
group theory - week 8

Graphene

Georgia Tech PHYS-7143
Homework HW8 due Tuesday, March 8, 2016

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Space group 2 points
Exercise 8.2 Band structure of a square lattice 8 points

Bonus points
Exercise 8.3 Tight binding model 8 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 8. GRAPHENE

2016-03-01 Boris Lecture 15 Space groups
Gutkin lecture notes Lecture 7 Applications III. Energy Band Structure, Sects. 1.
Lattice symmetries and 2. Band structure.

2016-03-01 Boris Lecture 16 Graphene
Gutkin lecture notes Lecture 7 Applications III. Energy Band Structure, Sect. 7.3
Band structure of graphene.

8.1 Literature
2016-02-22 Predrag To understand the order of the full group Oh of symmetries of

the cube, exercise 5.1 a.ii), it is instructive to look at figure 8.1 (figs. 8.8 and 8.12
in Joshi [8]). When a cube is a building block that tiles a 3D cubic lattice, it is
referred to as the ‘elementary’ or ‘Wigner-Seitz’ cell, and its Fourier transform
is called ‘the first Brillouin zone’ in ‘the reciprocal space’. The special points
and the lines of symmetry in the Brillouin zone are shown in figure 8.1 a). The
tetrahedron ΓXMR, an 1/48th part of the Brillouin zone, is the fundamental
domain, as the action of the 48 elements of the point group Oh on it tiles the
Brillouin zone without any gaps or overlaps. We will return to this when we
discuss space groups (symmetries of discrete lattices).

(a) (b)

Figure 8.1: (a) The special points and the lines of symmetry in the first Brillouin zone of a
simple cubic lattice define its fundamental domain, the tetrahedron ΓXMR. (b) Just not to get
any ideas that this is easy: the fundamental domain for the first Brillouin zone of a bcc lattice.
(From Joshi [8].)

2016-02-22 Predrag OK, I’ll confess. The reason why it is lovely to teach graduate
level physics is that one is allowed to learn new things while doing it. I’ll now
sketch one, perhaps wild, direction that you are completely free to ignore.

Here is the problem of space groups in the nutshell. The Euclidean invari-
ance on Newtonian space-time (including its subgroups, such as the discrete
space groups), and the Poincaré invariance of special-relativistic space-time is a
strange brew: the space is non-compact (homogeneity), while rotations are com-
pact (isotropy). That leads to the conceptually awkward situation of mixing a
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group of additions (translations) with a group of multiplications (rotations). To
work with such group we first translate objects to the origin and then rotate them
with the respect to the origin. That’s not nice, because by translation invariance
any point is as good as any other, there is no preferred origin. There is no reason
why one should translate first, rotate second. What one needs is a formalism that
implements translations and rotations on the same footing.

If I understand Hestenes [5] right (also David Finkelstein and perhaps Holger
Beck Nielsen have told me things in this spirit) a way to accomplish that is to
replace the flat translational directions by a compact manifold where translations
and rotations are non-commuting multiplicative group operations.

A part of the Hestenes program is redoing crystallography. I have read Hestenes [6]
paper (but not the follow up om Hestenes and Holt [7]). It looks very interesting,
but I will spare you from my comments here, as I do not know how to make this
formalism work for our purposes (character; explicit computations), so I should
not waste your time on that. If you do have a look at his, or at Coxeter [4]
discussion of planar tilings, please do report back to Boris and me.

2016-02-24 Predrag Graphene is a two-dimensional sheet of carbon in which
the carbon atoms are arranged in a honeycomb lattice: each carbon atom is con-
nected to three neighbors. It was exfoliated by Schafhaeutl [2, 9] in 1840 (more
recently, a con man got a Nobel Prize for that), and formally defined for chemists
by Boehm [3] in 1986. In 1947 Wallace [10] calculated the electronic struc-
ture of graphene, as a preliminary exercise to calculating electronic structure of
graphite, and noted that the velocity of the electrons was independent of their en-
ergies: they all travel at the same speed (about 100 km per second, about 1/3000
of the speed of light): plot of the energy of the electrons in graphene as a func-
tion of its momentum (which is inversely proportional to its wavelength) is V
shaped since the energy of the electron is linearly proportional to its momentum
(Wallace1 Eq. 3.1). The energy of a free electron is proportional to the square
of its momentum, but not so in a crystal. As this is reminiscent of massless ele-
mentary particles like photons and neutrino’s, it has been renamed since ‘Dirac
cones’, but Dirac has nothing whatsoever to do with that. To learn more, talk to
people from the Claire Berger and Walt De Heer’s group [1] - I have extracted
above history of graphene from De Heer’s notes.
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Exercises
8.1. Space group.

(a) Show that for any space group, the translations by vectors from Bravais lattice form
a normal subgroup.

(b) Can rotations of the lattice at a fixed point constitute a normal subgroup of a space
group?

(B. Gutkin)

8.2. Band structure of a square lattice. A charged particle (without spin) moves in a po-
tential created by an infinite square lattice of atoms, see figure 8.2.

(a) What are the symmetry groups of the Bravais and reciprocal lattices?

(b) Plot the 1st Brillouin zone. What is its symmetry? What is the corresponding
fundamental domain?

Let k be quasi-momentum and En(k) the energy of the nth band.

(c) At which points of the Brillouin zone is the group G(k) (the group which leaves
vector k invariant) nontrivial? What is it?

(d) What is the symmetry ofEn(k) as a function of k? At which points of the Brillouin
zone is the group velocity∇En(k) equal 0?

(e) At which points of the Brillouin zone neighboring bands (generically) stick to each
other? How many bands can stick? Explain from the group theory prospective.
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Figure 8.2: Square lattice of atoms

(f) Assume now that the lattice is slightly squeezed along one of the axis. What will
be the new symmetry of the system and its 1st Brillouin zone? Will the sticking
between bands be lifted or persiss?

(B. Gutkin)

8.3. Tight binding model. Verify your solution of exercise 8.2 within the 2-state tight bind-
ing model. Assume that particle can hop either from corner to corner of the square lattice
with coefficient t1 or from corner to the middle of the square with coefficient t2 (and vice
versa).

(a) Show the obtained energy bands Ei(k) as both contour- and 3-dimensional plots.

(b) Compare with the results from exercise 8.2.
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