group theory - week 7

QM applications

Georgia Tech PHYS-7143

Homework HW7

due Tuesday, March 1, 2016

== show all your work for maximum credit,

== put labels, title, legends on any graphs

== acknowledge study group member, if collective effort

== if you are LaTeXing, here is the source code

Exercise 7.1 Perturbation of T_d symmetry Exercise 7.2 Two particles in a potential

Bonus points

Exercise 7.3 Product of two groups

2 points

6 points

4 points

Total of 12 points = 100 % score. Extra points accumulate, can help you later if you miss a few problems.

2016-02-23 Predrag Lecture 13 Fundamentalist vision

How I think of the fundamental domain is explained in my online lectures, Week 14, in particular the snippet Regular representation of permuting tiles. Unfortunately - if I had more time, that would have been shorter, this goes on and on, Week 15, lecture 29. Discrete symmetry factorization, and by the time the dust settles, I do not have a gut feeling for the boundary conditions when it comes to higher-dimensional irreps...

2016-02-25 Boris Lecture 14 Quantum mechanics applications

Gutkin lecture notes Lecture 6 Applications II. Quantum Mechanics, Sect. 2. Perturbation theory.

Exercises

7.1. Perturbation of T_d symmetry.

A non-relativistic charged particle moves in an infinite bound potential V(x) with T_d symmetry. Consult exercise 5.1 Vibration Modes of CH_4 for the character table and other T_d details.

(a) What are the degeneracies of the quantum energy levels? How often do they appear relative to each other (i.e., what is the level density)?

A weak constant electric field is now added now along one of the $2\pi/3$ rotation axes, splitting energy levels into multiplets.

- (b) What is the symmetry group of the system now?
- (c) How are the levels of the original system split? What are the new degeneracies?

7.2. Two particles in a potential.

Two distinguishable particles of the same mass move in a 2-dimensional potential V(r) having D_4 symmetry. In addition they interact with each other with the term $\lambda W(|\mathbf{r}_1 - \mathbf{r}_2|)$.

- (a) What is the symmetry group of the Hamiltonian if $\lambda = 0$? If $\lambda \neq 0$?.
- (b) What are the degeneracies of the energy levels if $\lambda = 0$?
- (c) Assuming that $\lambda \ll 1$ (weak interaction), describe the energy level structure, i.e., degeneracies and quasi-degeneracies of the energy levels. What will be the answer if the interaction is strong?

Hint: when interaction is weak we can think about it as perturbation.

- 7.3. **Product of two groups.** Let G_1 and G_2 be two finite groups. The elements of the product set $G = G_1 \times G_2$ are defined as pairs $(g_1, g_2), g_1 \in G_1 g_2 \in G_2$.
 - (a) Show that G is a group with the multiplication operation $(g_1, g_2) \cdot (g'_1, g'_2) = (g_1g'_1, g_2g'_2)$.

PHYS-7143-16 week7

2016-02-26

Let D_1 be an irreducible representation of G_1 and let D_2 be an irreducible representation of G_2 . For each $g = (g_1, g_2) \in G$ define $D(g) = D_1(g_1) \times D_2(g_2)$

(b) Show that $D = D_1 \times D_2$ is an irreducible representation of G. What are the characters of D?

7.4. Selection rules for T_d symmetry.

The setup is the same as in exercise 7.1, but now assume that instead of a constant field, a time dependent electric field $E_0 \cos(\omega t)$ is added to the system, with E_0 not necessarily directed along any of the symmetry axes. In general, when $|E_n - E_m| = \hbar \omega$, such time-dependent perturbation induces transitions between energy levels E_n and E_m .

- (a) What are the selection rules? Between which energy levels of the system are transitions possible?
- (b) Would the answer be different if a magnetic field $B_0 \cos(\omega t)$ is added instead? Explain how and why.