2...ap
b1...bq

= Ga1c1G
a2
c2 . . . Gb1

d1 . . . Gbq
dqx

c1c2...cp
d1...dq

. (9.7)

If a bilinear form m(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = Ga

cGbdMc
d (9.8)

is an invariant matrix. Multiplying with Gbe and using the unitary, we find that the
invariant matrices commute with all transformations g ∈ G:

[G,M] = 0 . (9.9)

Definition. An invariance group G is the set of all linear transformations (9.7) that
preserve the primitive invariant relations (and, by extension, all invariant relations)

p1(x, ȳ) = p1(Gx, ȳG†)

p2(x, y, z, . . .) = p2(Gx,Gy,Gz . . .) , . . . . (9.10)

Unitarity guarantees that all contractions of primitive invariant tensors, and hence all
composed tensors h ∈ H , are also invariant under action of G. As we assume unitary
G, it follows that the list of primitives must always include the Kronecker delta.

Example 2. If paqa is the only invariant of G

p′
a
q′a = pb(G†G)b

cqc = paqa , (9.11)

then G is the full unitary group U(n) (invariance group of the complex norm |x|2 =
xbxaδ

a
b ), whose elements satisfy

G†G = 1 . (9.12)

Example 3. If we wish the z-direction to be invariant in our 3-dimensional space,
q = (0, 0, 1) is an invariant vector (9.6), and the invariance group is O(2), the group of
all rotations in the x-y plane.
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9.1.2 Discussion
2017-11-07 Qimen Xu Please explain when one keeps track of the order of tensorial

indices?

2017-11-07 Predrag In a tensor, upper, lower indices are separately ordered - and that
order matters. The simplest example: if some indices form an antisymmetric
pair, writing them in wrong order gives you a wrong sign. In a matrix represen-
tation of a group action, one has to distinguish between the “in” set of indices –
the ones that get contracted with the initial tensor, and the “out” set of indices
that label the tensor after the transformation. Only if the matrix is Hermitian the
order does not matter. If you understand Eq. (3.22) in birdtracks.eu, you get it.
Does that answer your question?

9.1.3 Infinitesimal transformations, Lie algebras
A unitary transformation G infinitesimally close to unity can be written as

Ga
b = δba + iDb

a , (9.13)

where D is a hermitian matrix with small elements, |Db
a| � 1. The action of g ∈ G on

the conjugate space is given by

(G†)b
a = Gab = δab − iDa

b . (9.14)

D can be parametrized by N ≤ n2 real parameters. N , the maximal number of inde-
pendent parameters, is called the dimension of the group (also the dimension of the Lie
algebra, or the dimension of the adjoint rep).

Here we shall consider only infinitesimal transformations of form G = 1 + iD,
|Da

b | � 1. We do not study the entire group of invariant transformation, but only the
transformations connected to the identity. For example, we shall not consider invari-
ances under coordinate reflections.

The generators of infinitesimal transformations (9.13) are hermitian matrices and
belong to the Da

b ∈ V ⊗ V̄ space. However, not any element of V ⊗ V̄ generates an
allowed transformation; indeed, one of the main objectives of group theory is to define
the class of allowed transformations.

This subspace is called the adjoint space, and its special role warrants introduction
of special notation. We shall refer to this vector space by letter A, in distinction to
the defining space V . We shall denote its dimension by N , label its tensor indices by
i, j, k . . ., denote the corresponding Kronecker delta by a thin, straight line,

δij = , i, j = 1, 2, . . . , N , (9.15)

and the corresponding transformation generators by

(CA)i,
a
b =

1√
a

(Ti)
a
b = a, b = 1, 2, . . . , n

i = 1, 2, . . . , N .
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Matrices Ti are called the generators of infinitesimal transformations. Here a is an
(uninteresting) overall normalization fixed by the orthogonality condition

(Ti)
a
b (Tj)

b
a = tr (TiTj) = a δij

= a . (9.16)

For every invariant tensor q, the infinitesimal transformations G = 1 + iD must satisfy
the invariance condition (9.6). ParametrizingD as a projection of an arbitrary hermitian
matrix H ∈ V ⊗V̄ into the adjoint space, D = PAH ∈ V ⊗V̄ ,

Da
b =

1

a
(Ti)

a
b εi , (9.17)

we obtain the invariance condition which the generators must satisfy: they annihilate
invariant tensors:

Tiq = 0 . (9.18)

To state the invariance condition for an arbitrary invariant tensor, we need to define
the action of generators on the tensor reps. By substituting G = 1 + iε · T + O(ε2)
and keeping only the terms linear in ε, we find that the generators of infinitesimal
transformations for tensor reps act by touching one index at a time:

(Ti)
a1a2...ap
b1...bq

, dq...d1cp...c2c1 = (Ti)
a1
c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq
bq

+δa1c1 (Ti)
a2
c2 . . . δ

ap
cp δ

d1
b1
. . . δ

dq
bq

+ . . .+ δa1c1 δ
a2
c2 . . . (Ti)

ap
cp δ

d1
b1
. . . δ

dq
bq

− δa1c1 δ
a2
c2 . . . δ

ap
cp (Ti)

d1
b1
. . . δ

dq
bq
− . . .− δa1c1 δ

a2
c2 . . . δ

ap
cp δ

d1
b1
. . . (Ti)

dq
bq
. (9.19)

This forest of indices vanishes in the birdtrack notation, enabling us to visualize the
formula for the generators of infinitesimal transformations for any tensor representa-
tion:

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

T =
��
��
��
��

��
��
��
��

��
��
��
��

+
��
��
��
��

��
��
��
��

��
��
��
��

− , (9.20)

with a relative minus sign between lines flowing in opposite directions. The reader will
recognize this as the Leibnitz rule.

The invariance conditions take a particularly suggestive form in the birdtrack no-
tation. Equation (9.18) amounts to the insertion of a generator into all external legs of
the diagram corresponding to the invariant tensor q:

0 = + −

+ − . (9.21)
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The insertions on the lines going into the diagram carry a minus sign relative to the
insertions on the outgoing lines.

As the simplest example of computation of the generators of infinitesimal transfor-
mations acting on spaces other than the defining space, consider the adjoint rep. Where
does the ugly word “adjoint” come from in this context is not obvious, but remem-
ber it this way: this is the one distinguished representation, which is intrinsic to the
Lie algebra, with the explicit matrix elements (Ti)jk of the adjoint rep given by the
the fully antisymmetric structure constants iCijk of the algebra (i.e., its multiplication
table under the commutator product). It’s the continuous groups analogoue of the mul-
tiplication table, or the regular representation for the finite groups. The factor i ensures
their reality (in the case of hermitian generators Ti), and we keep track of the overall
signs by always reading indices counterclockwise around a vertex:

− iCijk =

kj

i

(9.22)

= − �����
�
�
�
�
�

�
�
�
�
�
�

. (9.23)

As all other invariant tensors, the generators must satisfy the invariance conditions
(9.21):

0 = − + − .

Redrawing this a little and replacing the adjoint rep generators (9.22) by the structure
constants, we find that the generators obey the Lie algebra commutation relation

i j

− = (9.24)

In other words, the Lie algebra commutator

TiTj − TjTi = iCijkTk . (9.25)

is simply a statement that Ti, the generators of invariance transformations, are them-
selves invariant tensors. Now, honestly, do you prefer the three-birdtracks equation (9.24),
or the mathematician’s page-long definition of the adjoint rep? It’s a classic example
of bad notation getting into way of understanding a relation of beautiful simplicity. The
invariance condition for structure constants Cijk is likewise

0 = + + .
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Rewriting this with the dot-vertex (9.22), we obtain

− = . (9.26)

This is the Lie algebra commutator for the adjoint rep generators, known as the Jacobi
relation for the structure constants

CijmCmkl − CljmCmki = CimlCjkm . (9.27)

Hence, the Jacobi relation is also an invariance statement, this time the statement that
the structure constants are invariant tensors.

9.1.4 Discussion
2017-10-17 Lin Xin Please explain the Mµν,δρ generators of SO(n).

2017-11-07 Predrag Let me know if you understand the derivation of Eqs. (4.51) and
(4.52) in birdtracks.eu. Does that answer your question?

9.2 Birdtracks - updated history
Predrag Cvitanović November 7, 2017

Young tableaux and (non-Hermitian) Young projection operators were introduced by
Young [20] in 1933 (Tung monograph [19] is a standard exposition). In 1937 R. Bra-
uer [3] introduced diagrammatic notation for δij in order to represent “Brauer algebra”
permutations, index contractions, and matrix multiplication diagrammatically. R. Pen-
rose’s papers were the first to cast the Young projection operators into a diagrammatic
form. In 1971 monograph [13] Penrose introduced diagrammatic notation for sym-
metrization operators, Levi-Civita tensors [15], and “strand networks” [12]. Penrose
credits Aitken [1] with introducing this notation in 1939, but inspection of Aitken’s
book reveals a few Brauer diagrams for permutations, and no (anti)symmetrizers. Pen-
rose’s [14] 1952 initial ways of drawing symmetrizers and antisymmetrizers are very
aesthetical, but the subsequent developments gave them a distinctly ostrich flavor [14].
In 1974 G. ’t Hooft introduced a double-line notation for U(n) gluon group-theory
weights [18]. In 1976 Cvitanović [7] introduced analogous notation for SU(N), SO(n)
and Sp(n). For several specific, few-index tensor examples, diagrammatic Young pro-
jection operators were constructed by Canning [5], Mandula [11], and Stedman [17].

The 1975–2008 Cvitanović diagrammatic formulation of the theory of all semi-
simple Lie groups [8] as a way to compute group theoretic wights without any recourse
to symbols goes conceptually and profoundly beyond the Penrose notation (indeed,
Cvitanović “birdtracks” bear no resemblance to Penrose’s “fornicating ostriches” [14]).

A chapter in Cvitanović 2008 monograph [8] sketches how birdtrack (diagram-
matic) Young projection operators for arbitrary irreducible representation of SU(N)
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could be constructed (this text is augmented by a 2005 appendix by Elvang, Cvi-
tanović and Kennedy [9] which, however, contains a significant error). Keppeler and
Sjödahl [10] systematized the construction by offering a simple method to construct
Hermitian Young projection operators in the birdtrack formalism. Their iteration is
easy to understand, and the proofs of Hermiticity are simple. However, in practice, the
algorithm is inefficient - the expression balloon quickly, the Young projection operators
soon become unwieldy and impractical, if not impossible to implement.

The Alcock-Zeilinger algorithm, based on the simplification rules of ref. [2], leads
to explicitly Hermitian and drastically more compact expressions for the projection op-
erators than the Keppeler-Sjödahl algorithm [10]. Alcock-Zeilinger fully supersedes
Cvitanović’s formulation, and any future full exposition of reduction of SU(N) ten-
sor products into irreducible representations should be based on the Alcock-Zeilinger
algorithm.
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Exercises
9.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(9.28)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e(k)

1 − i e(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?

9.2. Reduction of a product of two SO(2) irreps. Determine the Clebsch-Gordan series for
SO(2). Hint: Abelian group has 1-dimensional characters. Or, you are just multiplying
terms in Fourier series.
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9.3. Irreps of O(2). O(2) is a group, but not a Lie group, as in addition to continuous
transformations generated by (9.28) it has, as a group element, a parity operation

σ =

[
1 0
0 −1

]
which cannot be reached by continuous transformations.

(a) Is this group Abelian, i.e., does T commute with R(kθ)? Hint: evaluate first the
[T, σ] commutator and/or show that σD(k)(θ)σ−1 = D(k)(−θ) .

(b) What are the equivalence (i.e., conjugacy) classes of this group?

(c) What are irreps of O(2)? What are their dimensions?
Hint: O(2) is the n→∞ limit ofDn, worked out in exercise 4.4 Irreducible repre-
sentations of dihedral group Dn. Parity σ maps an SO(2) eigenvector into another
eigenvector, rendering eigenvalues of any O(2) commuting operator degenerate.
Or, if you really want to do it right, apply Schur’s first lemma to improper rotations

R
′
(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
σ =

(
cos kθ sin kθ
sin kθ − cos kθ

)
to prove irreducibility for k 6= 0.

(d) What are irreducible characters of O(2)?

(e) Sketch a fundamental domain for O(2).

9.4. Reduction of a product of two O(2) irreps. Determine the Clebsch-Gordan series for
O(2), i.e., reduce the Kronecker product D(k)⊗D(`) .

9.5. A fluttering flame front.

(a) Consider a linear partial differential equation for a real-valued field u = u(x, t)
defined on a periodic domain u(x, t) = u(x+ L, t):

ut + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.29)

In this equation t ≥ 0 is the time and x is the spatial coordinate. The subscripts x
and t denote partial derivatives with respect to x and t: ut = ∂u/d∂, uxxxx stands
for the 4th spatial derivative of u = u(x, t) at position x and time t. Consider the
form of equations under coordinate shifts x→ x+ ` and reflection x→ −x. What
is the symmetry group of (9.29)?

(b) Expand u(x, t) in terms of its SO(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.29) as a set of linear ODEs for the expansion coefficients. What
are the eigenvalues of the time evolution operator? What is their degeneracy?

(c) Expand u(x, t) in terms of its O(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.29) as a set of linear ODEs. What are the eigenvalues of the
time evolution operator? What is their degeneracy?

(d) Interpret u = u(x, t) as a ‘flame front velocity’ and add a quadratic nonlinearity to
(9.29),

ut + 1
2
(u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.30)

This nonlinear equation is known as the Kuramoto-Sivashinsky equation, a baby
cousin of Navier-Stokes. What is the symmetry group of (9.30)?
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(e) Expand u(x, t) in terms of its O(2) irreducible components (see exercise 9.3) and
rewrite (9.30) as an infinite tower of coupled nonlinear ODEs.

(f) What are the degeneracies of the spectrum of the eigenvalues of the time evolution
operator?

9.6. O(2) fundamental domain for Kuramoto-Sivashinsky equation. You have C2

discrete symmetry generated by flip σ, which tiles the space by two tiles.

• Is there a subspace invariant under this C2? What form does the tower of ODEs
take in this subspace?

• How would you restrict the flow (the integration of the tower of coupled ODEs) to
a fundamental domain?

This problem is indeed hard, a research level problem, at least for me and the grad students
in our group. Unlike the beautiful full-reducibility, character-orthogonality representation
theory of linear problems, in nonlinear problems symmetry reduction currently seems to
require lots of clever steps and choices of particular coordinates, and we am not at all sure
that our solution is the optimal one. Somebody looking at the problem with a fresh eye
might hit upon a solution much simpler than ours. Has happened before :)
Burak Budanur’s solution is written up in Budanur and Cvitanović [4] Unstable mani-
folds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-
Sivashinsky system sect. 3.2 O(2) symmetry reduction, eq. (17) (get it here).

9.7. Lie algebra from invariance. Derive the Lie algebra commutator and the Jacobi
identity as particular examples of the invariance condition, using both index and birdtracks
notations. The invariant tensors in question are “the laws of motion,” i.e., the generators
of infinitesimal group transformations in the defining and the adjoint representations.

2017-11-17 89 PHYS-7143-17 week9





group theory - week 10

O(2) symmetry sliced

Georgia Tech PHYS-7143
Homework HW10 due Thursday, November 2, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 10.1 Conjugacy classes of SO(3) 2 points (+ 2 bonus points, if complete)
Exercise 10.2 The character of SO(3) 3-dimensional representation 1 point
Exercise 10.3 The orthonormality of SO(3) characters 2 point
Exercise 10.4 U(1) equivariance of two-modes system for finite angles 3 points
Exercise 10.6 SO(2) or harmonic oscillator slice 2 points

Bonus points
Exercise 10.5 Integrate the two-modes system 4 point
Exercise 10.7 Invariant subspace of the two-modes system 1 point
Exercise 10.8 Slicing the two-modes system 1 point
Exercise 10.9 The symmetry reduced two-modes flow (difficult) 6 points

Total of 10 points = 100 % score.
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2017-10-24 Predrag Lecture 18 Lie groups, algebras Bridging the step
from discrete to continuous compact groups: invariant integration measures,
characters, character orthonormality and completeness relations.

Reading: ChaosBook.org Chap. Continuous symmetry factorization, only Sect
26.1 Compact groups.

2017-10-26 Predrag Lecture 19 O(2) symmetry sliced
Reading: sect. 10.3 Two-modes SO(2)-equivariant flow. For the long version, see
ChaosBook.org Chap. Relativity for cyclists, and ChaosBook.org Chap. Slice
& dice, Sect. 13.1 Only dead fish go with the flow to Sect. 13.5 First Fourier
mode slice. This is difficult material, so it is OK if you do not get it this time
around. None of this will be on the final - the main point is that once you face a
nonlinear problem, nothing is easy - not even rotations on a circle.

2017-10-26 Predrag Solutions week 10

10.1 Literature
C. K. Wong Group Theory notes, Chap 6 1D continuous groups, works out in full detail
the representations and Haar measures for 1-dimensional Lie groups, and explains the
difference between rotations and translations.

Chen, Ping and Wang [1] Group Representation Theory for Physicists, Sect 5.3
Lie algebras and Sect 5.4 Finite transformations work out several SU(2) and O(3)
examples. Sects 5.5, 5.6 and 5.7 also merit a quick read.

In his group theory notes D. Vvedensky, chapter 8, sect. 8.3 Axis–angle represen-
tation of proper rotations in three dimensions, has a very nice discussion of the (10.2)
parametrization of the SO(3) 3-dimensional group manifold: the parameter space cor-
responds to the interior of a sphere of radius π, and the over the classes of SO(3) is
given by integral over spherical shells. In sect. 8.4 he derives the Haar measure (without
calling it so).

In sect. 8.5 Vvedensky says: “For SO(2), we were able to determine the characters
of the irreducible representations directly, i.e., without having to determine the basis
functions of these representations. The structure of SO(3), however, does not allow for
such a simple procedure, so we must determine the basis functions from the outset.”
That I disagree with; in birdtracks.eu sect. 15.1 Reps of SU(2) I construct the irreps and
label them by their Young tableaus with no recourse to spherical harmonics.

10.2 SO(3) character orthogonality
In 3 Euclidean dimensions, a rotation around z axis is given by the SO(2) matrix

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 = expϕ

0 −1 0
1 0 0
0 0 0

 . (10.1)
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An arbitrary rotation in R3 can be represented by

Rn(ϕ) = e−iϕn·L L = (L1, L2, L3) , (10.2)

where the unit vector n determines the plane and the direction of the rotation by angle
ϕ. Here L1, L2, L3 are the generators of rotations along x, y, z axes respectively,

L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 , (10.3)

with Lie algebra relations
[Li, Lj ] = iεijkLk . (10.4)

All SO(3) rotations (10.2) by the same angle θ around different rotation axis n are
conjugate to each other,

exercise 10.1

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L , (10.5)

with eiφn2·L and e−iθn2·L mapping the vector n1 to n3 and back, so that the rotation
around axis n1 by angle θ is mapped to a rotation around axis n3 by the same θ. The
conjugacy classes of SO(3) thus consist of rotations by the same angle about all distinct
rotation axes, and are thus labelled the angle θ. As the conjugacy class depends only on

exercise 10.2
θ, the characters can only be a function of θ. For the 3-dimensional special orthogonal
representation, the character is

χ = 2 cos(θ) + 1 . (10.6)

For an irrep labeled by j, the character of a conjugacy class labeled by θ is
exercise 11.1

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(10.7)

To check that these characters are orthogonal to each other, one needs to define
the group integration over a parametrization of the SO(3) group manifold. A group
element is parametrized by the rotation axis n and the rotation angle θ ∈ (−π, π] ,
with n a unit vector which ranges over all points on the surface of a unit ball. Note
however, that a π rotation is the same as a −π rotation (n and −n point along the
same direction), and the n parametrization of SO(3) is thus a 2-dimensional surface of
a unit-radius ball with the opposite points identified.

The Haar measure for SO(3) requires a bit of work, here we just use note that after
the integration over the solid angle (characters do not depend on it), the Haar measure
is

dg = dµ(θ) =
dθ

2π
(1− cos(θ)) =

dθ

π
sin2(θ/2) . (10.8)

With this measure the characters are orthogonal, and the character orthogonality the-
exercise 10.3

orems follow, of the same form as for the finite groups, but with the group averages
replaced by the continuous, parameter dependant group integrals

1

|G|
∑
g∈G
→
∫
G

dg .
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(a) x 1
     
−1.5

 0
1.5

 x
2     

−1.5
 0

1.5

y
2             −1.0   

 0.0  

 1.0  

(b) x̂ 1
   

0
 0.75

1.5
 x̂

2     

−1.5
 0.75

0

ŷ
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Figure 10.1: Two-modes flow before (a) and after (b) symmetry reduction by first
Fourier mode slice. Here a long trajectory (red and blue) starting on the unstable man-
ifold of the TW1 (red), until it falls on to the strange attractor (blue) and the shortest
relative periodic orbit 1 (magenta). Note that the relative equilibrium becomes an equi-
librium, and the relative periodic orbit becomes a periodic orbit after the symmetry
reduction.

The good news is that, as explained in ChaosBook.org Chap. Relativity for cyclists
(and in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [2]), one never needs
to actually explicitly construct a group manifold parametrizations and the correspond-
ing Haar measure.

10.3 Two-modes SO(2)-equivariant flow
Consider the pair of U(1)-equivariant complex ODEs

ż1 = (µ1 − i e1) z1 + a1 z1|z1|2 + b1 z1|z2|2 + c1 z1 z2

ż2 = (µ2 − i e2) z2 + a2 z2|z1|2 + b2 z2|z2|2 + c2 z
2
1 , (10.9)

with z1, z2 complex, and all parameters real valued.
This system is a generic example of a few-modes truncation of a Fourier represen-

tation of some physical flow, such as fluid dynamics convection flow, truncated in such
a way that the model exhibits the same symmetries as the full original problem, while
being drastically simpler to study. It is a merely a toy model with no physical interpre-
tation, just like the iconic Lorenz flow. We use it to illustrate the effects of continuous
symmetry on chaotic dynamics.

We refer to this toy model as the two-modes system. It belongs to the family of
simplest ODE systems that we know that (a) have a continuous U(1) / SO(2), but no
discrete symmetry (if at least one of ej 6= 0). (b) models ‘weather’, in the same sense
that Lorenz equation models ‘weather’, (c) exhibits chaotic dynamics, (d) can be easily
visualized, in the dimensionally lowest possible setting required for chaotic dynamics,
with the full state space of dimension d = 4, and the SO(2)-reduced dynamics taking
place in 3 dimensions, and (e) for which the method of slices reduces the symmetry by
a single global slice hyperplane.
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The model has an unreasonably high number of parameters. After some experi-
mentation we fix or set to zero various parameters, and in the numerical examples that
follow, we settle for parameters set to

µ1 = −2.8 , µ2 = 1 , e1 = 0 , e2 = 1 ,

a1 = −1 , a2 = −2.66 , b1 = 0 , b2 = 0 , c1 = −7.75 , c2 = 1 , (10.10)

unless explicitly stated otherwise. For these parameter values the system exhibits
chaotic behavior. Experiment! If you find a more interesting behavior for some other
parameter values, please let us know. The simplified system of equations can now be
written as a 3-parameter {µ1, c1, a2} two-modes system,

ż1 = µ1 z1 − z1|z1|2 + c1 z1 z2

ż2 = (1− i) z2 + a2 z2|z1|2 + z2
1 . (10.11)

In order to numerically integrate and visualize the flow, we recast the equations in real
variables by substitution z1 = x1 + i y1, z2 = x2 + i y2. The two-modes system (10.9)
is now a set of four coupled ODEs

exercise 10.5

ẋ1 = (µ1 − r2)x1 + c1 (x1x2 + y1y2) , r2 = x2
1 + y2

1

ẏ1 = (µ1 − r2) y1 + c1 (x1y2 − x2y1)

ẋ2 = x2 + y2 + x2
1 − y2

1 + a2x2r
2

ẏ2 = −x2 + y2 + 2x1y1 + a2y2r
2 . (10.12)

Try integrating (10.12) with random initial conditions, for long times, times much
beyond which the initial transients have died out. What is wrong with this picture?
Figure 10.3 (a) is a mess. As we show here, the attractor is built up by a nice ‘stretch
& fold’ action, hidden from the view by the continuous symmetry induced drifts. That

exercise 10.6
is fixed by ‘quotienting’ model’s SO(2) symmetry, and reducing the dynamics to a

exercise 10.7
3-dimensional symmetry-reduced state space, figure 10.3 (b).

exercise 10.8

References
[1] J.-Q. Chen, J. Ping, and F. Wang, Group Representation Theory for Physicists

(World Scientific, Singapore, 1989).

[2] P. Cvitanović, Group Theory - Birdtracks, Lie’s, and Exceptional Groups (Prince-
ton Univ. Press, Princeton, NJ, 2008).

Exercises
10.1. Conjugacy classes of SO(3): Show that all SO(3) rotations (10.2) by the same angle

θ around any rotation axis n are conjugate to each other:

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L (10.13)
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Check this for infinitesimal φ, and argue that from that it follows that it is also true for
finite φ. Hint: use the Lie algebra commutators (10.4).

10.2. The character of SO(3) 3-dimensional representation: Show that for the 3-dimensional
special orthogonal representation (10.2), the character is

χ = 2 cos(θ) + 1 . (10.14)

Hint: evaluating the character explicitly for Rx(θ), Ry(θ) and Rz(θ).

10.3. The orthonormality of SO(3) characters: Verify that given the Haar measure (10.8),
the characters (10.7) are orthogonal:

〈χ(j)|χ(j′)〉 =

∫
G

dg χ(j)(g−1)χ(j′)(g) = δjj′ . (10.15)

10.4. U(1) equivariance of two-modes system for finite angles: Show that the vector field
in two-modes system (10.9) is equivariant under (9.1), the unitary group U(1) acting on
R4 ∼= C2 as the k = 1 and 2 modes:

g(θ)(z1, z2) = (eiθz1, e
i2θz2) , θ ∈ [0, 2π) . (10.16)

10.5. Integrate the two-modes system: Integrate (10.12) and plot a long trajectory of two-
modes in the 4d state space, (x1, y1, y2) projection, as in figure 10.3 (a). To save you time
(typing in (10.12) is tedious), we have prepared for you python code, and online graded
problem set here. If you do this exercise, please get started early, in order to make sure
that the autograder is working, and forward to us the grades that you receive from the
autograder.

10.6. SO(2) or harmonic oscillator slice: Construct a moving frame slice for action of
SO(2) on R2

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write out explicitly the group
transformation that brings any point back to the slice. What invariant is preserved by this
construction?

10.7. Invariant subspace of the two-modes system: Show that (0, 0, x2, y2) is a flow invari-
ant subspace of the two-modes system (10.12), i.e., show that a trajectory with the initial
point within this subspace remains within it forever.

10.8. Slicing the two-modes system: Choose the simplest slice template point that fixes the
1. Fourier mode,

x̂′ = (1, 0, 0, 0) . (10.17)

(a) Show for the two-modes system (10.12), that the velocity within the slice, and the
phase velocity along the group orbit are

v̂(x̂) = v(x̂)− φ̇(x̂)t(x̂) (10.18)

φ̇(x̂) = −v2(x̂)/x̂1 (10.19)

(b) Determine the chart border (the locus of point where the group tangent is either not
transverse to the slice or vanishes).

(c) What is its dimension?
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(d) What is its relation to the invariant subspace of exercise 10.7?

(e) Can a symmetry-reduced trajectory cross the chart border?

10.9. The symmetry reduced two-modes flow: Pick an initial point x̂(0) that satisfies
the slice condition for the template choice (10.17) and integrate (10.18) & (10.19). Plot
the three dimensional slice hyperplane spanned by (x1, x2, y2) to visualize the symmetry
reduced dynamics. Does it look like figure 10.3 (b)?
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group theory - week 11

SU(2) and SO(3)

Georgia Tech PHYS-7143
Homework HW11 due Tuesday, November 7, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 The characters of SO(3) representations 1 point
Exercise 11.2 Lie algebra of SO(4) and SU(2)⊗ SU(2) 6 points
Exercise 11.5 SO(n) Clebsch-Gordan series for V ⊗V . 3 points

Bonus points
Exercise 11.3 Real and pseudo-real representations of SO(3) 4 points
Exercise 11.4 Total spin of N particles 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

2017-10-31 Predrag Lecture 20 SU(2) and SO(3)
Gutkin notes, Lect. 9 SU(2), SO(3) and their representations, Sects. 1-3.2;
sect. 11.1 SU(2) – SO(3) correspondence below.

2017-11-02 Predrag Lecture 21 SO(3) birdtracks
Birdtrack notation [1] is explained here.

You can fetch clippings on irreps of SU(n) and SO(n) from Predrag’s mono-
graph [1] here. Go through Sect. 2.2 First example: SU(n), Sect. 6.1 Sym-
metrization, Sect. 6.2 Antisymmetrization, Sect. 9.1 Two-index tensors. Skim
through Sect. 9.2 Three-index tensors, and Table 9.1. There is also a glimpse of
a some birdtracking (still to be written up) in sect. 11.2 Irreps of SO(n).

Reading for the next week: Sect. 9.3 Young tableaux.

11.1 SU(2) – SO(3) correspondence
Notes by Kimberly Y. Short

Angular momentumL = r×p has three components, the operators that generate SU(2)
and satisfy [L1, L2] = iL3. If we define e = L1 + iL2, f = L1 − iL2, and h = 2L3,
then we have the following algebra:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h (11.1)

where

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
(11.2)

Matrices e and f act as the raising and lowering (also called ‘ladder’) operators L± in
this representation. (The set {e, f, h} forms an ‘sl2-triple’.)

We observe that there are n2 − 1 = 3 such operators satisfying this algebra, which
is the Lie algebra of SU(n), where n = 2. The eigenvalues of h are integers separated
by 2, and the eigenvalues of L3 must be half-integers separated by 1. Consequently,
the representation with highest L3 eigenvalue given by l must have dimension 2l + 1
(note: 2l is λmax for h).

Further, L2 = L ·L commutes with L1, L2, and L3 and hence, by Schur’s Lemma,
L2 = λI in this representation, so every vector is an eigenvector of L2. For example,
we’ve seen in quantum mechanics,

L2 Y ml = l(l + 1)~2 Y ml (11.3)

And since the spherical harmonics Y ml (θ, φ) constitute an orthonormal basis of the
Hilbert space of square-integrable functions, any vector can be expanded in a basis of
Y ml (θ, φ). L± act on Y ml in the following way:

L±Y
m
l = ~

√
l(l + 1)−m(m± 1) Y m±1

l . (11.4)
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

An element of SU(2) can be written as

eiσjαj/2 (11.5)

where σj is a Pauli matrix and αj is a number. (The exponentiation of the Pauli ma-
trices gives SU(2).) What is the importance of the 1/2 factor in the argument of the
exponential. First, consider a generic position vector r = xêi + yêj + zêk. We may
construct a matrix of the form

σ · r = σxx+ σyy + σzz

=

(
0 x
x 0

)
+

(
0 −iy
iy 0

)
+

(
z 0
0 −z

)
=

(
z x− iy

x+ iy −z

)
(11.6)

The determinant,

det
(

z x− iy
x+ iy −z

)
= −(x2 + y2 + z2) = −x2 (11.7)

is an expression for the length of a vector.
Now consider a unitary transformation of this matrix. For example,

U(σ · r)U† = σx(σ · r)σx

=

(
0 1
1 0

)(
z x− iy

x− iy z

)(
0 1
1 0

)
=

(
−z x+ iy

x− iy z

)
(11.8)

Taking this determinant, we find the same expression as before:

det
(
−z x+ iy

x− iy z

)
= −(x2 + y2 + z2) = −x2 (11.9)

We observe that, like SO(3), SU(2) preserves the lengths of vectors.
The correspondence between SO(3) and SU(2) can be made more explicit. To see

this, consider an SU(2) transformation on a two-component object called a spinor ψ
where

ψ =

(
α
β

)
, (11.10)

and

x =
1

2
(β2 − α2), y = − i

2
(α2 + β2), z = αβ . (11.11)

One may check that an SU(2) transformation on ψ is equivalent to an SO(3) transfor-
mation on x. From this equivalence, one sees that an SU(2) transformation has three
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GROUP THEORY - WEEK 11. SU(2) AND SO(3)

real parameters that correspond to the three rotation angles of SO(3). If we label the
“angles” for the SU(2) transformation by α, β, and γ, we observe, for a “rotation”
about x̂

Ux(α) =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
. (11.12)

Likewise for an SU(2) transformation about ŷ:

Uy(β) =

(
cosβ/2 sinβ/2
− sinβ/2 cosβ/2

)
(11.13)

And for the final rotation, the SU(2) transformation about ẑ:

Uz(γ) =

(
eiγ/2 0

0 e−iγ/2

)
(11.14)

Compare these three matrices to the corresponding SO(3) rotation matrices:

Rx(ζ) =

1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ

 , Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (11.15)

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

In this context, the eigenvalue equation for L3 and for L2 are differential equations
whose solutions are the spherical harmonics Y ml which take the form

eimφPml (cos θ), −l ≤ m ≤ l (11.16)

in spherical coordinates and which determine the shape of electron orbitals and their
probabilities to be found in a given region.

In quantum mechanics, the possible results of a measurement are determined by
the possible eigenvalues of an operator. As such, the possible measurable values of
the z-component of angular momentum correspond to the allowed values of L3. The
measurement outcomes are not arbitrary; the largest one, l, must be a half-integer, and
there are 2l + 1 eigenvectors. Applying the lowering operator L− one-by-one, we can
find the possible outcomes to be m ∈ {l, l − 1, ...,−l}. The angular dependence of
the corresponding wave function goes as ∼ eimφPml (cos θ). In addition, higher values
of l correspond to higher energy, so the different values of l correspond to different
electron orbitals in order of increasing energy.
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Young tableaux × = • + +

Dimensions n2 = 1 + n(n−1)
2

+ (n+2)(n−1)
2

Projectors = 1
n

+
���
���
���
���
���
���

���
���
���
���
���
���

+
{

− 1
n

}

Table 11.1: SO(n) Clebsch-Gordan series for V ⊗V .

11.2 Irreps of SO(n)

The dimension of SO(n) is given by the trace of the adjoint projection operator:

N = trPA = =
n(n− 1)

2
. (11.17)

Dimensions of the other reps are listed in table 11.1.

References
[1] P. Cvitanović, Group Theory - Birdtracks, Lie’s, and Exceptional Groups (Prince-

ton Univ. Press, Princeton, NJ, 2008).

Exercises
11.1. The characters of SO(3) representations: Show that for an irrep labeled by j, the

character of a conjugacy class labeled by θ

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(11.18)

can be obtained by taking the trace of Rjz(θ). Verify that for j = 1 this character is the
three dimensional special orthogonal representation character (10.6).

11.2. Lie algebra of SO(4) and SU(2) ⊗ SU(2). One particle Hamiltonian with a central
potential has in general SO(3) symmetry group. It turns out, however, that for Coulomb
potential the symmetry group is actually larger - SO(4), rather than SO(3). This explains
why the energy level degeneracies in the hydrogen atom are anomalously large. So SO(4)
and its representations are of a special importance in atomic physics.

(a) Show that the Lie algebra so(4) of the group SO(4) is generated by real antisym-
metric 4× 4 matrices.
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(b) What is the dimension of so(4)?

A natural basis in so(4) is provided by antisymmetric matrices Mµν , µ, ν ∈ 1, 2, 3, 4,
µ 6= ν, generators of SO(4) rotations which leave invariant the µν-plane. The elements
of these matrices are given by

(Mµν)ij = δiµδjν − δjµδiν (11.19)

(c) Check that these matrices satisfy the following commutation relationship:

[Mab,Mcd] = Madδbc +Mbcδad −Macδbd −Mbdδac.

(d) Show that Lie algebras of the groups SO(4) and SU(2) × SU(2) are isomorphic.
Path:
(d.i) Define matrices

Jk =
1

2
εkijMi,j , Kk = Mk4, k = 1, 2, 3

and

Ak =
1

2
(Jk +Kk) and Bk =

1

2
(Jk −Kk) .

(d.ii) Show that A and B satisfy the same commutation relations as two copies of
su(2).

(e) How does one construct irreps of so(4) out of irreps of su(2)?

(f) Are groups SO(4) and SU(2)⊗ SU(2) isomorphic to each other?

(B. Gutkin)

11.3. Real and pseudo-real representations of SO(3). Recall (Gutkin notes, Lect. 4
Representation Theory II, Sect. 5 5. Three types of representations) that there are exist
three types of representation which can be distinguished by the indicator:∫

G

dµ(g)χl(g
2) =


+1 real
0 complex
−1 pseudo-real

. (11.20)

Determine for which values of l = 0, 1/2, 1, 3/2, 2 . . . the representationDl of SO(3) is
real or pseudo-real.

Hint: The characters and Haar measure (10.8) of SO(3) are given by

χl(g) =
sin
([
l + 1

2

]
θ
)

sin
(
1
2
θ
) , dµ(g) =

dθ

π
sin2(θ/2) (11.21)

where θ is rotation angle for the group element g.
(B. Gutkin)

11.4. Total spin ofN particles. Consider a system of four particles with spin 1/2. Assuming
that all (except spin) degrees of freedom are frozen the Hilbert space of the system is given
by V = V1/2 ⊗ V1/2 ⊗ V1/2 ⊗ V1/2, with V1/2 being two-dimensional space for each
spin. V = ⊕Vs can be decomposed then into different sectors Vs having the total spin s
i.e., Ŝ2v = s(s + 1)v, for any v ∈ Vs. Here Ŝ2 = (

∑4
i=1 ŝi)

2 and ŝi = (ŝxi , ŝ
y
i , ŝ

z
i ) is

spin operator for i-th particle.
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(a) What are possible values s for the total spin of the system?

(b) Determine dimension of the subspace of V0 with 0 total spin. In other words: how
many times trivial representation enters into product:

D = D1/2 ⊗D1/2 ⊗D1/2 ⊗D1/2 ? (11.22)

(c) What is the answer to the above questions for N spins?

Hint: it is convenient to use (11.21) to decompose D into irreps.
(B. Gutkin)

11.5. SO(n) Clebsch-Gordan series for V ⊗V .
(a) Show that the product of two n-dimensional reps of SO(n) decomposes into three
irreps:

=
1

n
+

���
���
���
���
���
���

���
���
���
���
���
���

+

{
− 1

n

}
. (11.23)

(b) Compute the dimensions of the three irreps.
(c) Which one is the adjoint one, and why? Hint: check the invariance condition.

11.6. Splitting of degeneracies in a central potential. Hamiltonian H0 has rotational
symmetry of SO(3).

(a) What are the possible energy level degeneracies of H0?

A weak perturbation V with a symmetry Td of full tetrahedron group is added (e.g., V is
a potential created by lattice of atoms with a symmetry of Td).

(b) What will be the degeneracies of new Hamiltonian H0 + V ?

(c) Assuming that the total angular momentum of the system before the perturbation is
l = 2. How the degeneracies of the corresponding energy level will be split after
the perturbation is applied?

(B. Gutkin)

11.7. Quadrupole transitions.
a) Write Q1 = xy, Q2 = zy, Q3 = x2 − y2 and Q4 = 2z2 − x2 − y2 as components of
spherical tensor of rank 2. Hint: use spherical harmonics Y ml (θ, ϕ).
b) The last quantity Q4 is known as quadrupole moment. What are the selection rules for
transitions induced by Q4 in a system with SO(3) symmetry? In other words, for which
m, l and k, j the transition rates:

Pm,l→k,j ∼ |〈ml|Q4|j k〉|2

are non-zero?
c) By using Wigner-Eckart theorem write down the relationship between |〈ml|Q4|j k〉|2
and |〈ml|Q1|j k〉|2 in terms of Clebsch-Gordan coefficients.

(B. Gutkin)
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Lorentz group; spin

Georgia Tech PHYS-7143
Homework HW12 due Tuesday, November 14, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 12.1 Lorentz spinology 5 points
Exercise 12.2 Lorentz spin transformations 5 points

Total of 10 points = 100 % score.
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GROUP THEORY - WEEK 12. LORENTZ GROUP; SPIN

2017-11-07 Predrag Lecture 22
SO(4) = SU(2)⊗ SU(2); Lorentz group
For SO(4) = SU(2)⊗SU(2) see also birdtracks.eu chap. 10 Orthogonal groups,
pp. 121-123; sect. 20.3.1 SO(4) or Cartan A1 +A1 algebra

For Lorentz group, read Schwichtenberg [1] Sect. 3.7

2017-11-09 Predrag Lecture 23 SO(1, 3); Spin
Schwichtenberg [1] Sect. 3.7

12.1 Spinors and the Lorentz group
A Lorentz transformation is any invertible real [4× 4] matrix transformation Λ,

x′µ = Λµνx
ν (12.1)

which preserves the Lorentz-invariant Minkowski bilinear form ΛT ηΛ = η,

xµyµ = xµηµνy
ν = x0y0 − x1y1 − x2y2 − x3y3

with the metric tensor η = diag(1,−1,−1,−1).
A contravariant four-vector xµ = (x0, x1, x2, x3) can be arranged [2] into a Her-

mitian [2×2] matrix in Herm(2,C) as

x = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(12.2)

in the hermitian matrix basis

σµ = σ̄µ = (12,σ) = (σ0, σ1, σ2, σ3) , σ̄µ = σµ = (12,−σ) , (12.3)

with σ given by the usual Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (12.4)

With the trace formula for the metric

1

2
tr (σµσ̄ν) = ηµν , (12.5)

the covariant vector xµ can be recovered by

1

2
tr (xσ̄µ) =

1

2
tr (xνσν σ̄

µ) = xνη µν = xµ (12.6)

The Minkowski norm squared is given by

detx = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xµx
µ , (12.7)
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GROUP THEORY - WEEK 12. LORENTZ GROUP; SPIN

and with (12.3)

x =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
=

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (12.8)

the Minkowski scalar product is given by

xµyµ =
1

2
tr(x y) . (12.9)

The special linear group SL(2,C) in two complex dimensions is given by the set
of all matrices Λ such that

SL(2,C) = {Λ∈GL(2,C) | det Λ = +1}. (12.10)

Let a matrix Λ ∈ SL(2,C) act on x ∈ Herm(2,C) as

x 7→ x′ = ΛxΛ† (12.11)

where † denotes Hermitian conjugation. The Minkowski scalar product is preserved,
det x′ = det x . Thus x′ can also be represented by a real linear combination of gener-
alized Pauli matrices

x′ = σµx
′µ with x′µx

′µ = xµx
µ (12.12)

and Λ explicitly acts as a Lorentz transformation (12.1), with Λµν = 1
2 tr (σ̄µΛσνΛ†) .

The mapping is two-to-one, as two matrices±Λ ∈ SL(2,C) generate the same Lorentz
transformation ΛxΛ† = (−Λ)x(−Λ)†. This Λ belong to the proper orthochronous
Lorentz group SO+(1, 3), and it can be shown that SL(2,C) is simply connected and
is the double universal cover of the SO+(1, 3).

Consider the fully antisymmetric Levi-Civita tensor ε = −ε−1 = −εT in two
dimensions

ε = iσ2 =

(
0 1
−1 0

)
. (12.13)

This defines a symplectic (i.e., skew-symmetric) bilinear form 〈u, v〉 = −〈v, u〉 on two
spinors u and v, elements of the two-dimensional complex vector (or spinor) space C2

u =

(
u1

u2

)
, v =

(
v1

v2

)
, (12.14)

equipped with the symplectic form

〈u, v〉 = u1v2 − u2v1 = uTεv . (12.15)

This symplectic form is SL(2,C)-invariant

〈u, v〉 = uTεv = 〈Λu,Λv〉 = uTΛTεΛv , (12.16)

so one can interpret the group acting on spinors as SL(2,C) ∼= Sp(2,C) , the complex
symplectic group in two dimensions

Sp(2,C) = {Λ∈GL(2,C) |ΛTεΛ = ε} . (12.17)
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Summary. The group of Lorentz transformations of spinors is the group SL(2,C)
of [2×2] complex matrices with determinant 1, i.e., the invariant tensor is the 2-index
Levi-Civita εAB . The SL(2,C) matrices are parametrized by three complex dimensions
and therefore six real ones (the matrices have four complex numbers and one complex
constraint on the determinant). This matches the 6 dimensions of the group manifold
associated with the Lorentz group SO(1, 3).

Andrew M. Steane writes “A spinor is the most basic mathematical object that can
be Lorentz-transformed.” His An introduction to spinors, arXiv:1312.3824, might help
you develop intuition about spinors.

References

[1] J. Schwichtenberg, Physics from Symmetry (Springer, Berlin, 2015).

[2] E. Wigner, “On unitary representations of the inhomogeneous Lorentz group”,
Ann. Math. 40, 149–204 (1939).

Exercises
12.1. Lorentz spinology.

Show that

(a)
x2 = xµx

µ = det x (12.18)

(b)

xµy
µ =

1

2
(det (x+ y)− det (x)− det (y)) (12.19)

(c)

xµy
µ =

1

2
tr (x y) , (12.20)

where y = σ̄µy
µ

12.2. Lorentz spin transformations.
Let a matrix Λ ∈ SL(2,C) act on hermitian matrix x as

x 7→ x′ = ΛxΛ† . (12.21)

(a) Check that x′ is Hermitian, and the Minkowski scalar product (12.19) is preserved.

(b) Show that Λ explicitly acts as a Lorentz transformation x′µ = Λµνx
ν .

(c) Show that the mapping from a Λ ∈ SL(2,C) to the Lorentz transformation in
SO(1, 3) is two-to-one.
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(d) Consider the Levi-Civita tensor ε = −ε−1 = −εT in two dimensions,

ε =

(
0 1
−1 0

)
, (12.22)

and the associated symplectic form

〈u, v〉 = uTεv = u1v2 − u2v1 . (12.23)

Show that this symplectic form is SL(2,C)-invariant

〈u, v〉 = uTεv = 〈Λu,Λv〉 = uTΛTεΛv . (12.24)
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group theory - week 13

Simple Lie algebras; SU(3)

Georgia Tech PHYS-7143
Homework HW13 due Tuesday, November 21, 2017

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 13.1 Root systems of simple Lie algebras 5 points
Exercise 13.2 Meson octet 5 points

Bonus points
Exercise 13.3 SU(3) symmetry in 3D Harmonic Oscillator 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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(a) (b)

Figure 13.1: (a) The meson (pseudoscalars) octet. (b) The quark triplet, the anti-quark
triplet and the gluon octet. (Wikipedia).

2017-11-14 Predrag Lecture 24 Representations of simple alge-
bras
Gutkin notes, Lect. 10 Representations of simple algebras, general construction.
Application to SU(3), Sects. 1-4.

2017-11-16 Predrag Lecture 25 Cartan construction of SU(3) ir-
reps
Gutkin notes, Lect. 10 Representations of simple algebras, general construction.
Application to SU(f3), Sect. 5.

13.1 Literature

Mathematicians map E8, and it is bigger than the human genome.

Exercises

13.1. Root system of simple Lie algebras.
a) Determine dimensions of Lie algebras so(N), su(N) and dimensions of their Cartan
subalgebras. What is the number of the positive roots for these Lie algebras?

b) Show thatN ×N diagonal matricesHi with zero traces and uper/lower cornerN ×N
matrices E(a,b) with the elements E(a,b)

i,j = δiaδib provide Cartan-Weyl basis of su(N).
To put it differently, show that E(a,b) are eigenstates for adjoint representation of Hi’s.

(B. Gutkin)

13.2. Meson octet. In Gutkin lecture notes, Lect. 11 Strong interactions: flavor SU(3), the
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meson octet, figure 13.1 (a)

Φ =


π0
√
2

+ η√
6

π+ K+

π− − π0
√
2

+ η√
6

K0

K− K0 − 2η√
6



=


π0
√
2

π+ 0

π− − π0
√
2

0

0 0 0

+

 0 0 K+

0 0 K0

K− K0 0

+
η√
6

1 0 0
0 1 0
0 0 −2

 ,(13.1)

is interpreted as arising from the adjoint representation of SU(3), i.e., the traceless part of
the quark-antiquark 3⊗ 3 = 1⊕ 8 outer product (see figure 13.1 (b)),uu ud us

du dd ds

su sd ss

 . (13.2)

where we have replaced in (13.1) the constituent q ⊗ q combinations by the names of the
elementary particles they build.
Given the quark quantum numbers

Q I I3 Y B

u 2/3 1/2 1/2 1/3 1/3
d -1/3 1/2 -1/2 1/3 1/3
s -1/3 0 0 -2/3 1/3

verify the strangeness and charge assignments of figure 13.1 (a).

13.3. SU(3) symmetry in 3D Harmonic Oscillator. The Hamiltonian of 3D isotropic
harmonic oscillator is given by

H =

3∑
i=1

p2i
2m

+
mω2

2
x2i = ~ω

3∑
i=1

(a†iai + 1/2),

where ai =
√

mω
2~ xi + i

√
1

2mω~pi is creation ( a†i resp. annihilation) operator satisfying

[ai, a
†
j ] = δij , [ai, aj ] = 0.

a) Show that ai → Ui,jaj , with U ∈ U(3) is a symmetry of the Hamiltonian. In other
words isotropic 3D harmonic oscillator has U(3) rather than O(3) symmetry!
b) Calculate degeneracy of the n-th level En = ω~(n+ 3/2) of the oscillator.
c) By comparison of dimensions find out which representations of SU(3) appear in the
spectrum of harmonic oscillator.

(B. Gutkin)
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group theory - week 14

Flavor SU(3)

Georgia Tech PHYS-7143
Homework HW14 due Tuesday, November 28

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 14.1 Gell-Mann–Okubo mass formula 8 points

Bonus points
Exercise 15.3 Young tableaux for SU(3) 3 points
Exercise 15.4 Irrep projection operators for unitary groups 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 14. FLAVOR SU(3)

Figure 14.1: A lattice gauge theory calculation of the light QCD spectrum. Horizontal
lines and bands are the experimental values with their decay widths. The π,K and and
Ξ have no error bars because they are used to set the light and strange quark masses
and the overall scale respectively. From Scholarpedia.

2017-11-21 Predrag Lecture 26 Flavor SU(3)
Gutkin notes, Lect. 11 Strong interactions: flavor SU(3). Heisenberg isospin
SU(2). Gell-Mann flavor SU(3). Gell-Mann-Okubo mass formula.

2017-11-24 Predrag (No lecture) Young tableaux
Young tableaux for SU(3) and SU(n) have not yet been covered in the lectures,
but you can easily learn them yourself, from, for example, Gutkin notes, Lect. 12
Young tableaux. Boris Gutkin is a grownup, beyond learning new stuff, so he
follows old fashioned references such as Fulton and Harris [4]. The resulting
simple recipe with 0 explanation can be found, for example, here C.G. Wohl.

A modern exposition is given in Group Theory – Birdtracks, Lie’s, and Excep-
tional Groups, Chapt. 9 Unitary groups. Currently I am a fan of the Alcock-
Zeilinger algorithm [1–3], based on the simplification rules of ref. [2], which
leads to explicitly Hermitian and compact expressions for the projection opera-
tors. Alcock-Zeilinger fully supersedes Cvitanović’s formulation, and any future
full exposition of birdtracks reduction of SU(N) tensor products into irreducible
representations should be based on the Alcock-Zeilinger algorithm.

The Gell-Mann-Okubo mass sum rules [5–7] are an easy consequence of the ap-
proximate SU(3) flavor symmetry. Determination of quark masses is much harder -
they are parameters of the standard model, determined by optimizing the spectrum of
particle masses obtained by lattice QCD calculations as compared to the experimental
baryon and meson masses. The best determination of the mass spectrum as of 2012
is given in figure 14.1. Up, down quarks are about 3 and 6 MeV, respectively, with
strange quark mass about 100 MeV, all with large error brackets. As of 2017, I have
not found an update to figure 14.1, but the latest on the subject can probably be traced
in Georg von Hippel’s latticeqcd.blogspot.com.

PHYS-7143-17 week14 118 2017-11-21

HTTP://BIRDTRACKS.EU/COURSES/PHYS-7143-17/SCHEDULE.HTML
http://www.scholarpedia.org/article/Lattice_gauge_theories
http://birdtracks.eu/courses/PHYS-7143-17/groups.pdf
http://birdtracks.eu/courses/PHYS-7143-17/groups.pdf
http://pdg.lbl.gov/2010/reviews/rpp2010-rev-young-diagrams.pdf
http://birdtracks.eu/version9.0/GroupTheory.pdf
http://latticeqcd.blogspot.com/


EXERCISES

References
[1] J. Alcock-Zeilinger and H. Weigert, “Transition operators”, J. Math. Phys. 58,

051702 (2016).

[2] J. Alcock-Zeilinger and H. Weigert, “Compact Hermitian Young projection op-
erators”, J. Math. Phys. 58, 051702 (2017).

[3] J. Alcock-Zeilinger and H. Weigert, “Simplification rules for birdtrack opera-
tors”, J. Math. Phys. 58, 051701 (2017).

[4] W. Fulton and J. Harris, Representation Theory (Springer, New York, 1991).

[5] M. Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry,
Synchrotron Laboratory Report CTSL-20 (CalTech, 1961).

[6] M. Gell-Mann, “Symmetries of baryons and mesons”, Phys. Rev. 125, 1067–
1084 (1962).

[7] S. Okubo, “Note on unitary symmetry in strong interactions”, Progr. Theor.
Phys. 27, 949–966 (1962).

Exercises
14.1. Gell-Mann–Okubo mass formula. The mass symmetry-breaking interaction for

an isospin multiplet is proportional to the 3rd component of the isospin operator, I3.
Similarly, the symmetry-breaking interaction of SU(3) for the meson octet is given by the
8th component of the octet operator Y = λ8. Derive the GMO mass formula for mesons

m2
η =

4m2
K −m2

π

3
. (14.1)

by eliminating the parameter for the strength of this interaction, as in Gutkin lecture notes,
Lect. 11 Strong interactions: flavor SU(3) .
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group theory - week 15

Many particle systems. Young
tableaux

Georgia Tech PHYS-7143
Homework HW15 due Tuesday, December 5

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 15.1 Representations of SU(3) 5 points
Exercise 15.2 Young tableaux for S5 3 points

Bonus points
Exercise 15.3 Young tableaux for SU(3) 3 points
Exercise 15.4 Irrep projection operators for unitary groups 5 points

Total of 20 points = 100 % score.
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GROUP THEORY - WEEK 15. MANY PARTICLE SYSTEMS. YOUNG
TABLEAUX

2017-11-28 Predrag Lecture 28 Many particle systems. Young
tableaux
Gutkin notes, Lect. 12 Many particle systems.

Excerpt from Predrag’s monograph [4], fetch it here: Sect. 9.3 Young tableaux.

2017-11-30 Predrag Lecture 29 Young tableaux
Excerpts from Predrag’s monograph [4], fetch them here:
Sect. 2.2 First example: SU(n) (skim over casimirs and beyond: this example
gives you a flavor of birdtracks computations, you do not need to work it out in
detail),
Sect. 6.1 Symmetrization,
Sect. 6.2 Antisymmetrization,
Sect. 9.1 Two-index tensors,
Sect. 9.2 Three-index tensors, and Table 9.1.

Reading for this week: Sect. 9.3 Young tableaux.

15.1 Literature
The clearest current exposition and the most powerful irrep reduction of SU(n) is given
in the triptych of papers by Judith Alcock-Zeilinger and her thesis adviser H. Weigart,
University of Cape Town:

Simplification rules for birdtrack operators [3],
Compact Hermitian Young projection operators [2], and
Transition operators [1].

However, you want to study these in detail only if your research leads you to study
of multiparticle states.

References
[1] J. Alcock-Zeilinger and H. Weigert, “Transition operators”, J. Math. Phys. 58,

051702 (2016).

[2] J. Alcock-Zeilinger and H. Weigert, “Compact Hermitian Young projection op-
erators”, J. Math. Phys. 58, 051702 (2017).

[3] J. Alcock-Zeilinger and H. Weigert, “Simplification rules for birdtrack opera-
tors”, J. Math. Phys. 58, 051701 (2017).

[4] P. Cvitanović, Group Theory - Birdtracks, Lie’s, and Exceptional Groups (Prince-
ton Univ. Press, Princeton, NJ, 2008).
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Exercises
15.1. Representations of SU(3). Any irrep of SU(3) can be labeled D(p, q) by its highest

weight λ = pλ1 + qλ2, where λ1,2 are the two fundamental weights.

(a) Find all irrepsD(p, q) of SU(3) with the dimensions less then 20 (see lecture notes
for the dimensions of D(p, q)).

(b) Draw the lattice Λ generated by λ1,2 and mark there all the weights v (i.e., lattice
nodes) which belong to irrep. D(3, 0). Is D(3, 0) a real irrep?

(c) Consider product (reducible) representation 3 ⊗ 3, where 3 = D(1, 0) is the fun-
damental irrep. Mark all the weights v on Λ which belong to 3⊗ 3. Using this find
out decomposition of 3⊗ 3 into irreps:

3⊗ 3 = �⊕4, � =?, 4 =?

Hint: see lecture notes for similar exercise on 3⊗ 3̄.

(d) Using previous results find decomposition of 3⊗ 3⊗ 3 into irreps.

(B. Gutkin)

15.2. Young tableaux for S5.

(a) Draw all Young diagrams for the symmetric group S5. How many irreducible rep-
resentations has it? Which of the diagrams correspond to one-dimensional irreps?

(b) Find Young diagram corresponding to the irrep of S5 with the largest dimension?
Draw Young tableaux corresponding to this irrep/Young diagram. What is the di-
mension of this irrep?

(c) What are the dimensions of the remaining irreps?

(B. Gutkin)

15.3. Young tableaux for SU(3). Solve exercise 15.1 (c,d) by using Young tableaux.
Remark: If Young tableaux for SU(3) are not covered in the lectures, learn them your-
self from, for example, Group Theory Birdtracks, Lie’s, and Exceptional Groups. The
resulting simple recipe with 0 explanation can be found, for example, here C.G. Wohl.

(B. Gutkin)

15.4. Irrep projection operators for unitary groups. Derive projection operators and
dimensions for irreps of the Kronecker product of the defining and the adjoint reps of
SU(n) listed in Group Theory Birdtracks, Lie’s, and Exceptional Groups, Table 9.3.
(Ignore “indices," we have not defined them.)
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group theory - week 16

Wigner 3- and 6-j coefficients

Georgia Tech PHYS-7143
Homework HW16 due whenever - optional, not graded

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 16.1 Gravity tensors, part (a) 2 points
Exercise 16.1 Gravity tensors, part (b) 4 points
Exercise 16.1 Gravity tensors, part (c) 1 point
Exercise 16.1 Gravity tensors, part (d) 2 points
Exercise 16.1 Gravity tensors, part (e) 3 points
Exercise 16.1 Gravity tensors, part (f) 4 points
Exercise 16.1 Gravity tensors, part (g) 3 points
Exercise 16.1 Gravity tensors, part (h) 6 points

Bonus points
Exercise 16.1 Gravity tensors, part (i) 4 points
Exercise 16.1 Gravity tensors, part (j) 10 points

Total of 20 points = 100 % score.
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GROUP THEORY - WEEK 16. WIGNER 3- AND 6-J COEFFICIENTS

2017-12-05 Predrag Lecture 30 Wigner 3- and 6-j coefficients
Excerpts from Predrag’s monograph [4], fetch them here:

Background reading on groups, vector spaces, tensors, invariant tensors, invari-
ance groups (my advice is to start with Sect. 5.1 Couplings and recouplings, then
backtrack to these introductory sections as needed):
Sect. 3.2 Defining space, tensors, reps,
Sect. 3.3 Invariants,
Sect. 4.1 Birdtracks,
Sect. 4.2 Clebsch-Gordan coefficients, and
Sect. 4.3 Zero- and one-dimensional subspaces.

The final result, discussed in the day’s whiteboard-side chat, is invariant and
highly elegant: any group-theoretical invariant quantity can be expressed in
terms of Wigner 3- and 6-j coefficients:
Sect. 5.1 Couplings and recouplings,
Sect. 5.2 Wigner 3n-j coefficients, and
Sect. 5.3 Wigner-Eckart theorem.

The rest is just bedside reading, nothing technical:
Sect. 4.8 Irrelevancy of clebsches and
Sect. 4.9 A brief history of birdtracks.

Course finale: Indiana Jones video (click here).

16.1 Literature
We noted in sect. 2.1 that a practically-minded physicist always has been, and continues
to be resistant to gruppenpest. Apparently already in 1910 James Jeans wrote, while
discussing what should a physics syllabus contain: “We may as well cut out the group
theory. That is a subject that will never be of any use in physics.”

Voit writes here about the “The Stormy Onset of Group Theory in the New Quan-
tum Mechanics,” citing Bonolis [2] From the rise of the group concept to the stormy
onset of group theory in the New Quantum Mechanics. A saga of the invariant charac-
terization of physical objects, events and theories.

Chayut [3] From the periphery: the genesis of Eugene P. Wigner’s application of
group theory to quantum mechanics traces the origins of Wigner’s application of group
theory to quantum physics to his early work as a chemical engineer, in chemistry and
crystallography. “In the early 1920s, crystallography was the only discipline in which
symmetry groups were routinely used. Wigner’s early training in chemistry exposed
him to conceptual tools which were absent from the pedagogy available to physicists
for many years to come. This both enabled and pushed him to apply the group theoretic
approach to quantum physics. It took many years for the approach first introduced by
Wigner in the 1920s – and whose reception by the physicists was initially problematical
– to assume the pivotal place it now holds.” Another historical exposition is given by
Scholz [6] Introducing groups into quantum theory (1926–1930).
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So what is group theory good for? By identifying the symmetries, one can apply
group theory to determine good quantum numbers which describe a physical state (i.e.,
the irreps). Group theory then says that many matrix elements vanish, or shows how
are they related to others. While group theory does determine the actual value of a
matrix element of interest, it vastly simplifies its calculation.

The old fashioned atomic physics, fixated on SO(3) / SU(2), is too explicit, with too
many bras and kets, too many square roots, too many deliriously complicated Clebsch-
Gordan coefficients that you do not need, and way too many labels, way too explicit for
you to notice that all of these are eventually summed over, resulting in a final answer
much simpler than any of the intermediate steps.

I wrote my book [4] Group Theory - Birdtracks, Lie’s, and Exceptional Groups to
teach you how to compute everything you need to compute, without ever writing down
a single explicit matrix element, or a single Clebsch-Gordan coefficient. There are two
versions. There is a particle-physics / Feynman diagrams version that is index free,
graphical and easy to use (at least for the low-dimensional irreps). The key insights
are already in Wigner’s book [8]: the content of symmetry is a set of invariant numbers
that he calls 3n-j’s. Then there are various mathematical flavors (Weyl group on Cartan
lattice, etc.), elegant, but perhaps too elegant to be computationally practical.

But it is nearly impossible to deprogram people from years of indoctrination in
QM and EM classes. The professors have no time to learn new stuff, and students love
manipulating their mu’s and nu’s.
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EXERCISES

Exercises
16.1. Gravity tensors. In this problem we will apply diagrammatic methods (“birdtracks”)

to construct and count the numbers of independent components of the “irreducible rank-
four gravity curvature tensors.” However, any notation that works for you is OK, as long
as you obtain the same irreps and their dimensions. The goal of this exercise (longish, as
much of it is the recapitulation of the material covered in the book) is to give you basic
understanding for how Young tableaux work for groups other than U(n). We start with

Part 1 : U(n) Young tableaux decomposition.

(a) The Riemann-Christoffel curvature tensor of general relativity has the following
symmetries (see, for example, Weinberg [7] or the Riemann curvature tensor wiki):

Rαβγδ = −Rβαγδ (16.1)

Rαβγδ = Rγδαβ (16.2)

Rαβγδ +Rβγαδ +Rγαβδ = 0 . (16.3)

Introducing a birdtrack notation for the Riemann tensor

Rαβγδ =

α

δ

β

γ
R , (16.4)

check that we can state the above symmetries as

Rαβγδ = −Rβαγδ

R = R , (16.5)

Rαβγδ = Rγδαβ

R = R , (16.6)

Rαβγδ + Rβγαδ + Rγαβδ = 0

R + R + R = 0 . (16.7)

The first condition says that R lies in the ⊗ subspace.

(b) The second condition says that R lies in the ↔ interchange-symmetric sub-
space.

Use the characteristic equation for

to split into the and irreps:

1

2

(
+

)
=

4

3
+ . (16.8)

PHYS-7143-17 week16 128 2017-12-04

https://en.wikipedia.org/wiki/Riemann_curvature_tensor


EXERCISES

(c) Show that the third condition (16.7) says that R has no components in

the irrep:

R + R + R = 3 R = 0 . (16.9)

Hence, the symmetries of the Riemann tensor are summarized by the irrep
projection operator [5]:

(PR)αβγδ,
δ′γ′β′α′ =

4

3

α
β

δ

γ

ά

´

´

´

γ

δ

β (16.10)

(d) Verify that the Riemann tensor is in the subspace

(PRR)αβγδ = (PR)αβγδ,
δ′γ′β′α′ Rα′β′γ′δ′ = Rαβγδ

4

3
R = R . (16.11)

(e) Compute the number of independent components of the Riemann tensor Rαβγδ by
taking the trace of the irrep projection operator:

dR = trPR =
n2(n2 − 1)

12
. (16.12)

Part 2 : SO(n) Young tableaux decomposition
The Riemann tensor has the symmetries of the irrep of U(n). However, gravity
is also characterized by the symmetric tensor gαβ , that reduces the symmetry to a local
SO(n) invariance (more precisely SO(1, n− 1), but compactness is not important here).
The extra invariants built from gαβ’s decompose U(n) reps into sums of SO(n) reps.
Orthogonal group SO(n) is the group of transformations that leaves invariant a symmetric
quadratic form (q, q) = gµνq

µqν , with a primitive invariant rank-2 tensor:

gµν = gνµ = µ ν µ, ν = 1, 2, . . . , n . (16.13)

If (q, q) is an invariant, so is its complex conjugate (q, q)∗ = gµνqµqν , and

gµν = gνµ = µ ν (16.14)

is also an invariant tensor. The matrix Aνµ = gµσg
σν must be proportional to unity, as

otherwise its characteristic equation would decompose the defining n-dimensional rep. A
convenient normalization is

gµσg
σν = δνµ

= . (16.15)

As the indices can be raised and lowered at will, nothing is gained by keeping the arrows.
Our convention will be to perform all contractions with metric tensors with upper indices
and omit the arrows and the open dots:

gµν ≡ µ ν . (16.16)
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The U(n) 2-index tensors can be decomposed into a sum of their symmetric and antisym-
metric parts. Specializing to the subgroup SO(n), the rule is to lower all indices on all
tensors, and the symmetrization projection operator is written as

Sµν,ρσ = gρρ′gσσ′Sµν ,
ρ′σ′

=
1

2
(gµσgνρ + gµρgνσ)

From now on, we drop all arrows and gµν ’s and write the decomposition into symmetric
and antisymmetric parts as

= +

gµσgνρ =
1

2
(gµσgνρ + gµρgνσ) +

1

2
(gµσgνρ − gµρgνσ) . (16.17)

The new invariant tensor, specific to SO(n), is the index contraction:

Tµν,ρσ = gµνgρσ , T = . (16.18)

Its characteristic equation

T2 = = nT (16.19)

yields the trace and the traceless part projection operators. As T is symmetric, ST = T,
only the symmetric subspace is reduced by this invariant.

(f) Show that SO(n) 2-index tensors decompose into three irreps:

traceless symmetric:

(P2)µν,ρσ =
1

2
(gµσgνρ + gµρgνσ)− 1

n
gµνgρσ = − 1

n
,

(16.20)

singlet: (P1)µν,ρσ =
1

n
gµνgρσ =

1

n
, (16.21)

antisymmetric: (P3)µν,ρσ =
1

2
(gµσgνρ − gµρgνσ) = .(16.22)

What are the dimensions of the three irreps?

(g) In the same spirit, the U(n) irrep is decomposed by the SO(n) intermediate
2-index state invariant matrix

Q = . (16.23)

Show that the intermediate 2-index subspace splits into three irreducible reps by
(16.20) – (16.22):

Q =
1

n
+

{
− 1

n

}
+

= Q0 + QS + QA . (16.24)
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Show that the antisymmetric 2-index state does not contribute

PRQA = 0 . (16.25)

(Hint: The Riemann tensor is symmetric under the interchange of index pairs.)

(h) Fix the normalization of the remaining two projection operators by computing
Q2
S ,Q

2
0:

P0 =
2

n(n− 1)
, (16.26)

PS =
4

n− 2

{
− 1

n

}
(16.27)

and compute their dimensions.
This completes the SO(n) reduction of the U(n) irrep (16.11):

U(n) → SO(n)

→ + + ◦

PR = PW + PS + P0

n2(n2−1)
12

= (n+2)(n+1)n(n−3)
12

+ (n+2)(n−1)
2

+ 1

(16.28)
The projection operator for the SO(n) traceless irrep is:

PW = PR −PS −P0

PW =
4

3
− 4

n− 2
+

2

(n− 1)(n− 2)
.(16.29)

(i) The above three projection operators project out the standard, SO(n)-irreducible
general relativity tensors:

Curvature scalar:

R = − R = Rµ ν
νµ (16.30)

Traceless Ricci tensor:

Rµν −
1

n
gµνR = − R +

1

n
R (16.31)

Weyl tensor:

Cλµνκ = (PWR)λµνκ

= R − 4

n− 2
R +

2

(n− 1)(n− 2)
R

= Rλµνκ +
1

n− 2
(gµνRλκ − gλνRµκ − gµκRλν + gλκRµν)

− 1

(n− 1)(n− 2)
(gλκgµν − gλνgµκ)R . (16.32)
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The numbers of independent components of these tensors are given by the dimen-
sions of corresponding irreducible subspaces in (16.28).
What is the lowest dimension in which the Ricci tensor contributes? the Weyl tensor
contributes? Show that in 2, respectively 3 dimensions, we have

n = 2 : Rλµνκ = (P0R)λµνκ = 1
2
(gλνgµκ − gλκgµν)R

n = 3 : = gλνRµκ − gµνRλκ + gµκRλν − gλκRµν
− 1

2
(gλνgµκ − gλκgµν)R .

(16.33)

(j) The last example of this exercise is an application of birdtracks to general relativ-
ity index manipulations. The object is to find the characteristic equation for the
Riemann tensor in four dimensions.
The antisymmetrization tensorAa1a2...,

bp...b2b1 has nonvanishing components, only
if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensor A has no nonvanishing components:

1

2

p

..
. ..
. = 0 if p > n . (16.34)

This identity implies that for p > n, not all combinations of p Kronecker deltas are
linearly independent. A typical relation is the p = n+ 1 case

0 =

n+1

...

21 ...

=

...

−
...

+

...

− . . . . (16.35)

Contract (16.34) with two Riemann tensors:

0 =
R

R

, (16.36)

and obtain the characteristic equation by expanding with (16.35):

0 = 2
R R

− 4
R R

−4
R R

+ 2R
R (16.37)

−

{
R2

2
− 2 R R +

1

2

R R
}

.

This identity has been used by Adler et al., eq. (E2) in ref. [1].
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group theory - week 17

An overview, and the epilogue

This whole course has only one message:

If you have a symmetry, use it!
These notes in isolation do not make much sense - the essence of teaching is unveiling
of concepts on a black/white board at human pace, interacting in live time. But never-
theless the notes might be useful to you, as they are hyperlinked to the literature that
develops a given topic into depth. Here is a brief summary of the course, the ideas you
want to take with you:

week 1 Linear algebra
Projection operators (1.33): eigenvalues of a matrix split a vector space into
subspaces.

week 2 Finite groups
Groups, permutations, group multiplication tables, rearrangement theorem, sub-
groups, cosets, classes.

week 3 Representation theory
Irreps, regular representation. So far, everything was intuitive: a representation
of a group was bunch of 0’s and 1’s indicating how a group operation permutes
physical objects. But now the first surprise:

Any representation of any finite group can be put into unitary form, and so
complex-valued vector spaces and unitary representation matrices make their
entrance.

week 4 Characters
Schur’s Lemma. Unitary matrices can be diagonalized, and from that follows
the Wonderful Orthogonality Theorem for Characters (coordinate independent,
intrinsic numbers), and the full reducibility of any representation of any finite
group.
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week 5 Classes
The algebra of central or ‘all-commuting’ class operators, connects the reduction
in terms of characters to the projection operators of week 1. The key idea:

Define a group by what objects (primitive invariant tensors) it leaves invariant.

week 6 Fundamental domain
Dynamical systems application: the Lorenz flow and its C2 symmetry.

week 7 Lorenz to Van Gogh; Diffusion confusion
(1) Conclusion of the finite groups part of the course: Lorenz flow desymmetriza-
tion: if the system is nonlinear, its symmetry reduction is not easy.

(2) So far, everything was finite and compact. Next: two distinct ways of go-
ing infinite: (a) discrete translations, exemplified by deterministic diffusion and
space groups of week 8, and (b) continuous Lie groups, exemplified by rotations
of week 9.

week 8 Space groups
Translation group, Bravais lattice, wallpaper groups, reciprocal lattice, Brilluoin
zone.

week 9 Continuous groups
Lie groups. Matrix representations. Invariant tensors. Lie algebra. Adjoint
representation, Jacobi relation. Birdtracks.

Irreps of SO(2) and O(2) Clebsch-Gordan series (i.e., reduction of their prod-
ucts).

week 10 SO(3) characters; O(2) symmetry sliced
(a) Group integrals. SO(3) character orthogonality.

(b) Continuous symmetry reduction for a nonlinear system is much harder than
discrete symmetry reduction of week 7. “Slicing” is a research level topic, will
not be included in the final.

week 11 SU(2) and SO(3)

SU(2)' SO(3) correspondence leads to the next rude awakening; our 3-dimensional
Euclidean space is not fundamental! All irreps of SO(3) are built from 2-dimensional
complex vectors, or 1/2 spins. Birdtrack notation for the smallest irreps of
SO(n).

week 12 Lorentz group; spin
(a) We now loose compactness: even though the SO(1, 3) Lorentz invariance
group of the Minkowski space symmetries is not compact, its Lie algebra still
closes, as for the compact SO(4).

(b) SO(4) ' SU(2)⊗SU(2) correspondence leads to the Minkowski 4-dimensional
space not being fundamental either - all irreps of the Lorentz group are built from
combinations of 2-dimensional complex vectors, or spinors.
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(c) Not included in the final: together with general relativity, this leads to replace-
ment of the Minkowski continuum by a 4-dimensional spacetime (or quantum)
foam, a candidate theory of quantum gravity.

week 13 Simple Lie algebras; SU(3)

The next profound shift:

So far all our group notions were based on tangible, spatial intuition: permuta-
tions, reflections, rotations. But now Lie groups take on a life of their own.

(a) The SO(3) theory of angular momenta generalizes to Killing-Cartan lattices,
and a fully abstract enumeration of all possible semi-simple compact Lie groups.

(b) SU(2) is promoted to an internal isospin symmetry, decoupled from our Eu-
clidean spatial intuition. Modern particle physics is born, with larger and larger
internal symmetry groups, tacked onto higher and higher dimensional continuum
spacetimes.

week 14 Flavor SU(3)

Gell-Mann–Okubo formula. The next triumph of particle physics is yet another
departure; observed baryons and mesons are built up from quarks, particles by
assumption unobservable in isolation.

week 15 Young tableaux
We have come full circle now: as a much simpler alternative to the Cartan-
Killing construction, irreps of the finite symmetric group Sn classify the irreps
of the continuous SU(n) symmetry multi-particle states.

week 16 Wigner 3- and 6-j coefficients
The goal of group theory is to predict measurable numbers, numbers independent
of any particular choice of coordinate. The full reducibility says that any such
number is built from 3- and 6-j coefficients: they are the total content of group
theory.
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