group theory - week 2

Finite groups - definitions

Georgia Tech PHYS-7143

Homework HW2 due Thursday, January 28, 2016

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 2.1 G, C G

Exercise 2.2 Transitivity of conjugation
Exercise 2.3 Isotropy subgroup of gx
Exercise 2.5 Cy-invariant potential

Total of 10 points = 100 % score.

Bonus points
Exercise 2.8 Three masses on a loop
Exercise 2.7 An arrangement of five particles

1 point
1 point
1 points
7 (+2) points

6 points
4 points

Extra points accumulate, can help you later if you miss a few problems.
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GROUP THEORY - WEEK 2. FINITE GROUPS - DEFINITIONS

2016-01-19 Boris Lecture 3 Don’t know group theory

Today’s blackboard derivation of normal-modes of the ring of N asymmetric
pairs of oscillators is taken from Gutkin lecture notes example 5.1 C,, sym-
metry. The corresponding projection operators (1.29) are worked out here, in
example 2.4.

2016-01-21 Predrag Lecture 4 Finite groups

2.1

Groups, permutations, rearrangement theorem, subgroups, cosets, all exempli-
fied by the S5 = C3, = D3 symmetries of an equilateral triangle. This lec-
ture follows closely Chapter 1 Basic Mathematical Background: Introduction of
Dresselhaus et al. textbook [!] ( click here, ask for password if you have for-
gotten it). This book (or Tinkham [3]) is good on discrete and space groups,
but perhaps not so good on continuous groups. The MIT course 6.734 online
version contains much of the same material.

If instead, bedside crocheting is your thing, click here.

Using group theory without knowing any

It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read sect. A.6 Gruppenpest of ref. [2]). So what we
will do first is work out a few examples of physical applications of group theory that
you already know without knowing that you have been using “Group Theory.”

Example 2.1. Reflection and discrete rotation symmetries:

(@)

()

Reflection symmetry V(x) = PV (z) = V(—xz):

(_fiai N vu)) V(@) = Butb(a). 2.1)

If1(z) is solution then P (x) is also solution. From this and non-degeneracy of
the spectrum follows that either Py(x) = v (x) or Py(xz) = —¢(x). The first case
corresponds to symmetric functions while the second one to antisymmetric one.
Thus the whole spectrum can be decomposed in accordance to symmetry group.

Rotation symmetry V(z) = gV (z), G = {e,g,9°}: By the same argument we
have three possibilities:

g¥(x) =P(x);  gp(x) = Pp(x);  gp(z) = e PPy (a).

In addition, by the time reversal symmetry if1(x) is solution then {* (z) is solution
with the same eigenvalue as well. From this follows that the spectrum must be
degenerate. The spectrum can be split into real eigenfunctions {11 (x)} invariant
under rotations and degenerate pairs of real eigenfunctions:

a(x) = (@) + 9" (2); ¥a(x) = i(¥(x) — " (2)), where gi(x) = ™™/ *¢(a).
(B. Gutkin)
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http://birdtracks.eu/courses/PHYS-7143-16/groups.pdf
http://chaosbook.org/library/Dresselhaus07.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/group-full02.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/group-full02.pdf
http://www.theiff.org/oexhibits/oe1e.html
https://www.youtube.com/embed/CvuoY_yPZeM
https://www.youtube.com/embed/CvuoY_yPZeM
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L R

Figure 2.1: (left) A reflection-symmetric double-well potential. (right) A 3rd-circle
rotation-symmetric plane billiard.

Example 2.2. Discrete symmetries in physics:
e Point groups i.e., subgroups of O(3).
e Point groups + discrete translations e.g., symmetry groups of crystals.
e Permutation groups

SU(z1,x2,...7n) = V(T2,Z1,...Tn).

e Boson wave functions are symmetric while fermion wave functions are anti-symmetric
under exchange of variables.

(B. Gutkin)

(An extract from Gutkin lecture notes): Point groups are finite subgroups of O(3).
We consider first finite subgroups G of SO(3) and then add special transformations.

1) Let H4 be a subgroup of a discrete group G which leaves invariant a point
(pole) A on the unit sphere. H4 = Z,, ,, where n 4 is the order of H 4. Consider the
decomposition of G, |G| = N into cosets:

G={g1-Ha,gn -Ha,...Gm, - Ha}, mana = N . (2.2)

each coset g; - H 4 transfers the point A = A; to some another point A; # A which is
the same for all elements of the coset. Different cosets generate different points. The
set {41, As,... A, } is called star of A. If we start from another point A; of the
star we produce the same star. The transformations leaving A; invariant have the form
giHa gi_l, and together they form a subgroup of GG isomorphic to H 4.

Example 2.3. Star system of a tetrahedron:  The point group T of a tetrahedron
has 4 axes of symmetries of 3rd order and 3 axes of 2nd order, see figure 2.2 (b). The
corresponding star system is therefore:

A= (141,142,143,144)7 [nA = 3,77’1,,4 = 4]

B = (Bl,BQ,B:;7B4)7 [’I'LB = 3,777,]3 = 4}

C = (Cl, 02703704705706)7 [nc' = Q,mc = 6}
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http://birdtracks.eu/courses/PHYS-7143-16/groups.pdf
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(b)

Figure 2.2: (a) Star of a point A. (b) Star system of the tetrahedron group.

Example 2.4. Projection operators for cyclic group Cx .

Consider a cyclic group Cy = {e,g,9%,---g"" '}, and let M = D(g) be a [2N x
2N| representation of the one-step shift g. If [V,M] = 0, P, are the same for the
interaction potential V', and for the one-step shift matrix M. In the projection operator
formulation (1.29), the N distinct eigenvalues of M, the Nth roots of unity A, = \",
A = exp(i 27 /N), split the 2N -dimensional space into N invariant subspaces by means
of projection operators

N—-1

HM—AmI H)\_"M—)\ml
m#n m=1
Using
2 N-1 N—1 1—zV
(ZL‘—)\)(ZL‘—)\)...(Q;—)\ ):1+JZ’+*“+1’ — —

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.29)),

1 N-1 )
P, = N Z_O e N M™.
As we'll teach you next, this is the simplest example of the general group theory ma-
chinery,

1 —
Pu= 1 > x(9)D(g).

geG

(B. Gutkin)
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EXERCISES

Exercises

2.1.

2.2.

2.3.

2.4.

25.

Gz C G. The maximal set of group actions which maps a state space point x into itself,
Ge={g€G: gz =z}, (2.4)
is called the isotropy group (or stability subgroup or little group) of x. Prove that the set

G as defined in (2.4) is a subgroup of G.

Transitivity of conjugation.  Assume that g1, g2, g3 € G and both g; and g2 are
conjugate to gs. Prove that g; is conjugate to go.

Isotropy subgroup of gx. Prove that for g € G, = and gx have conjugate isotropy
subgroups:
Gge = 9Gxs g!

D3: symmetries of an equilateral triangle. Consider group D3 = Cs,, the symmetry
group of an equilateral triangle:

2 3.

(a) List the group elements and the corresponding geometric operations
(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 4.1)

Cs-invariant potential.  Consider the Schrodinger equation for a particle moving in a
two-dimensional bounding potential V', such that the spectrum is discrete. Assume that V'
is C-invariant, i.e., V remains invariant under the rotation R by the angle 27 /N. It was
explained in the lecture, that for N = 3 case, figure 2.3 (a), the spectrum of the system
can be split into two sectors: {E2} non-degenerate levels corresponding to symmetric
eigenfunctions ¢, (Rz) = ¢, (x) and doubly degenerate levels { E;F } corresponding to
non-symmetric eigenfunctions ¢, (Rz) = e*2"/3¢, ().

Q 1 What is the spectral structure in the case of N = 4, figure 2.3 (b)?
How many sectors appear and what are their degeneracies?

Q 2 What is the spectral structure for general N?

Q 3 A constant magnetic field normal to the 2D plane is added to V.
How will it affect the spectral structure?

Q 4 (bonus question) Figure out the spectral structure if the symmetry group of potential
is D3 (also includes 3 reflections), figure 2.3 (c).
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(a) EJ (b) (©)

Figure 2.3:  Hard wall potential with (a) symmetry Cs, (b) symmetry Cy4, and (c) symmetry
Ds.

(Boris Gutkin)

2.6. Permutation of three objects. Consider Ss, the group of permutations of 3 objects.

(a) Show that S is a group.
(b) List the conjugacy classes of S3?

(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

A

Figure 2.4: 4 identical particles of type C' lie on the vertices of a square. In the center
of the square, but out of the plane, is a particle of type A. (K. Y. Short)

2.7. Arrangement of five particles. Consider the arrangement of particles illustrated in
figure 2.4: on each corner (vertex) of a rigid square lies a particle C'; in the center of the
square, but out of the plane on the z axis, is the particle A.

(a) What are the symmetries of this arrangement?

(b) Find its multiplication table.

(c) Find its subgroups.

(d) Determine the corresponding left and right cosets.
(e) Determine its conjugacy classes.

(f) Which subgroups are self-conjugate?

(g) Describe their factor groups.
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(K. Y. Short)

2.8. Three masses on a loop. Three identical masses, connected by three identical springs,
are constrained to move on a circle hoop as shown in figure 2.5. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (K. Y. Short)

Figure 2.5: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.
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