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Part 1

Finite and discrete groups





LECTURE 1

Symmetries in Physics

1. Classical physics

What does it mean that a dynamical system has symmetries? Consider standard dynamical equa-
tions:

(1.1)
d

dt

(
∂L
∂q̇

)
=
∂L
∂q
, S =

∫ t2

t1

L(q, q̇)dt

for a time evolution of a number of classical particles. To find solution q(t) we have to solve a
complicated (system) of differential equations, which in exact form only in few exceptional cases
(of integrable systems) is possible. On the other hand, it often happens that given an arbitrary
solution q(t) one can construct a family of solutions by application of certain transformation to it:

q(t, ε) := gε · q(t), such that q(t) = q(t, 0).

In such a case the transformations gε, form a symmetry group G of the system. By the definition
gε1 ·gε2 ∈ G if gε1 , gε2 ∈ G and there exists an inverse transformation g−1ε for each gε ∈ G. In math-
ematical language the last two properties in combination with the associativity of transformations
imply that G is a group.

g

x

γ
γ ’

t t t
1 2 1 2

t’ t’

Figure 1. Symmetry transformation.

Example 1.1. Continuous symmetries: Translational symmetries q(t, ε) = q(t)+ε. Rotation symmetries
q(t, ε) = R(ε) · q(t), R(ε)RT (ε) = I.

The existence of such symmetries is directly follows from the invariance of the action S under
the transformation gε:

(1.2) S(q(t)) = S(gε · q(t)).
This is clear, since gε transforms extremum of S into another extremum, see figure 1. In its own
turn the invariance of the action would follow from the invariance of the Lagrangian:

(1.3) L(q(t), q̇(t))dt = L (gε · q(t), gε · q̇(t)) d(gε · t).

3



4 Lecture 1. SYMMETRIES IN PHYSICS

Here we can also add an additional dF which changes transformed action by a constant (and
therefore does not affect the above arguments). This leads to the following (sufficient) symmetry
condition:

(1.4) L(q(t), q̇(t)) = L(gε · q(t), gε · q̇(t))
d(gε · t)
dt

+
dF

dt
.

To summarize, the transformations gε leaving Ldt invariant up to a closed form dF form a
group of symmetries of the system. They transform one solution of the dynamical equation to
another:

q(t)→ q(t, ε), q(t, 0) = q(t).

Note that typically we do not know explicitly any solution of this family. Nevertheless, knowl-
edge of symmetries of the system might be very useful:

With any continues symmetry of a Lagrangian system we can associate a conserved quantity.

2. Continues symmetries & Noether theorem

Let gε be a continues symmetry, i.e., ε ∈ R. Consider an infinitesimal transformation

q → q + εη(q) q(t, ε) = q(t) + εη(q(t))

which leaves L invariant up to a full time derivative, see (1.4):

(2.1) L(q(t) + εη(t), q̇(t) + εη̇(t)) = L(q(t), q̇(t)) + ε

(
∂L
∂q
η(t) +

∂L
∂q̇
η̇(t)

)
.

It follows immediately from eq. (1.1) that:

(2.2) J =
∂L
∂q̇
η(t) + F (t),

dJ
dt

= 0.

From this also follows that

(2.3) {H,Jη} =
dJη
dt

= 0,

where {f, g} = ∂f
∂q

∂g
∂p−

∂f
∂p

∂g
∂q is the Poisson bracket. Currents Jη form Lie algebra with the Poisson

brackets playing the role of “commutator operation”.

Symmetry transformations including time. Considering more general transformation:

t→ t+ εφ(q, t) = t′; qi → qi + εηi(q, t) = q′i

leaving S invariant (one can also consider φ and η depending on time derivatives of q = (q1, . . . qn))
we can get a generalized version of Noether theorem:

(2.4) J =
∑
i

[
∂L
∂q̇i

ηi(q, t) +

(
L − ∂L

∂q̇i
q̇i

)
φ(q, t)

]
+ F (t),

dJ
dt

= 0.

Proof : If the system is invariant under the above transformation

(2.5) L
(
qi,

dqi
dt

)
dt+ dF =

= L
(
q′i,

dq′i
dt′

)
dt′ = L (qi + εηi(q, t), q̇i(1− εφ(q, t)) + εη̇i(q, t)) (1 + εφ(q, t))dt.

symmPhys - 2016-01-04



2. CONTINUES SYMMETRIES & NOETHER THEOREM 5

After expansion of the right hand side we have:

(2.6)
∑
i

[∂qiLηi + ∂q̇iL(η̇i − q̇iφ)] + Lφ̇ = Ḟ

Now using the equation of motion (1.1) the left part of this equation can be written down as full
time derivative:

d

dt

∑
i

 ∂L∂q̇i ηi +

(
L − ∂L

∂q̇i
q̇i

)
︸ ︷︷ ︸
Hamiltonian

φ

 .

Applications L =
∑
imq̇2i /2 +

∑
i 6=j V (|qi − qj |)

A) Shift in space:

q
(x)
i → q

(x)
i + ε, Jx =

∑
i

p
(x)
i (Momentum).

B) Rotations:

qi → Rx,y,zqi.

(2.7) Rz =

 cos(ε) sin(ε) 0
− sin(ε) cos(ε) 0

0 0 1

 = I + ε

0 −1 0
1 0 0
0 0 0

+O(ε2)

(2.8) Jz =
∑
i

−p(x)i q
(y)
i + p

(y)
i q

(x)
i (Angular Momentum).

C) Shift in time:

t→ t+ ε, Jt = L −
∑
i

∂L
∂q̇i

q̇i = H (Energy).

D) Some less standard example for the potential V (q) ∼ 1/|q|2. The transformation:

t→ λ2t, qi → λqi

is an obvious symmetry of the action (consider Ldt). In the infinitesimal form λ = 1 + ε this
symmetry is given by:

t→ λ2t(1 + 2ε), qi → qi(1 + ε),

implying that

J = (1/2)dt
∑

q2i − 2Ht, J = const.

This leads to the conclusion that

∑
q2i = 2Et2 + t · const.

Depending on the sign of energy the particle either flies away with a constant radial velocity or
collapses to the center in a finite time!

symmPhys - 2016-01-04



6 Lecture 1. SYMMETRIES IN PHYSICS

3. Quantum mechanics

Now consider action of symmetry group in the framework of quantum mechanics. By the same
principle, if Ψ(x, t) is solution of the Schrodinger equation:

(3.1) i~∂tΨ(x, t) = ĤΨ(x, t)

the function Ψ′(x, t) = g · Ψ(x, t) ≡ Ψ(g · x, t) is also solution of the same equation. This is
automatically satisfied if

(3.2) g · Ĥ = Ĥ · g.

4. Continues symmetries

As in the classical case we can consider an infinitesimal group action:

(4.1) g ·Ψ(x) ≈ Ψ(x) + εĴΨ(x).

By (3.2) we then immediately obtain:

(4.2) [Ĥ, Ĵ ] =
dĴ

dt
= 0.

Example 1.2. Translation and rotation symmetries:

(a) Translation symmetry

Ψ(x+ ε) = Ψ(x) + ε∂xΨ, −i~Ĵ = −i~∂x = p̂, dtp̂ = 0.

(b) Rotation symmetry

Ψ(x+ εy, y − εx) = Ψ(x) + ε(y∂x − x∂y)Ψ , −i~Ĵ = L̂, dtL̂ = 0

5. Discrete symmetries

So far we considered continues groups of symmetries. For discrete groups of symmetries there are
no associated conserved quantities (no associated Lie algebras). So at first it seems that existence
of discrete symmetries provides little additional information about time evolution of the system.
Nevertheless, the use of group theory becomes of great importance when we consider stationary
(spectral) problem.

Example 1.3. Reflection and rotation symmetries:

(a) Reflection symmetry V (x) = PV (x) = V (−x):

(5.1)

(
− ~

2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Enψ(x).

If ψ(x) is solution then Pψ(x) is also solution. From this and non-degeneracy of the spectrum
follows that either Pψ(x) = ψ(x) or Pψ(x) = −ψ(x). The first case corresponds to symmetric
functions while the second one to antisymmetric one. Thus the whole spectrum can be decomposed
in accordance to symmetry group.

symmPhys - 2016-01-04



5. DISCRETE SYMMETRIES 7

L R

Figure 2. Discrete symmetries.

(b) Rotation symmetry V (x) = g · V (x), G = {e, g, g2}: By the same argument we have three possibili-
ties:

g · ψ(x) = ψ(x); g · ψ(x) = ei2π/3ψ(x); g · ψ(x) = e−i2π/3ψ(x).

In addition, by the time reversal symmetry if ψ(x) is solution then ψ∗(x) is solution with the same
eigenvalue as well. From this follows that the spectrum must be degenerate. The spectrum can be
split into real eigenfunctions {ψ1(x)} invariant under rotations and degenerate pairs of real eigen-
functions:

ψ2(x) = ψ(x) + ψ∗(x);ψ3(x) = i(ψ(x)− ψ∗(x)), where g · ψ(x) = ei2π/3ψ(x).

Example 1.4. Symmetry groups in physics:

(a) Translations T .
(b) Rotations SO(3).
(c) Point groups, i.e., subgroups of O(3).
(d) Point groups + discrete translations e.g., symmetry groups of crystals.
(e) Lorentz group O(3, 1) – the group of linear transformations Λ(t, x, y, z) → (t′, x′, y′, z′), which

preserve bilinear form

t2 − x2 − y2 − z2 = t′2 − x′2 − y′2 − z′2.
(f) Poincaré group: Lorentz group + translations in space-time.
(g) Permutation groups

SΨ(x1, x2, . . . xn) = Ψ(x2, x1, . . . xn).

(h) Boson wavefunctions are symmetric while fermion wavefunctions are anti-symmetric under exchange
of variables.

symmPhys - 2016-01-04





LECTURE 2

Basics of Group Theory

1. Groups definitions

Definition 1.1. A set G with a multiplication (·) is a group if:

• Closer: For any g1, g2 ∈ G it follows that g1 · g2 ∈ G.
• Associativity: g1 · (g2 · g3) = (g1 · g2) · g3.
• Unit element: There exists e ∈ G such that e · g = g for any g ∈ G.
• Inverse: For each g ∈ G there exists g−1 ∈ G such that g−1 · g = e

Two groups are isomorphic G ∼= H if there is an equivalence relation between elements of the
group g ∼ h which is preserved under the matrix multiplication g1 ·g2 ∼ h1 ·h2 if g1 ∼ h1, g2 ∼ h2.
Order of groups |G| is a number of elements in G. If |G| <∞ the group is called finite.

Example 2.1. Infinite groups, matrix groups:

(1) GL(n, F ) (F = R,C) group of invertible matrices, SL(n, F ) is the subgroup of the matrices with
det equals one.

(2) O(n), group of real orthogonal matrices leaving euclidean product (x, x) =
∑
i x

2
i invariant: O ·OT =

1. Its subgroup SO(n) contains all matrices with the det 1. Physics: Rotation group SO(3).
(3) O(n − q, q) group of real matrices leaving scalar product (x, x) =

∑q
i=1 x

2
i −

∑n
i=q+1 x

2
i invariant.

Lorentz group SO(3, 1).
(4) Unitary groups U(n), SU(n): U · U∗ = 1. Physics: Strong interaction. Weak interaction.
(5) Symplectic group Sp(2n). Group of symplectic matrices:

MT · Ω ·M = Ω, Ω =

(
0 In
−In 0

)
.

Physics: In Hamiltonian mechanics symplectic matrices describe transformations from one set of
canonical coordinates to another.

Example 2.2. Finite groups:

(1) Cyclic group Zn. For the elements m ∈ {0, 1, . . . n− 1} of cyclic group the multiplication is defined
by

m1 ·m2 := m1 +m2 mod n.

where inverse is given by m−1 = n−m and unity element is represented by 0. This is abelian group.
(2) Symmetry group of “directed“ polygon Cn. Cn ∼= Zn.
(3) Symmetry group of polygons Dn. This is non-abelian group:

σ2σ1 = g, σ1σ2 = g−1.

(4) Permutation group/Symmetric group Sn.

σ : i→ i′ = σ(i), i = 1, . . . n

(
1 2 . . . N

σ(1) σ(2) . . . σ(N)

)
, |Sn| = n!.

9



10 Lecture 2. BASICS OF GROUP THEORY

σ σ

σ
1

3 2

D 3C 3

Figure 1. Symmetry group of “directed” (left) and “non-directed” (right) equilateral
triangle.

Example 2.3. Permutation group S3:

(
1 2 3
2 1 3

)
·
(

1 2 3
1 3 2

)
=

(
1 2 3
2 3 1

)
.

Cyclic decomposition: (
1 2 3 4 5
2 1 4 5 3

)
=
(
1 2

) (
3 4 5

)
.

Every permutation can be represented as product of transpositions:(
3 4 5

)
=
(
3 5

) (
5 4

)
=
(
3 4

) (
4 5

) (
3 4

) (
4 5

)
.

This decomposition is not unique (as opposed to cyclic), but the number of transpositions always odd (even).
To prove it we note isomorphism between σ and permutation matrices.

Ex :

(
1 2 3
2 3 1

)
→ σ =

0 1 0
0 0 1
1 0 0

 , σ

x1x2
x3

 =

x2x3
x1

 .

Parity of σ is determined by the sign of the determinant. Since each transposition has determinant −1 the
parity is fixed by the number (whether it is even or odd) of entering transpositions. All even σ form a subgroup
An of Sn. As we will see below permutations groups (subgroups of Sn) play a special role.

2. Subgroups

H is a subgroup of G if it is a group itself and H ⊂ G.

Theorem 2.1. Cayley’s Theorem. Any finite group G is isomorphic to a subgroup of SN ,
N = |G|.

Remark 2.1. In many cases N can be smaller than |G|. For instance, the group of Rubik Cube is a

subgroup of S43 while the order is |G| = 8! · 11! · 212 · 38 .

The proof of the theorem is elementary. Let g1, g2, . . . gN be elements of the group G. Consider
now the action of an arbitrary element σ ∈ G on other elements of the group:

σ · gi = gi′ , i′ = σ(i) for all i = 1, . . . N,

where we introduced notation σ(i) for the corresponding index. Since σ2 ·σ1 · gi = gσ2σ1(i) we have
isomorphism:

σ ↔
(

1 2 . . . N
σ(1) σ(2) . . . σ(N)

)
,

with the unit element corresponding to the trivial permutation.

basicGroupThe - 2016-01-04



3. CONJUGATE CLASSES. NORMAL SUBGROUPS 11

3. Conjugate classes. Normal subgroups

Given a subgroup H, G can be decomposed into cosets:

(3.1) G = {g1H, g2H, . . . gkH}, k = (G : H)− index.

From this immediately follows:

Theorem 3.1. Lagrange Theorem: |G|/|H| = k ∈ N.

Analogously, we can consider right hand decomposition:

(3.2) G = {Hg′1, Hg′2, . . . Hg′k}.

In general these are two different decompositions. However, if gHg−1 ∈ H for any g then two
decompositions coincide. Such subgroups are called normal. For a normal subgroup we can
define factor group (also called quotient group) G/H whose elements are cosets of H:

[gi] · [gj ] = [gigj ], [gi] = {giH}, [e] = {H}.

Example 2.4. Normal subgroups and factor groups:

(1) If n is a prime number no subgroups exist. Any subgroup is normal (since the group is abelian)
Zn/Zm ∼= Zn/m.

(2) The set H = {e, g, g2} is the normal subgroup of D3. Two non-equivalent cosets are:

[e] = {H}, [σ] = {σ1H}, =⇒ G/H ∼= Z2.

(3) The set of even permutations An is normal subgroup of Sn, Sn/An ∼= Z2.
(4) U(1) is normal (and abelian) subgroup of U(n), U(n)/U(1) ∼= SU(n).
(5) Group of translations is normal (and abelian) subgroup of Poincaré group.

An “inverse“ operation – direct product G×F of groups G and F is defined in the following
way. The elements of the group are all possible pairs [g, f ], g ∈ G, f ∈ F . The product is then
[g1, f1] · [g2, f2] =: [g1g2, f1f2], with the unit element given by [eG, eF ]. It is easy to see that
G ∼= [G, eF ] and F ∼= [eG, F ] are normal subgroups of G× F and

G ∼= G× F/F, F ∼= G× F/G.

Is it always true that from G/H = F follows that G = F ×H? Not in general! D3/C3 = C2,
but D3 6= C3 × C2, since D3 is non-abelian as opposed to the right hand side.

Homeomorphism. Kernels as normal subgroups. Homeomorphism φ : G→ H is a map
from G to H which preserves the group structure. Kernel of G is a subgroup of G such that φ(g) = e
if g ∈ Kerφ(G). It is straightforward to see that Kerφ(G) is normal and G/Kerφ(G) ∼= H. It
follows from identification of φ(g) with {g ·Kerφ(G)}. If Kerφ(G) = e then φ is isomorphism.

Example 2.5. A kernel as normal subgroup: A ∈ U(n), φ(A) = det (A) =⇒ Kerφ(U(n)) = SU(n).

basicGroupThe - 2016-01-04



12 Lecture 2. BASICS OF GROUP THEORY

4. Point groups

Point groups are finite subgroups of O(3). Play very important role in physics: they are groups of
symmetries of molecules as well as crystals. We will first consider finite subgroups G of SO(3) and
then add special transformations.

1) Let HA be a subgroup of a discrete group G which leaves invariant a point (pole) A on the
unit sphere. HA

∼= ZnA , where nA is the order of HA. Consider the decomposition of G, |G| = N
into cosets:

(4.1) G = {g1 ·HA, gn ·HA, . . . gmA ·HA}, mAnA = N.

each coset gi · HA transfers the point A = A1 to some another point Ai 6= A which is the same
for all elements of the coset. Different cosets generate different points. The set: {A1, A2, . . . AmA}

(a)

A

A
A

...

...

2

A3

m

(b)

A

A

A

B

A

1

4

2
C

3

1

C
2

1

Figure 2. (a) Star of a point A. (b) Star system of the tetrahedron group.

is called star of A. If we start from another point Ai of the star we produce the same star. The
transformations leaving Ai invariant have the form giHAg

−1
i form a subgroup of G isomorphic to

HA.

Example 2.6. Star system of a tetrahedron: The point group T of a tetrahedron has 4 axes of symmetries
of 3rd order and 3 axes of 2nd order, see figure 4 (b). The corresponding star system is therefore:

A = (A1, A2, A3, A4), [nA = 3,mA = 4]

B = (B1, B2, B3, B4), [nB = 3,mB = 4]

C = (C1, C2, C3, C4, C5, C6), [nC = 2,mC = 6]

2) Let us count the number of pairs (A, g) such that g 6= e leaves invariant the pole A. On one
side, since each element g leaves invariant precisely two poles, this number is 2(N − 1). On the
other hand for each pole A there are exactly (nA − 1)mA such pairs. As a result we have∑

X={A,B,...Z}

(nX − 1)mX = 2(N − 1),

where the sum is over all stars. Using (4.1) one gets:

(4.2)

l∑
k=1

1

nk
= l − 2 +

2

N
,

where nk is the order of k-th star and l is the total number of stars.

basicGroupThe - 2016-01-04



5. NON-SPECIAL TRANSFORMATIONS 13

3) As it turns out this equation has a finite number of solutions. To see this let us first note
that since nk ≥ 2, l ≤ 3 (otherwise right side of (4.2) is too large.

A) l = 2.
1

n1
+

1

n2
=

2

N
=⇒ m1 +m2 = 2.

From this follows m1 = m2 = 1 and

• n1 = n2 = N , while N is arbitrary. G ∼= CN - Symmetry of the pyramid with N -side
polygon in the foundation.

B) l = 3.
1

n1
+

1

n2
+

1

n3
= 1 +

2

N
.

Without loss of generality we can assume n1 ≤ n2 ≤ n3. One can see then that n1 = 2. The only
possible solutions of the above equation:

• n1 = 2, n2 = 2, n3 = N/2. G ∼= DN/2 - Symmetry group of prism with N/2-side polygon
in the foundation.
• n1 = 2, n2 = 3, n3 = 3, N = 12. G ∼= T - Symmetry group of tetrahedron.
• n1 = 2, n2 = 3, n3 = 4, N = 24. G ∼= O - Symmetry group of cube.
• n1 = 2, n2 = 3, n3 = 5, N = 60. G ∼= Y - Symmetry group of icosahedron.

Figure 3. Platonic solids. The different point groups basically classify all pos-
sible (symmetries of) platonic solids. Note that Octahedron and Cube have the same
symmetry group. The same goes for Icosahedron and Dodecahedron.

5. Non-special transformations

The above considerations can be generalized to the case when non-special transformations are
present. If the inversion ι is present then the resulting symmetry group G is (since ι commutes
with all other elements of the group) just the direct product I×G0 where I = {e, ι} and G0 is one
of the groups {Cn, Dn, O, T, Y }. In the case when ι /∈ G the symmetry group is the union G0∪ ιG′0
where G0, G

′
0 are proper transformations. Note that the set G0 is a group (from the above list)

itself while G′0 is not (since it contains no unite element). The number of elements in both sets
G0, G

′
0 must coincide and G0 ∩ G′0 = ∅ (otherwise ι would belong to G). Furthermore, since ι

commutes with all elements, the group G is isomorphic to the union G0 ∪G′0, and therefore is, in
fact, one of the groups {Cn, Dn, O, T, Y }. A standard notation for groups from O(3) is:

(G,G0), G,G0 ∈ {Cn, Dn, O, T, Y }.

basicGroupThe - 2016-01-04



14 Lecture 2. BASICS OF GROUP THEORY

The condition |G| = 2|G0| = 2|G′0| leaves only few possibilities:

(Dn, Cn), (C2n, Cn), (D2n, Dn), (O, T ).

For instance the full group of symmetries of tetrahedron is (O, T ).

basicGroupThe - 2016-01-04



LECTURE 3

Representation Theory I

1. Basic notions

It is clear that the same group e.g., Sn can appear in different disguises (permutations, matrices,
geometrical transformations of a points set etc.). Representation theory studies groups by rep-
resenting their elements as linear transformations of vector spaces. In essence, a representation
makes an abstract group more concrete by describing its elements as matrices with a standard
multiplication. We have seen already with the example of Sn that such representation might be
quite useful – the notion of determinant allowed us to define even and odd permutations in a simple
way.

From the physics point of view the representation theory appears naturally in quantum me-
chanics. Since quantum mechanics is a “linear theory” any symmetry operation g ∈ G acts as
a linear transformation on the corresponding Hilbert space V :

(1.1) g · (|ψ1〉+ |ψ2〉) = g · |ψ1〉+ g · |ψ2〉, |ψi〉 ∈ V
By choosing some basis {φi} in V we have

(1.2) g · |φi〉 =

dimV∑
j=1

D(g)ij |φj〉, i = 1, 2 . . . ,dimV.

So we have a map D : g → D(g) of the group elements g into matrices D(g).

Definition 1.1. Formal definition of N -dimensional representation:

(1) D(g), g ∈ G is a linear operator acting on the N -dimensional Hilbert space.
(2) D is a homeomorphism: D(g1 · g2) = D(g1)D(g2).

Remark 3.1. Matrix representations. For a finite N , D(g) can be seen as N-dimensional matrix.

Example 3.1. 2-element group: Group G = {e, σ}, σ2 = e.
One-dimensional representation:
D(1)(e) = 1, D(1)(σ) = 1 and D(2)(e) = 1, D(2)(σ) = −1.
Two-dimensional representation:

D(e) =

(
1 0
0 1

)
, D(σ) =

(
0 1
1 0

)
Two representations D, D′ are equivalent if

V −1D(g)V = D′(g), for all g ∈ G.
In this case one can transform D to D′ just by changing the basis in V .

Representation is called unitary if D(g) is unitary for all g ∈ G. Important fact: each repre-
sentation of a finite group is equivalent to unitary (proof is simple but not completely trivial).
Therefore, we need to consider only unitary representations.

15



16 Lecture 3. REPRESENTATION THEORY I

Main goal of the representation theory is to classify possible representations. We need however
to impose some restriction on the type of representations we consider. The representation is called
reducible if there exists V1 ⊂ V , such that

D(g)V1 ⊂ V.
If the representation is reducible

U−1D(g)U = D(1)(g)⊕D(2)(g) · · · ⊕D(k)(g).

When k = 1 the representation is called irreducible. They are building blocks of a general
representation.

It is straightforward to see that any abelian group has only one-dimensional represen-
tations. This just follows from a simple fact that all elements of such a group are commuting
matrices and can be diagonalized simultaneously.

Motivation: For a given group we aim to classify all possible irreducible representations Why do
we need such a classification? The main reason is due to the following fact:

Proposition 1.2. (Informal form of Wigner’s theorem.) If G is a symmetry of the Hamil-
tonian H, then [H,D(g)] = 0, for all g ∈ G. Consider decomposition of the Hilbert space
V = V1 ⊕ V2 ⊕ · · · ⊕ Vk and the corresponding decomposition D(g) into (different) irreducible
representations:

U−1D(g)U =


D(1)(g) 0 . . . 0

0 D(2)(g) . . . 0
...

...
. . .

...
0 0 . . . D(k)(g)

 .

With the same transformation U we can bring H into the diagonal form

U−1HU =


H(1) 0 . . . 0

0 H(2) . . . 0
...

...
. . .

...
0 0 . . . H(k)

 , H(i) = hiINi×Ni .

This means H multiply by a constant (hi) vectors from Vi.

In other words we managed “almost” diagonalize H without actually solving the eigenvalue
problem. If all the entering representations are one dimensional then D(g) is diagonal and the
above statement becomes obvious: Eigenvectors of D(g) and H coincide because these are com-
muting matrices. The Wigner theorem can be seen as a generalization of this fact. In order to
prove it in full generality we will need a couple of auxiliary lemmas. The same mathematics is also
necessary for classification of irreducible representations.

2. Schur’s lemmas

We now prove two auxiliary statements.

Lemma 2.1. First Schur’s lemma. Let [M,D(g)] = 0, for all g ∈ G with D being a N -
dimensional irreducible representation. Then M = λIN×N .
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3. ORTHOGONALITY THEOREM 17

Proof: Let v be an eigenvector of M (at least one always exists) with an eigenvalue λ. Consider
now the subspace V ′ ⊆ V , of all eigenvectors v′ with the same eigenvalue λ, i.e., Mv′ = λv′. By
construction D(g)V ′ ⊆ V ′ for all g ∈ G. This implies that the dimension of V ′ must be N , since
D is an irreducible representation.

Lemma 2.2. Second Schur’s lemma. Let D(1)(g), D(2)(g) be two non-equivalent irreducible
representations of dimension N1 and N2, respectively. Let M be N1 ×N2 matrix such that

MD(1)(g) = D(2)(g)M, for all g ∈ G.
Then M = 0.

Proof: Taking conjugate and change g to g−1 we obtain

D(1)(g)M∗ = M∗D(2)(g),⇒MM∗D(2)(g) = D(2)(g)MM∗.

By first Schur’s lemma:

MM∗ = λIN2×N2
.

a) N1 = N2. If detM 6= 0 then

MD(1)(g)M−1 = D(2)(g)

and two representations are equivalent.

b) N1 < N2. In this case we extend matrix M by zeros to square M̃ , such that

MM∗ = M̃M̃∗

and by using det M̃ = 0 conclude that λ = 0.

3. Orthogonality theorem

We will prove now the group orthogonality theorem which plays a fundamental role in the repre-
sentation theory.

Theorem 3.1. For two representations D(i), D(j) of the dimensions ni, nj we have

(3.1)
1

|G|
∑
g∈G

D(i)
µ,ν(g)D̄

(j)
α,β(g) =

1

ni
δµ,αδν,βδij .

Interpretation: Consider |G|-component vectors {D(i)
µ,ν(gi), i = 1 . . . |G|}. There are

∑
i n

2
i such

vectors. By the group orthogonality theorem all these vectors orthogonal. In particular, from this
follows

∑
i n

2
i ≤ |G| the number of irreducible representations is restricted by the order of the group

(actually, as we show the equality holds).

Proof: For an arbitrary matrix X of the dimension ni × nj , construct the following matrix:

M =
∑
g∈G

D(i)(g)XD(j)(g−1).

It is easy to see that MD(j)(g) = D(i)(g)M . Thus by the second Schur’s lemma we have M = 0 if
i 6= j. After taking matrix X in the form Xs,t = δs,βδt,ν we obtain:∑

g∈G
D(i)
µ,ν(g)D

(j)
β,α(g−1) = 0.
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18 Lecture 3. REPRESENTATION THEORY I

If i = j then by the first Schur’s lemma:∑
g∈G

D(i)
µ,ν(g)D

(i)
β,α,(g

−1) = λ(ν, β)δµ,α.

Fixing now α = µ and summing up over the index µ gives:∑
g∈G

D
(i)
β,ν(e) = niλ(ν, β).

Since the sum on the left hand side is δν,β |G|, we have λ(ν, β) = δν,β |G|/ni.
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LECTURE 4

Representation Theory II

1. Characters

There is a convenient way to distinguish non-equivalent representations. To this end we introduce
characters:

χ(g) := Tr(D(g)).

The characters provide minimal piece of information which we need to know about the irreducible
representations in order to distinguish/classify them. If we know characters of a representation D
we also know what/how many irreducible representations enter D.

(1) Equivalent representations have the same characters.
(2) By the group orthogonality theorem

(1.1)
1

|G|
∑
g∈G

χ(i)(g)χ̄(j)(g) = δij .

From this immediately follows that different irreducible representations have different set
of characters. Note that different group elements might have the same characters. For
each element g define its class C(g) = {hgh−1, h ∈ G}. All elements from the same class
have the same character. Thus we need to know only restricted number of characters.
The group orthogonality relation (1.1) can be rewritten as:

1

|G|
∑
C(g)

|C(g)|χ(i)(g)χ̄(j)(g) = δij .

(3) The characters of a reducible representation D is the sum over characters of irreducible
representations entering D:

χ(g) =
∑
i

riχ
(i)(g),

where ri is the number of times D(i) enters D. By the group orthogonality theorem we
have:

Theorem 1.1. Decomposition:

ri =
1

|G|
∑
g∈G

χ̄(i)(g)χ(g).

2. Classification of irreducible representations

To get an information on the number of irreducible representations, we will make use of the regular
representation σ considered in the second lecture:

h · gi = gσ(i), G = {g1, g2 . . . g|G|}; h→ σ(h).

19



20 Lecture 4. REPRESENTATION THEORY II

For this representation we have:

χ(σ)(g) = 0 if g 6= e, and χ(σ)(e) = |G|.
Now, let us decompose this representation into irreducible:

χ(σ)(g) =
∑
i

riχ
(i)(g), ri =

1

|G|
∑
g∈G

χ̄(i)(g)χ(σ)(g) = mi.

From this follows simple conclusion: every irreducible representation enters σ. Furthermore the
number of times it enters σ equals to its dimension. We therefore get:

(2.1) χ(σ)(e) =
∑
i

miχ
(i)(e) =⇒ |G| =

∑
i

m2
i .

In some cases of groups with low order the above equation (2.1) is sufficient in order to recover
dimensions of all irreducible representations.

3. How to find characters of irreducible representations?

Example 4.1. Permutations of three objects: Dihedral group D3. Here |G| = 6 and the only possible
solutions of (2.1) are mi = 1, i = 1 . . . 6 or m1 = m2 = 1,m3 = 2. The group contains three classes:
G = {[e], [g, g2], [σ1, σ2, σ3]}. First of all we look for one dimensional representations. There are only two
possibilities:

χ(1)([e]) = 1, χ(1)([g]) = 1, χ(1)([σ]) = 1; χ(2)([e]) = 1, χ(2)([g]) = 1, χ(2)([σ]) = −1.

For the remaining two-dimensional representation we have by the group orthogonality theorem:

1 · χ(3)([e]) + 2 · χ(3)([g])± 3 · χ(3)([σ]) = 0 .

Using χ(3)([e]) = 2 we get χ(3)([σ]) = 0 and χ(3)([g]) = −1.

A

[e] 2[g] 3[  ]σ

A

1

2

1

E

1 1

2 −1 0

D3

1 1

−1

Figure 1. Character table for D3.

A standard (physics) notation is A for one-dimensional representation, E for two-dimensional and F for
three-dimensional representations.

Remark 4.1. Different groups can have the same character tables. It is worth noting that, in general,

a group is not defined by its character table. For example, compare D4 and the quaternion group of

example 4.2.

4. Dual orthogonality relationship

Note that the sum in the orthogonality relation is running over the group elements. There is in
fact a dual connection, where the sum is running over the irreducible representations. To show it
we need the following simple fact:
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5. THREE TYPES OF REPRESENTATIONS 21

Theorem 4.1. The number of irreducible representations equals to the number of the group
classes. 1

Using this we can define the square matrix: Bij =
√
Ci/|G|χ(j)(Ci), where Ci, i = 1, . . . l. Then

orthogonality relation implies: BB∗ = I. Changing the order, i.e., B∗B = I implies:

(4.1)

l∑
j=1

χ(j)(Ck)χ̄(j)(Cm) =
|G|
Ck

δk,m.

5. Three types of representations

There are three types of representation: Real, Pseudo-real and Complex. For real repre-
sentations matrices D(g) can be brought into real form such that Dij(g) = D̄ij(g). This implies
in particular that all the characters are real. For pseudo real representation the characters are
also real but matrices D(g) cannot be brought into real form. Finally, for complex representations
the characters are complex. In the last case D(g) and the conjugate D̄(g) constitute two different
representation (since they characters are different), while in the real and pseudo-real case both
representations are equivalent, i.e., D̄(g) = UD(g)U†.

Indicator. To distinguish between three types of representations one looks at the indicator:

Ind(α) =
1

|G|
∑
g∈G

χ(α)(g2) ∈ {1, 0,−1},

where 1, −1, 0 are obtained for real, complex and pseudo-real representations, respectively.

Proof: For a general irreducible representation we have

(5.1) D(α)(g) = UD̄(β)(g)U†,

where α 6= β for a complex representation (since χ(α)(g) 6= χ̄(α)(g)) and α = β for real and
pseudo-real representations. From D(α)(g2) = D(α)(g)D(α)(g) follows

Ind(α) =

mα∑
i,j=1

mα∑
k,n=1

∑
g∈G

1

|G|
∑
g∈G

Uk,jD
(α)
i,k (g)D̄

(β)
j,n (g)U†ni,

with mα being dimension of α. By the orthogonality theorem this expression is zero for α 6= β
which is the case of complex α. For real and pseudo-real representations we have

Ind(α) =
1

mα
Tr
(
UŪ

)
.

Now note, that for α = β eq. (5.1) yields

D(α)(g)UŪ = UŪD(α)(g).

By the first Schur’s lemma it follows then that UŪ = γI, or U = γU> which also implies γ2 = 1.
This leaves only two possibilities γ = 1 for real and γ = −1 for pseudo-real representations. In the
first case we have UU> = I and Ind(α) = 1, while in the second one UU> = −I and Ind(α) = −1.
Note finally, that 1 = det

(
UŪ

)
= γmα . So γ = −1 might appear only if mα is even. In other

words, a pseudo-real irreducible representation must be of even dimension.

1 I give the proof of this statement at the end of this lecture
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22 Lecture 4. REPRESENTATION THEORY II

Example 4.2. Quaternions: Quaternion multiplication table is

{±1,±i,±j,±k} i2 = j2 = k2; ij = k.

This group has five conjugate classes:

{1}, {−1}, {±i}, {±j}, {±k}.
The only possible solution for the equation

∑5
i=1m

2
i = 8 is mi = 1, i = 1, . . . 4, m5 = 2. In addition to fully

symmetric representation, the other three one-dimensional representations are easy to find: χ(1) = 1, χ(−1) =
1, while χ(i) = −1, χ(j) = −1, χ(k) = 1; χ(i) = −1, χ(k) = −1, χ(j) = 1 or χ(k) = −1, χ(j) = −1, χ(i) = 1.
The two-dimensional representation can be find by the orthogonality relation:

2 + χ(−1)± χ(k)± χ(i)± χ(j) = 0,=⇒ χ(−1) = −2, χ(k) = χ(i) = χ(j) = 0

Since the indicator equals
Ind = (2χ(1) + 6χ(−1))/8 = −1,

the last representation is pseudo-real. Note that this representation can be realized using Pauli matrices:

{±I,±σx,±σy,±σz}.

6. Representations of cross products

If we have two different irreducible representations D(i), D(j) of a group G acting on the spaces
V (i), V (j) we can generate (in general) reducible representation:

D(ij)(g) = D(i)(g)⊗D(j)(g),

which acts on the space V (i) ⊗ V (j). The characters χ(i)(g)χ(j)(g) of this representation can be
decomposed into irreducible:

χ(i)(g)χ(j)(g) =

l∑
k=1

rkχ
(k)(g), rk =

1

|G|
∑
g∈G

χ(i)(g)χ(j)(g)χ̄(k)(g).

Example 4.3. D3: Consider representation E × E. The corresponding characters are then

χ(2,2)([e]) = 4, χ(2,2)([g]) = 1, χ(2,2)([σ]) = 0.

and the multiplicities are:

r(A1) = r(A2) = r(E) = 1, i.e., E × E = A1 ⊕A2 ⊕ E.

Note: the above construction can be used in order to construct higher dimensional irreducible
representations from lower one. The same idea is used for continues groups, i.e., SU(2).

For G = H × F all irreducible representations can be constructed from the irreducible repre-
sentations of H and F :

D(ij)(g) = D(i)(h)⊗D(j)(f), g = (h, f).

It is an easy exercise to check that D(ij) is indeed irreducible.

7. Representations of subgroups

Let H be a subgroup of G. Any representation D of G restricted to H gives representation D|H
(or ResHG (D) in mathematical notation) of H, which is called restrictive representation.

In the opposite direction having a representation of H we can lift it to a representation IndHG (D)
of G. This representation is called induced.2

2The precise construction is not trivial and we do not provide it here (for a while)
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8. Appendix. Proof of the theorem (4.1)

Proof idea: Construct some linear space V0 (see below) of the dimension given by the number of
classes, and then show that V0 can be also spanned by characters of the irreducible representations.
Hence

Number of Classes = dimV0 = Number of Irreducible representation.

Proof: Let V be N = |G| dimensional vector space. For each v we label its components by the
group elements:

v = (v(g1), v(g2), . . . v(gN )).

Consider the subspace V0 of V composed of vectors which remain invariant under all group trans-
formations:

h · v = (v(hg1h
−1), v(hg2h

−1), . . . v(hgNh
−1)) for all h ∈ G.

It is straightforward to see that V0 is a linear subspace itself. i.e., if h · v1 = v1, h · v2 = v2 ⇒
h · (v1 + v2) = v1 + v2 and dimV0 equals the number of the conjugate classes. Indeed, all elements
of the invariant vectors from the same conjugate class must be equal. This means that vectors
from V0 are of the form:

v = (a1 . . . a1︸ ︷︷ ︸
C1

, a2 . . . a2︸ ︷︷ ︸
C2

, . . . ak . . . ak︸ ︷︷ ︸
Ck

),

where Ci are conjugate classes.

Note that any irreducible representation α defines an invariant vector with the components
given by its characters:

~χ(α) = (χ(α)(g1), χ(α)(g2), . . . χ(α)(gN )).

Let us show that any vector from V0 can be represented as a linear combination:

v =
∑
α

cα~χ
(α).

A g component of an arbitrary vector v ∈ V can be represented as:

v(g) =
∑
α,i,j

γαi,jD
(α)
ij (g).

If v ∈ V0 then v(g) = hv(g) for all h ∈ G and we can take the average over the group:

v(g) =
1

|G|
∑
h∈G

v(hgh−1).

By the group orthogonality theorem:

(8.1) v(g) =
1

|G|
∑
h∈G

∑
α,i,j

γαijD
(α)
ik (h)D

(α)
k,m(g)D

(α)
mj (h−1) =

=
∑
α

1

mα

(∑
i

γαii

)
χ(α)(g).
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LECTURE 5

Applications I. Vibration modes

1. Vibration spectrum of molecules

In the linear approximation the classical dynamics of the molecule is governed by the Hamiltonian:

H =

N∑
i=1

m

2
ẋ2i +

N∑
i,j=1

Vijxixj .

By making a linear transformation we can bring it to the diagonal form

x→ y = Ux, H =

N∑
i=1

m

2

(
ẏ2i + ω2

i y
2
i

)
.

If the system is invariant under the group of symmetries G we have:

[V, D(g)] = 0, g ∈ G.
Using Wigner’s theorem we can diagonalize H through the decomposition of D into irreducible
representations.

Theorem 1.1. Wigner’s theorem. Let [H,D(g)] = 0, g ∈ G for some representation D of
G, and let

D =
⊕
k

Irk×rk ⊗D(k)

be its decomposition into irreducible representations, where rk is the number of times representation
D(k) enters D. Then H takes the form:

H =
⊕
k

H(k) ⊗ Ink×nk ,

where H(k) is a matrix of the dimension rk × rk and nk is the dimension of Dk (pay attention to
the different order in the cross products).

Proof: The proof of the theorem is straightforward by using Schur’s lemmas. For the sake
of clearness we will give a proof for a particular case of two irreducible representations, with one
representation appearing twice. In this case Wigner’s theorem tells that if [H,D(g)] = 0, for all
g ∈ G, then both matrices can be simultaneously brought to the block-diagonal form:

(1.1) D(g) =

D(1) 0 0
0 D(1) 0
0 0 D(2)

 H =

h(1)11 I h
(1)
12 I 0

h
(1)
21 I h

(1)
22 I 0

0 0 h(2)I


25
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To prove it assume that D(g) has the above block-diagonal form and write H a:

H =

H11 H12 H13

H21 H22 H23

H31 H32 H33

 .

The commutation relationship [H,D(g)] = 0 then reads as:H11D
(1) H12D

(1) H13D
(2)

H21D
(1) H22D

(1) H23D
(2)

H31D
(1) H32D

(1) H33D
(2)

 =

D(1)H11 D(1)H12 D(1)H13

D(1)H21 D(1)H22 D(1)H23

D(2)H31 D(2)H32 D(2)H33

 .

By application of Schur’s lemmas now follows (1.1).

Projection operators. By Wigner’s theorem we know that H becomes block-diagonal in the
same basis where D(g) takes the block-diagonal form. We thus need to know how to construct
such a basis. To this end for each irreducible representation i we define projections:

(1.2) Pi =
ni
|G|

∑
g∈G

χ̄(i)(g)D(g).

satisfying the following properties:

• Orthogonality: PiPj = δijPi.

• Completeness:
∑l
i=1 Pi = 1.

• Let D = ⊕iriDi be the decomposition of D into irreducible representations and let V =
⊕iriV (i) be the decomposition of the space V , where D acts (such that DV (i) = D(i)V (i)).
then Pi acts as unity on V (i):

Piv = v, if v ∈ V (i) and Piv = 0 if v ∈ V (j), j 6= 0.

Proof: Consider Pi in the basis where D has the block-diagonal form. Proof then follows immedi-
ately by a simple application of the group orthogonality theorem.

Example 5.1. Cn symmetry:

a)

X

X

X

Y

Y

Y

n

n
1

1

2

2

b)

k

−n/2 n/2

acoustic

optical m−1

ω

c)

x

y

y

x

y
x

1

1

2

2

3

3

Figure 1. a) Chain with circular symmetry. b) Dependance of frequency on the
representation wavenumber k. c) Molecule with D3 symmetry.

The interaction is given by the potential V =
∑
i k1(xi − yi)2 + k2(xi+1 − yi)2 whose matrix form is:
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1. VIBRATION SPECTRUM OF MOLECULES 27

(1.3) V =



k1 + k2 −k1 0 0 0 . . . 0 0 −k2
−k1 k1 + k2 −k2 0 0 . . . 0 0 0

0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1
−k2 0 0 0 0 . . . 0 −k1 k1 + k2



(1.4)


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

D(T )


z1
z2
z3
...
zn

 =


zn
z1
z2
...

zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi
yi

)

The characters of the representation D:

χ(T l) = 0, if l 6= 0, and χ(e) = 2n,

have to be decomposed into the characters of the irreducible representations:

χ(k)(T ) = exp

(
2πik

n

)
, k = 0, . . . n− 1.

The result is

χ =
∑

rkχ
(k), rk =

1

n

∑
g∈G

χ̄(k)(g)χ(g) = 2,

where each irreducible representation enters twice. The corresponding projection matrices are given by:

(1.5) P (k) =



I ᾱI ᾱ2I . . . ᾱn−2I ᾱn−1I
αI I ᾱI . . . ᾱn−3I ᾱn−2I
α2I αI I . . . ᾱn−4I ᾱn−3I

...
...

...
. . .

...
...

αn−2I αn−3I αn−4I . . . I ᾱI
αn−1I αn−2I αn−2I . . . αI I


, α = exp

(
2πik

n

)

To find the eigenmodes we apply P (k) to the whole Hilbert space. The resulting space is spanned by two
vectors:

η1 =
1√
n



1
0
α
0
...

αn−1

0


, η2 =

1√
n



0
1
0
α
...
0

αn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

Vη1 = (k1 + k2)η1 − (k1 + k2α)η2, Vη2 = (k1 + k2)η2 − (k1 + k2ᾱ)η1.

The corresponding eigenfrequences are determined by the equation:

(1.6) det

((
k1 + k2 −(k1 + k2α)

−(k1 + k2ᾱ) k1 + k2

)
− ω2

2
I

)
= 0, =⇒

ω2
±(k)

2
= k1 + k2 ± |k1 + k2α(k)|.
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28 Lecture 5. APPLICATIONS I. VIBRATION MODES

It is worth noticing that in the case when there are m particles in one cell, the corresponding
representation is given by the direct sum

D ⊕D ⊕ · · · ⊕D︸ ︷︷ ︸
m

,

where D is the representation obtained for one particle (in one cell). This means for m particles
each irreducible representation enters m times and we have to consider m-dimensional eigenvalue
problem, in order to find eigenfrequences. These leads to m branches of ω(k) - one acoustic and
the rest optical, see figure 1. (In 3 dimensions we would have 3m branches of which 3 are acoustic
ω(0) = 0).

Example 5.2. D3 symmetry:

(1.7) D(T ) =


0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , D(σ1) =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0



(1.8) D(σ2) =


0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0

 , D(σ3) =


0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1



G = {[e]; [g, g2]; [σ1, σ2, σ3]}, χ(1) = {1, 1, 1}, χ(2) = {1, 1,−1}, χ(3) = {2,−1, 0}

ri = χ(e)χ(i)(e)/6; ri = {1, 1, 2} =⇒ D = 2E ⊕A1 ⊕A2.

Pi =
1

3

∑
g∈G

χ(i)(g)D(g)

(1.9) P1 =
1

3


0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1

 , P2 =
1

3


1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0


The vibration modes associated with the two one-dimensional representations are given by

P1V = α


0
1
0
1
0
1

 and P2V = β


1
0
1
0
1
0

 ,

respectively. Here P1V represents symmetric mode shown in figure (red). The second mode P2V corresponds
to the rotations of the whole system. Finally the projection operator for the two-dimensional representation is
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(1.10) P3 =
2

6
(2D(I)−D(T )−D(T 2)) =

1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2



From this we have to separate two vectors corresponding to shift in x and y directions.

ηx =



1
0
−1/2√

3/2
−1/2

−
√

3/2

 , ηy =



0
1

−
√

3/2
−1/2√

3/2
−1/2



P3V =


α

1√
6


2
0
−1
0
−1
0


︸ ︷︷ ︸

ξ1

+β
1√
2


0
0
1
0
−1
0


︸ ︷︷ ︸

ξ2

+γ
1√
6


0
2
0
−1
0
−1


︸ ︷︷ ︸

ξ3

+δ
1√
2


0
0
0
1
0
−1


︸ ︷︷ ︸

ξ4


,

where ηx =
√

3/2(ξ4 + ξ1), ηy =
√

3/2(ξ3 − ξ2) (ξi are just columns of P3 and their linear combinations.)
The orthogonal vectors are given by

ν1 =
√

3/2(ξ1 − ξ4) =



1
0
−1/2

−
√

3/2
−1/2√

3/2

 , ν2 =
√

3/2(ξ2 + ξ3) =



0
1√
3/2
−1/2

−
√

3/2
−1/2

 .

νν
1 2

3(ν1
−ν)2 2

Figure 2. Different modes of molecule with D3 symmetry.
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2. 3-dimensional symmetries

Let G be a point group of symmetries for a molecule composed of n atoms. In general a group
element from G acts on the vectors of local displacements of atoms as:

D(g)


r1
r2
...
rn

 =


R(ϕ)rσ(1)
R(ϕ)rσ(2)

...
R(ϕ)rσ(n)

 , ri = (xi, yi, zi),

where R(ϕ) is a 3-dimensional rotation and σ is some permutation of the indices 1, . . . n. For the
trace of D(g) to be non-zero the transformation g must leave invariant at least one atom. If ng
atoms are left invariant under a transformation g then

χ(g) = TrD(g) = ng(±1 + 2 cos(ϕ)),

where plus and minus signs stand for rotations (detR(ϕ) = 1) and improper rotations (detR(ϕ) =
−1), respectively. After we calculated all characters for group elements we can easily find the
decomposition of D into irreducible representations.

Example 5.3. Tetrahedral symmetry group: T = {[e], [g], [g−1], [σ]}
χ([e]) = 4 · 3(ϕ = 0), χ([g]) = 0(ϕ = 2π/3), χ([g−1]) = 0(ϕ = −2π/3), χ([σ]) = 0

⇓
D = 3F ⊕A1 ⊕B1 ⊕B2 = 2F︸︷︷︸

rotations&
translations

⊕ F ⊕A1 ⊕B1 ⊕B2︸ ︷︷ ︸
vibration modes

Among the set of modes obtained in this way there exist modes with zero frequencies. These modes
correspond to rotations and translation of the whole molecule. In order to separate them from the rest of the
spectrum we need to construct the corresponding vectors and subtract the respective irreducible representations.
The translations in x, y, z directions are represented by the vectors:

v1 =
1√
3n



1
0
0
...
1
0
0


, v2 =

1√
3n



0
1
0
...
0
1
0


, v3 =

1√
3n



0
0
1
...
0
0
1


.

The subspace Vtr spanned by these vectors remains invariant under any group transformation D(g). We thus
have a representation Dtr of G (which enters into D) acting on Vtr with the corresponding character:

χtr(g) =
∑

i=1,2,3

(vi, D(g)vi) = TrR(ϕ) = ±1 + 2 cos(ϕ).

A similar reasoning gives for the rotation part Drot:

χrot(g) = 1± 2 cos(ϕ),

with plus in case of proper rotations and minus in case of improper rotations. To subtract Dtr and Drot from
D we just need to use the “reduced” characters:

χ(g)− χrot(g)− χrot(g) =

{
(ng − 2)(1 + 2 cos(ϕ)) rotation,

ng(−1 + 2 cos(ϕ)) improper rotation

instead of χ(g). In the case of the group T this leads to subtraction of two F representation from D.

vibModes - 2016-01-04



LECTURE 6

Applications II. Quantum Mechanics

1. Spectral decomposition

First point of view: If G is a symmetry group of the Hamiltonian H, then:

HD(g) = D(g)H, g ∈ G,

where D(g) acts on the Hilbert space V of the system. Since we can split V and respectively D(g)
into irreducible representations:

V =
⊕
k

V (k), D(g) =
⊕
k

D(k)(g), D(g)V (k) ⊆ V (k)

it follows immediately (by the second Schure’s lemma) that

H =
⊕
k

H(k), HV (k) ⊆ V (k),

where H(k) = PkH,V
(k) = PkV and

(1.1) Pk =
mk

|G|
∑
g∈G

D(g)χ(k)(g)

is the projection operator on the k-th sector of the system. Accordingly, the spectrum of H can
be split into subspectra with degeneracies given by dimensions mk of the irreducible representa-
tions of G.

Example 6.1. Reflectional symmetry G = {e, σ}: There are two irreducible representations of G.
Correspondingly:

v = V (1) ∪ V (2), where

Even: V (1) = {φ|φ(x) = φ(−x)}, Odd: V (2) = {φ|φ(x) = −φ(−x)}.

Second point of view: We consider the eigenstates of the Hamiltonian H corresponding to the
same energy level:

Hϕ(i)
n = Enϕ

(i)
n , i = 1, . . .m.

Generically the situation where m > 1 arises only if H has some symmetry G. In such a case the

set of eigenfunctions ϕ
(i)
n form a linear space V (n) of m-dimensional representation of the group G:

m∑
i=1

Dji(g)ϕ(i)
n (x) = ϕ(j)

n (g · x) ∈ V (n).

Furthermore the representation D must be in general irreducible. If D(g) would be reducible,
a generic small perturbation would break V (n) into invariant (under action of D(g)) subspaces,
thereby lifting (at least partially) degeneracy of En.
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32 Lecture 6. APPLICATIONS II. QUANTUM MECHANICS

Summary: If G is a symmetry group of the system its energy spectrum can be split into sectors
in accordance to the irreducible representations D(α) of G:

{En} = ∪α{E(α)
n }.

• Each sector has degeneracy equal to the dimension of the representation mα.

Additional information for one particle Hamiltonian systems (no statistics):

• The density of states is proportional to the dimension of representation mα i.e, for a
system with high symmetry singlets appear rearer then dublets etc., see 4.
• Spectra of different sectors are generally uncorrelated. Spectral statistics within sectors

might depend on the type of representation (complex, real, pseudo-real), see 5.

Example 6.2. D3 versus C3: Both systems posses doublets and singlets with degenerate levels consti-

C
3 D

3

A

A

e g g

1 1 1

E

A

[e] 2[g]

2 −1 0

1 1

11

−1

1

1

1

3[  ]

ε

ε ε

ε

2

2

1

A

A1

2

σ
2

Figure 1. Tables of characters for C3 and D3.

tuting 2/3 of all levels. However, the spectral statistics of doublets are different: GUE in the first case and GOE
in the second case. This is because C3 has two conjugate complex representations, while all representations of
D3 are real. 1

2. Perturbation theory

Let H ′ = H + λH1, where H has a symmetry G while H1 has a lower symmetry G1. A natural
question: how the degeneracies in the spectrum of H are affected, when G1 ⊂ G? Let En be an m-
degenerate eigenvalue of H corresponding to an m-dimensional irreducible representation D of G.
Restricted to G1, D provides in general reducible representation of G0, which can be decomposed
into irreducible ones:

D =

l⊕
k=1

D(k),

l∑
k=1

dim(D(k)) = m.

11) This is true if the classical dynamics of the system are chaotic. 2) GUE, GOE means spectral statistics of
Gaussian unitary and orthogonal ensembles, respectively. This terminology comes from random matrix theory.
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3. SELECTION RULES 33

This decomposition corresponds to splitting En into l different levels E
(k)
n , k = 1, . . . l with the

degeneracies given by dim(D(k)).

A

A

1

2 1

1 1

T 3[  ]σ4[g] −1[e]

1

1

1

00

1

3F −1

A 2

1

ε

ε

ε

ε

2

2

{9
4[g  ]

Figure 2. Splitting of an energy level in two-particle system.

Example 6.3. Two interacting particles: Consider first two non-interacting particles subject to a potential
with the T symmetry:

H =
p21
2m

+
p22
2m

+W (x1) +W (x2).

The total symmetry group of the system is G = T ×T . Assuming now that there is a weak interaction between
the particles we have

H ′ = H + λw(x1 − x2)

and the reduced symmetry of the system is G0 = T . We need to calculate how the irreducible representations
of G given by D(i)(g) × D(j)(g) are split into irreducible representations of G0. By the group orthogonality
theorem we have:

rk =
1

|T |
∑
g∈T

χ(i)(g)χ(j)(g)χ̄(k)(g).

For i = j = F (representation of the dimension 3) we get rk = 1 for all k 6= F and rF = 2, i.e.,

F × F = A(1) ⊕A(2) ⊕ Ā(2) ⊕ 2F.

The corresponding splittings are shown in the figure (2).

3. Selection rules

Consider a particle which is in an eigenstate

H0φn = Enφn,

of a Hamiltonian H0 whose symmetry is given by a point group G. If a weak external time-

dependent potential λf̂i cos(ωt) is added to H0, the particle might undergo transition from the
state φn to another eigenstate φm of H0. The corresponding transitional rate is then proportional
to the matrix elements:

Pn,m ∼ |〈φn|f̂i|φm〉|2.
What are the condition under which Pn,m 6= 0? In other words which transitions are possible?

Let f̂i be a tensorial quantity (scalar, vector etc.) which transforms according to a certain
representation of G:

f̂i =
∑
j

D
(f)
ij f̂j .
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If α, β are irreducible representations corresponding to φn and φm then the whole combination

〈φn|f̂i|φm〉 transforms in accordance with the representation:

D = D̄(α) ×D(f) ×D(β).

Lemma 3.1. The average

(3.1) Os = 〈φn|f̂i|φm〉 =

∫
dxφ∗n(x)f̂iφm(x), s = (n, i,m)

is zero if D does not contain trivial representation.

Proof: Since Os is invariant under any group transformation, we have

Os =
1

|G|

∑
g∈G

Dss′(g)

Os′ , Os = 〈φn|f̂i|φm〉, Os′ = 〈φn′ |f̂i′ |φm′〉,

where
Dss′(g) = D̄

(α)
n,n′(g)D

(f)
i,i′ (g)D

(β)
m,m′(g), s = (n, i,m), s′ = (n′, i′,m′).

By the group orthogonality theorem the above sum is zero if D contains no trivial representation.2

Example 6.4. Scalar time-dependent potential: If f̂ is scalar e.g., f̂ ∼ w(|r|) then Pn,m 6= 0 only if
α = β.

Example 6.5. Vector time-dependent potential: Let f̂ be a vector e.g., f̂i ∼ x̂, p̂x, and G = T. In this
case D(f) = F is the three-dimensional representation. Finding all possible transition reduces to the problem
of finding the decomposition of the product representation F ×D(β) into irreducible ones. We have:

F ×A(1) = F ×A(2) = F × Ā(2) = F, F × F = A(1) ⊕A(2) ⊕ Ā(2) ⊕ 2F.

Which means that the following transitions are possible:

A(1), A(2), Ā(2), F ↔ F.

4. Appendix A: Density of states or why singlets are rare in the energy spectrum of
systems with high symmetry

Consider spectrum of a particle confined by a bounded potential V (x) in an arbitrary dimen-
sion. If V (x) has a non-abelian symmetry then at least some eigenenergies En of the Hamiltonian

H = p2

2m +V (x) have degeneracies. How often will these degeneracies occur in the energy spectrum
when n→∞?

Let us look at the density of eigenvalues within each sector separately:

(4.1) ρα(E) =
∑
n=1

δ(E − E(α)
n ) =

1

π
lim
ε→0

ImTr

(
Pα

H − E + iε

)
,

where Pα is projection (1.1) on the α sector of the spectrum. We can right down this trace explicitly
in the coordinate representation as the sum over different group elements:

(4.2) ρα(E) =
mα

π|G|
lim
ε→0

Im
∑
g∈G

∫
dx

〈
x

∣∣∣∣ 1

H − E + iε

∣∣∣∣ g · x〉 .
The leading order contribution (in E) to this integral arrives from x satisfying g · x ≈ x. This
implies that only the term g = e might be left out of the sum. As a result we obtain:

ρα(E) =
mα

|G|
ρ(E)(1 + o(E0)),

2 For more examples see Landau & Lifshitz [1].
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where ρ(E) is the total density of the eigenenergies.

5. Appendix B: Spectral statistics or why compex representation matter

[to be added]
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LECTURE 7

Applications III. Energy Band Structure

1. Lattice symmetries

1.1. Bravais lattice symmetries. Before considering the group of Crystal symmetries
one should first to define possible symmetry group G for “empty lattices” L. The group G has as
a (normal abelian) subgroup the discrete group of translational symmetries:

ta · x = x+ a, a = n1a1 + n2a2 + n3a3, ni ∈ Z.

Together with a point group G0 they form a group of symmetries of the corresponding Bravais
lattice L.

The fact that lattice must remain invariant under the action of both G0 and {ta} imposes
strong restriction on the possible form of G0. Recall that an arbitrary element R ∈ G0 in (an
appropriate) orthonormal basis takes the form:

(1.1) R =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 ±1

 .

On the other hand this element URU−1 written in the basis {a1,a2,a3} must contain only integer
entries (since it transforms vectors of integers to vectors of integers). From this follows that:

TrR = 2 cosϕ± 1 ∈ Z, =⇒ ϕ = π,
π

2
,
π

3
,

2π

3
.

In 3 dimensions this leaves only 7 possibilities for the point group G0 (see the pictures in Lan-
dau & Lifshitz [1]):1

S2, C2h, D2h, D4h, D3d, D6h, Oh.

1.2. Space group. Since atoms fill cells of Bravais lattice, the rotational part of the crystal
symmetry, might be less then the symmetry of empty lattice (due to the presence of an “internal”

structure). Most general element of crystal symmetry group G̃ has the form:

g̃ = tαR,

where tα is translation by a vector α (which is not necessarily from Bravais lattice). It is easy

to show (see e.g., Petrashen’ & Trifonov [2]) that rotational part R must form a subgroup G̃0

of G0. To each of 32 such subgroups, there exists corresponding class of crystals. In addition
elements of each class can be distinguished by translational part of the group. In total there exist
230 different space groups G̃.2

1 Since −a ∈ L whenever a ∈ L, inversion always belongs to G0.
2 For further detail see Landau & Lifshitz [1]
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38 Lecture 7. APPLICATIONS III. ENERGY BAND STRUCTURE

2. Band structure

Assume that we have a potential W (x) having a space group symmetry G of a crystal. Our goal
is to construct irreducible representations of G and thus classify the spectrum of a particle moving
in such a potential. We first have to start with translational symmetry subgroup.

2.1. Translational symmetry. taW (x) = W (x+ a) = W (x). Since T = {ta} is an abelian
group all its irreducible representations α are one dimensional:

taφ(x) = eiα(a)φ(x).

By ta1+a2
φ(x) = ta1

ta2
φ(x) = ei(α(a1)+α(a2))φ(x) we also have

α(a1) + α(a2) = α(a1 + a2), =⇒ α(a) = (k,a),

where k is a vector. We will denote by V (k) the linear space of vectors with the fixed quasi-
momentum k, i.e., V (k) = {φ|taφ(x) = ei(k,a)φ(x)}.

Let b1,b2,b3 be defined by

(ai,bj) = 2πδij , i, j = 1, 2, 3.

The b1,b2,b3 triplet form reciprocal lattice

L̄ = {p1b1 + p2b2 + p3b3, pi ∈ Z}.

One can show that point symmetries of L̄ are given by the point symmetry group of L. Indeed if
R is a point symmetry of L and b ∈ L̄ then (Ra, b) = 2πn′, or equivalently (a,R−1b) = 2πn. From
this follows that R−1b belongs to L̄ as well.

Two vectors k, k′ are equivalent (give the same representation) iff k− k′ ∈ L̄. We can define
then the fundamental domain which contains only non-equivalent vectors k. This is so-called
Brillouin zone. Since W (x) is invariant under translation symmetry of L we can decompose the
Hilbert space and the Hamiltonian accordingly:

(2.1) V =
⊕
k

V (k), H =
⊕
k

H(k),

where k runs over the Brillouin zone.

2.2. Point group symmetry. In general, in addition to translational symmetries the po-
tential W (x) also obeys point group symmetries which will be denoted by R ∈ G0. Consider how
these symmetries act on the functions from the space V (k): Since taR = RtR−1a we get:

(2.2) ta(Rϕk) = ei(Rk,a)(Rϕk) =⇒ Rϕk ∈ V (Rk).

By applying all possible elements of R ∈ G0 we obtain star of k:

[k] = {k1 = k,k2, . . .kl}.

For each vector k one also defines the stabilizer Gk. This is the subgroup of G0 which leaves vector
k invariant:

Gkk = k, |Gk|l = |G0|.
Any irreducible representation of G leaves the subspace ∪li=1V

(ki) invariant.

bandStruct - 2016-01-04



2. BAND STRUCTURE 39

For a typical value of k taken from the Brillouin zone, the group Gk is trivial, i.e., consists
only of the unity element. In this case if ϕk ∈ V (k) is an eigenvector of the Hamiltonian:

(2.3) Hϕk = E(k)ϕk,

then Rϕk = ϕRk, R ∈ G0 are also eigenvectors with the same eigenvalue. Therefore all vectors
from the star have the same eigenvalues:

E(k1) = E(k2) = · · · = E(kl), l = |G0|.

However, for some values of the quasi-momenta k the group Gk might be non-trivial. In such a
case the number of elements in the star l < |G0|. This reduced symmetry of E(k) is “compensated“
by the degeneracies between different bands. Indeed for any σ ∈ Gk applied to an eigenvector ϕk

the vector σϕk is also eigenvector of H. Since

σϕk ∈ V (k),

it must belong to a different band. The vectors σϕk, σ ∈ Gk therefore form a basis of irreducible
representation. The number of sticking bands is therefore determined by the dimension of the
irreducible representation of Gk, see figure 1.

2.2.1. Note. Another way of thinking: First, consider only translational symmetry. This leads
to the decomposition (2.1). Now if σ ∈ G0 is an element of crystal symmetry, we have

(a) [H(k), σ] = 0, if σ ∈ Gk, (b) H(k)σ = σH(σk) if σ /∈ Gk.

Therefore by (a), Gk is a symmetry of H(k) and the degeneracies of the energy levels in H(k) (the
number of sticking bands) are determined by the dimensions of irreducible representations of Gk.
From (b) it follows that E(k) = E(σk).

kk

E(k)

k
21

k 0

2−dim. representation of

Gk 0

E(k )=E(k ) 1 2

Figure 1. Schematic plot of band structure. At k1, k2 the group Gk=k1,2 is trivial.
At the point k0, Gk=k0 has a 2-dimensional irreducible representation.

Example 7.1. 1-dim. potential: Consider 1-dim. potential which is symmetric under translations and
reflection:

H = −~
2

2
∂2
x +W (x), W (x+ a) = W (x), W (x) = W (−x).

The Hilbert space can be decomposed in accordance with particle quasi-momenta:

V (k) = {ϕk(x) = eikxφ(x), φ(x+ a) = φ(x)}.

We look for eigenvalues of H with a fixed quasi-momentum k:

Hϕk = E(k)Hϕk.

After substituting function ϕk(x) = eikxφ(x) we get an equivalent equation:

H(k)φ = E(k)φ, H(k) = −~
2

2
(∂x + ik)2 +W (x).
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40 Lecture 7. APPLICATIONS III. ENERGY BAND STRUCTURE

The Hamiltonian H(k) is symmetric under the group Gk = {e, σ} for k = 0, π/a. Since the group is abelian,
there are no sticking of the energy bands at these points. For other values of k, we get

σH(k)σ = H(−k) =⇒ E(k) = E(σk) = E(−k).

3. Band structure of graphene

(n,m+1)
(n+1,m)

(n+1,m+1)

(n,m)

a
b

B A

Figure 2. Graphene lattice (left) and its band structure (right).

The lattice of graphene has hexagonal symmetry C6v, see figure 2. Its band structure can be easily
understood using tight binding model. The corresponding Hamiltonian is:

H = t
∑
m,n

|mA, nA〉 (〈nB ,mB |+ 〈nB ,mB − 1|+ 〈nB − 1,mB − 1|) + C.C,

where (mA, nA), (mB , nB) are the (m,n)-site of the A and B lattice respectively. To find an
eigenvalues we use a general procedure and look for eigenfunctions with a given momentum k:

ψk =
∑
m,n

am,n|mA, nA〉+ bm,n|mB , nB〉,

where
am,n = am+p,n+le

−i(k,pa+lb), bm,n = bm+p,n+le
−i(k,pa+lb)

with k being from the first Brillouin zone (see figure 3). Substituting it with a0,0 = A, b0,0 = B
into Hψk = E(k)ψk gives the following matrix equation for the energy band:

(3.1)

(
0 th∗(k)

th(k) 0

)(
A
B

)
= E(k)

(
A
B

)
, h(k) = 1 + ei(k,a) + ei(k,a+b).

Its solution is then

E(k) = ±|h(k)|,
(
A
B

)
=

(
±
√
h(k)√
h∗(k)

)
.

The critical points where two bands approach each other are defined by the condition:

h(k) = 0 =⇒ (k,a) = (k,b) = ±2π/3.

This gives two triplets of solutions denoted by the red and the blue points in figure 3. Note that
the points of the same color represent the same quasi-momenta k1, k2 (and therefore equivalent)
as they differ only by a vector from reciprocal lattice. The corresponding band structure is shown
in figure 2.
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Figure 3. Reciprocal lattice of graphene.

From the group theory prospective the above band structure can be understood as follows.
For a generic quasi-momentum k the stabilizer Gk is trivial and we have 12 fold symmetry C6v of
the band energy E(k). Here eigenstates with the same energy correspond to different elements of
the star [k]. For two special points k1, k2 the stabilizers Gk1

, Gk2
are isomorphic to C3v. Since

C3v allows two-dimensional irreducible representations, two different bands merge at these points.

References

[1] L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press,
Oxford, 1959).

[2] M. I. Petrashen and E. D. Trifonov, Applications of group theory in quantum mechanics
(Dover, New York, 2009).

bandStruct - 2016-01-04

https://archive.org/search.php?query=creator:%22L.D.+Landau+&+E.M.+Lifshitz%22
http://books.google.com/books?vid=ISBN9780486472232




Part 2

Continuous groups





LECTURE 8

Lie groups & Lie algebras

1. Basic definitions and properties

1. So far we have considered discrete symmetry groups with at most countable number of
elements. In physics one often encounters systems where the symmetries are continuous, i.e.,
g(x) ∈ G where elements can be parametrized by x ∈ Rn. (Without loss of generality we can
assume that g(0) = e.) In these cases G is n-dimensional manifold with an additional connection
between elements provided by the group multiplication:

g(x1)g(x2) = g(x3), =⇒ x3 = φ(x1, x2).

Whenever φ is differentiable, such groups are called Lie Groups.

2. For a given Lie group G we consider its local structure around the unit element e, i.e.,
elements of the tangent space TG at x = 0:

Lγ = ∂tg(γ(t))|t=0,

where γ(t) is a differentiable path in the parameter space Rn such that γ(0) = 0. By the definition
the derivatives along n different directions form n-dimensional linear space g, i.e., any element
L ∈ TG can be represented as

L =
∑
i

aiLi, Li = ∂ig(x)|x=0, i = 1, . . . n.

3. In an opposite direction, with each element L of g we can associate a family of elements
from G:

expt : L→ exp(tL) =

∞∑
k=0

tk

k!
Lk

(here we assume that G can be represented as a linear group, so Lk is defined.) To show that
exp(tL) is in G note that for large k we have approximation:

exp(tLγ/k +O(1/k2)) = gγ(t/k),

where gγ(t/k) is a group element along the curve γ(t). Taking now k-th power of both sides and
sending k to infinity leads to:

exp(tLγ) = lim
k→∞

(gγ(t/k))
k ∈ G.

4. We can show now that g is in fact Lie algebra. For this it is sufficient to demonstrate
that g is closed under the commutation operation.

Theorem 1.1. If L1, L2 ∈ g then [L1, L2] ∈ g as well.
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46 Lecture 8. LIE GROUPS & LIE ALGEBRAS

Proof: Consider element exp(L1t1) exp(L2t2) exp(−L1t1). By the differentiation over t2 we
obtain that

exp(L1t1)L2 exp(−L1t1) ∈ g

for any t1. We then differentiate over t1 and get [L1, L2] ∈ g at t1 = 0.

Since the commutation relation automatically satisfies the Jacobi identity,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0,

g is Lie algebra. The coefficients Ckij in

[Li, Lj ] = CkijLk,

called structural constants, define the Lie algebra. The Lie algebra g0 generated by a subgroup
G0 ⊂ G is obviously subalgebra of g. If dim(G0) = dim(G) then g0 = g.

5. Examples:

a) G = SO(n), OOT = 1. Representing O = exp(tL) =⇒
so(n) = {L ∈ GL(n,R)|LT = −L},

basis: L(km)
ij = δikδjm − δimδjk , dim(so(n)) =

n(n− 1)

2
.

b) G = SU(n), UU∗ = 1, det (U) = 1. Representing U = exp(tL) =⇒
su(n) = {L = A+ iB ∈ SL(n,C)|AT = −A,BT = B,Tr(B) = 0},

dim(su(n)) =
n(n− 1)

2
+
n(n+ 1)

2
− 1 = n2 − 1.

6. Note that so(3) = su(2) = o(3), but SO(3) � SU(2) � O(3). To what extent Lie
algebra determines Lie group? It turns out that the local structure of the group around
g(0) = e defines to a certain extent (only) its global structure.

Let G be a Lie group then define its maximal connected component G0 ⊂ G which includes e.
One can show (using local isomorphism between exp(tL) and G) that G0 is subgroup of G with
the same dimension. Example: G = O(n), G0 = SO(n). The elements g0 of the subgroup G0

can be represented as:

g0 =
∏
i

exp(tiLi).

In other words, g completely determines connected component of G, but not the whole group
if it is not simply connected like O(3). Note that SO(3), SU(2) are connected.

2. Representations

Which results of the representation theory developed for finite groups can be exported to
infinite groups? In order to use the machinery developed for finite groups we need to generalize
the notion of invariance (group average):

f̄(h) =
∑
g∈G

f(gh)− is h independent,
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2. REPRESENTATIONS 47

where
∑
g∈G →

∫
dµ(g) in the continues case. For this we need invariant measures:

dµr(gh) = dµr(g), dµl(hg) = dµl(g),

which are called (left/right) Haar measures.

2.1. Haar measure. This measure can be easily constructed if we know explicitly function
φ. Assuming dµl(g) = pl(x)dxn we have:

x = 0→ xh = φ(xh, 0), δx→ δx′ = φ(xh, δx),

where xh is the coordinate of the element h. From this the condition of measure invariance is
equivalent to:

p(0)
∏

dxi = p(x′)
∏

dx′i = p(xh)det (∂yiφj(xh, y))|y=0

∏
dxi.

Which implies:

pl(x) = det (∂yiφj(x, y))|y=0, pr(x) = det (∂yiφj(y, x))|y=0 (analog.)

For compact groups two measures coincide and the total volume of the group is finite
∫
G
dµ <∞.1

Examples:

SO(2) : g(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, dµ =

1

2π
dϕ.

SO(1, 1) : g(ϕ) =

(
coshϕ sinhϕ
sinhϕ coshϕ

)
, dµ = dϕ,

∫
G

dµ =∞.

Equipped with an invariant measure one can prove for compact groups the same results as for
finite groups:

• Every representation is equivalent to unitary
• Every irreducible representation ρ(i) is finite dimensional
• Every representation is completely reducible: ρ = ⊕riρ(i)
• Schur lemmas
• Orthogonality theorems:

δij =

∫
G

dµχ̄(j)(g)χ(i)(g), ri =

∫
G

dµχ̄(g)χ(i)(g),

Pi = dim(ρ(i))

∫
G

dµχ̄(i)(g)ρ(g).

2.2. Representations of Lie algebras. Every irreducible representation D of G induces an
irreducible representation ρ of g by:

ρ(Li) = ∂tD(exp(tLi)|t=0, [ρ(Li), ρ(Lj)] = Ckijρ(Lk).

Whether the converse is true: Can we lift each representation of Lie algebra to the repre-
sentation of the corresponding Lie group? Yes, but only if the group is simply connected.
Example: SO(3) and SU(2) have the same Lie algebra su(2). Each irreducible representation
of su(2) provides an irreducible representation of SU(2), but not of SO(3) since it is not simply
connected.

1 For linear groups (represented by matrices from GL(n)) compactness (probably) means that the group

manifold is a bounded domain in Rn2
(space of GL(n) elements).
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SU(2), SO(3) and their representations

1. Connection between SU(2) and SO(3)

A rotation around z axis is given by the matrix:

(1.1) Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 = exp

ϕ
0 −1 0

1 0 0
0 0 0

 .

In the same way an arbitrary rotation in R3 can be represented by the matrix:

Rn(ϕ) = exp(−iϕ(nL)), L = (L1, L2, L3)

where the normal vector n determines the plane and the direction of the rotation, and ϕ is the
angle. Here L1, L2, L3 are generators of the rotation along x, y, z axes respectively:

(1.2) L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 .

These matrices form Lie algebra with commutation relations:

[Li, Lj ] = iεijkLk.

To compare SO(3) with SU(2), note that an arbitrary element of SU(2) can be represented
as

U = exp(−iH), H = H∗, TrH = 0.

Taking the basis of Pauli matrices an arbitrary matrix H can be represented as H = αiSi:

S1 =
1

2

(
0 1
1 0

)
, S2 =

1

2

(
0 i
−i 0

)
, S3 =

1

2

(
1 0
0 −1

)
.

Since the infinitesimal generators satisfy the same commutation relations

[Si, Sj ] = iεijkSk,

both groups have the same Lie algebra. On the other hand two Lie groups are not isomor-
phic. By αi = ϕni each element of SO(3) can be identified with an element of SU(2):

Un(ϕ) = exp(−iϕ(nS)), S = (S1, S2, S3).

This identification, however, is not one-to-one. Two matrices Rn(ϕ), R−n(2π − ϕ) are equal and
correspond to the same element of SO(3), while Un(ϕ) = −U−n(2π−ϕ). One concludes from this
that:

SO(3) ∼= SU(2)/Z2,

where the normal subgroup Z2 is formed by the matrices ±I.
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π 2π
γγ

γ

SO(3) SU(2)

Figure 1. The groups SO(3) and SU(2) as manifolds. For SO(3) the diametrically
opposite points on the surface are identical. Therefore the curve γ cannot be shrink to
a point, i.e., the group is not simply connected. For SU(2) the whole surface of the ball
represent one point −I, thus a curve γ can be continuously shrunk to a point.

2. Representations of SO(3) and SU(2)

To obtain representations of SO(3) and SU(2) it is useful to start from the representations of
their Lie algebra su(2). To this end we first define raising and lowering operators L± = L1 ± iL2

satisfying the following commutation relations:

[L3, L±] = ±L±, [L+, L−] = 2L3

Note that if |v〉 is an eigenvector of L3 with an eigenvalue λ then:

L3|v〉 = λ|v〉, =⇒ L3 L±|v〉 = (λ± 1)L±|v〉

and by induction Ln±|v〉 is an eigenvector of L3 with the eigenvalue λ±n. Since we are looking for
finite representations, there exists an eigenvector |v0〉 (lowest weight) of L3, L3|v0〉 = λ|v0〉 with
the minimal value of λ such that:

L−|v0〉 = 0, Ln+|v0〉 = 0, and Lk+|v0〉 6= 0, k ≤ n.

From the following chain of equalities:

(2.1) 0 = 〈v0|Ln−Ln+|v0〉 =

= −2〈v0|Ln−1− L3L
n−1
+ |v0〉+ 〈v0|Ln−1− L+L−L

n−1
+ |v0〉 =

· · · = −2((λ+ n− 1) + (λ+ n− 2) + · · ·+ λ)〈v0|Ln−1− Ln−1+ |v0〉

and 〈v0|Ln−1− Ln−1+ |v0〉 = ||Ln−1+ |v0〉||2 6= 0 we conclude:

nλ+
n(n− 1)

2
= 0 =⇒ −λ =

n− 1

2
.

Because n is an integer all eigenvalues of L3 are either integer or half-integer numbers for a given
irreducible representation, see fig. XXX. A Casimir of a Lie algebra is an operator from the
enveloping algebra which commutes with all elements of the Lie algebra. For su(2) it is given by:

L2 = L2
1 + L2

2 + L2
3 = L2

3 + L3 + 2L+L−.

Its eigenvalues

L2|v0〉 = l(l + 1)|v0〉, l = |λ|
label the irreducible representations.
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To obtain irreducible representations of SU(2) or SO(3) it remains to “exponentiate“ irre-
ducible representation of su(2). Note that half-integer representations of su(2) provide represen-
tations of SU(2) (simply connected group) but not of SO(3).

Remark 2.1. In general each group G has a unique universal cover group G̃. This is simply

connected group such that G = G̃/Zk, where Zk is a discrete group. Groups G̃ and G have the

same Lie algebra g. Any irreducible representation of g can be lifted to a representation of G̃ and

vice versa. However, a representation of G̃ is in general a multi-valued representation. G̃. In our
case SU(2) is the universal cover of SO(3) ∼= SU(2)/Z2. Another example: the universal cover of
U(n) (which is not simply connected) is given by R×SU(n) (which is simply connected), where R
is the additive group of real numbers.

Characters of group elements can be easily calculated using the fact that any rotation by an
angle ϕ around an axis n can be represented as:

gϕ = RRz(ϕ)R−1,

where R rotates n into z axis. Explicitly, for the representation l:

D(l)(L3) = {−l,−l + 1, . . . , 0, . . . , l − 1, l}
and the characters are given by

χ(l)(gϕ) = TrD(l)(Rz(ϕ)) =

l∑
k=−l

eikϕ =
sin(l + 1/2)ϕ

sin(ϕ/2)
.

Remark 2.2. 1) By the orthogonality theorem∫
SU(2)

χ(l)(gϕ)χ(l′)(gϕ)dµϕ = δll′ .

From this it is clear that ϕ-dependent part of measure must be dµϕ = 1
π sin2(ϕ/2)dϕ.1

2) Taking the limit ϕ → 0 in χ(l)(gϕ) (i.e., taking the trace of the identity, dl = χ(l)(e)) we

obtain dim(D(l)) = 2l + 1, as it should be.

3. Applications

3.1. Spectral degeneracies of rotation invariant systems, SO(3) and O(3). In the
coordinate representation the infinitesimal rotation acts on a quantum wavefunction (or any smooth
function):

ψ(Rn(δϕ)x) ≈ ψ(x) + iδϕ(nL̂)ψ(x),

where
L̂ = −ix×∇,

is operator of angular momentum. The irreducible representations of SO(3) can be constructed
by considering invariant subspaces of functions:

V = ⊕V (l), V (l) = {f(r)Y
(m)
l (θ, φ)|m = −l, · · ·+ l},

where spherical harmonics are simultaneous eigenfunctions of L2, L3,

1It is also clear that the “angular” part of the measure should be just dΩ, where Ω is the spherical measure for
n.
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L̂2Y
(m)
l (θ, φ) = l(l + 1)Y

(m)
l (θ, φ), L̂zY

(m)
l (θ, φ) = mY

(m)
l (θ, φ) ,

where

Y
(m)
l (θ, φ) =

1√
2π
eimϕP

(m)
l (cos θ).

If rotation invariant Hamiltonian posses in addition invariance under the inversion i : r →
−r (e.g., V (r) depends only on |r|), the full symmetry group of the quantum system becomes
O(3) ∼= SO(3) × {e, i}. In this case the full set of the representations (l, w) can be labeled by
angular momentum l and parity w = ±1. The representation (l,+1) correspond to D(i) = 1, i.e.,
symmetric functions ψ(x) under inversion θ → π − θ, φ→ φ+ π, while for the (l,−1), D(i) = −1
and the functions are antisymmetric. Note however that for the above coordinate representation,

w is fixed by l, w = (−1)l. For even (odd) l, Y
(m)
l (π − θ, φ+ π) = ±Y (m)

l (θ, φ).

3.2. Spectral degeneracies of hydrogen atom, SO(4). For the Coulomb potential −e2/r
the symmetry group is actually larger then SO(3). In addition to angular momentum there is
another conserved quantity – Runge-Lenz vector:

M =
1

m
p× L− e2~r/r.

After rescaling M ′ = M(−m/2H)1/2 the linear combinations J (1) = (L+M ′)/2, J (2) = (L−M ′)/2
satisfy the following commutation relation:

[J
(1)
i , J

(1)
j ] = i~εijkJ (1)

k , [J
(2)
i , J

(2)
j ] = i~εijkJ (2)

k , [J
(1)
i , J

(2)
j ] = 0 .

We conclude that the Lie algebra is ŝu(2) ⊕ ŝu(2), while the corresponding symmetry group is
SO(4). The irreducible representations of SO(4) (which is double covered by SU(2)⊗ SU(2)) are
direct products of pairs of irreducible representations of SU(2):

D(l,k) = D(l) ⊗D(k), dimD(l,k) = (2l + 1)(2k + 1).

Because of additional relationship:

(L ·M) = 0 =⇒
(
J (1)

)2
=
(
J (2)

)2
we have in fact l = k. This implies that the degeneracy of the n-th energy level En is n2, n = 2l+1.
Note that l runs over both integers and half-integers, since it labels representations of SU(2) rather
then of SO(3).

3.3. Perturbation with discrete symmetry. Let H0 be rotational symmetric Hamilton-
ian. Consider its perturbation:

H = H0 + λW,

where W has the symmetry of T ⊂ SO(3). This situation arises e.g., in crystals. How the
degeneracies of the energy levels are lifted? Take l = 2 representation of SO(3), which corresponds
to 5-time degenerate energy level. D(2) provides a reducible representation of T . We need to
know ho it splits into irreducible representation of T . Recall that T has 12 elements corresponding
to the rotations by the angle ϕ: 0 (1-time), π (3-times), 2π/3 (4-times), −2π/3 (4-times). The
corresponding characters are:

χ(2)(gϕ) = {5, 1,−1,−1}
which leads

D(2) = Ā2 ⊕A2︸ ︷︷ ︸
c. cong.

⊕F =⇒ 5→ 1 + 1︸ ︷︷ ︸
deg.

+3.
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4. Spinors

Experiments show that for certain particles (e.g., electrons) application of magnetic field leads
to the splitting of their energy levels into doublets. This suggests that internal angular momentum
of these particles corresponds to half-integer representations of su(2). Correspondingly their states
are transformed under the rotation at angle ϕ around n axis as∑

j=1,2

Un(ϕ)ijχj = χi.

The two component quantities χ = (χ1, χ2), which are transformed in this way are called spinors.
Strictly speaking spinors do not provide representation for SO(3) since after rotation by 2π, χ→
−χ. This is however not a problem since the physical quantities 〈χ|O|χ′〉 are, in fact, invariant.

Wavefunctions Ψ(x1, . . . xn) of many-particle systems are spinors of rang n, i.e., they are
transformed as products:

χ
(1)
i1
. . . χ

(n)
in
→ Un(ϕ)i1,j1 . . . Un(ϕ)i1,j1χ

(1)
i1
. . . χ

(n)
in
.

In the same way as with vectors/tensors we can introduce tensor algebra for spinors. The conjugate
spinors are transformed by the adjoints of Un(ϕ). Because

Un(ϕ)Σ = ΣU†n(ϕ) Σ =

(
0 1
−1 0

)
we can use matrix Σ to rise indexes of the spinors. Namely, the transformation of the spinor:(

χ1

χ2

)
:= Σ

(
χ1

χ2

)
=

(
χ2

−χ1

)
is carried out by the adjoint of Un(ϕ).

4.1. Time reversal invariance and Kramers degeneracies. For systems without spin
the time reversal operation T is given in the coordinate basis by the complex conjugation K:

Kψ(x) = ψ∗(x).

This is easy to see, since ψ∗(x, t) satisfies the time dependent Schroedinger equation with t→ −t.
For spinors, however this definition should be modified. The operator T is here a two-dimensional
matrix satisfying:

T p̂T ∗ = −p̂, T x̂T ∗ = x̂ =⇒ TST ∗ = −S, .

From this follows that the time reversal operator is given by:

T

(
χ1(x)
χ2(x)

)
= i

(
χ∗2(x)
−χ∗1(x)

)
, T = iΣK.

Important:

1) T is an anti-unitary operator, i.e.,

〈Tψ|Tφ〉 = 〈ψ|φ〉∗ = 〈φ|ψ〉, Not! 〈Tψ|Tφ〉 = 〈ψ|φ〉

(this is always true for time reversal operator, since it involves complex conjugation).

2)

T 2 = −1

(this is different from scalar case).
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Remark 4.1. A symmetry of a quantum system is represented by the linear operator S such
that

|〈Sψ|Sφ〉| = |〈ψ|φ〉|
By Wigner’s theorem S must be either unitary or anti-unitary.

Theorem 4.2. (Kramer’s theorem). If system is time reversal invariant, i.e., [T,H] = 0 and
T 2 = −1 then spectrum is doubly degenerate.

Proof: Since
〈ψ|Tψ〉 = 〈T (Tψ)|Tψ〉 = −〈ψ|Tψ〉,⇒ 〈ψ|Tψ〉 = 0,

and ψ, Tψ are orthogonal to each other.2

A non-trivial example of the Hamiltonian with double degeneracies:

H = H0 + f(x)(L · S),

where H0 has time reversal symmetry and does not contain spin operator.

If a system contains n particles with spin 1/2, then the time symmetry operator T = T1 ×
T2 × · · · × Tn and T 2 = −1 iff n is odd. In this case the spectrum is doubly degenerate, while the
total spin is half integer.

2In the case T 2 = 1, we usually have ψ = Tψ.
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5. Product representations of SO(3)

If the system is composed of a number of particles the Hilbert space has the structure of
tensorial product. The symmetry group is then acts as:

D(g)ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn = D(l1)(g)ψ1 ⊗D(l2)(g)ψ2 ⊗ · · · ⊗D(ln)(g)ψn,

where each D(li)(g) is an irreducible representation and li is the corresponding angular momentum
of the particle i. As one can understand D(g) is not an irreducible representation itself. So it is
important to know the decomposition of D(g) into irreducible representations:

(5.1) D =
⊕
k

rlD
(k).

This determines for example how energy levels of the system split in many-body systems when
there is an interaction between particles. Exactly the same question can be asked about one particle
with a spin s, e.g., s = 1/2. In that case an angular momentum l of the particle adds up with
its spin. In mathematical language we are interested in the decomposition of the representation
D(1/2) ⊗D(l) into irreducible one.

6. Clebsch-Gordan series

To find coefficients rk in the decomposition (5.1) we can use group orthogonality theorem:

(6.1) rk =

∫
χ̄(k)(ϕ)χ(p)(ϕ)χ(m)(ϕ)dµϕ =

= − 1

π

∫
dϕ (e−ikϕ + e−i(k−1)ϕ + . . . eikϕ) sin((m+

1

2
)ϕ) sin((p+

1

2
)ϕ) =

=

k∑
j=−k

δ(m− p− j)− δ(m+ p+ 1− j) =

= 1 if |m− p| ≤ k ≤ |m+ p|, otherwise 0.

In other words:

D(m) ⊗D(p) =

p+m⊕
k=|m−p|

D(k)

7. Clebsch-Gordan coefficients. Adding angular momenta

The basis states of the spinor representation D(l) are given by

Lz|l,m〉 = m|l,m〉, m = −l, · · ·+ l.

For applications we need to know how the tensor product of these states can be decomposed into
such basis:

(7.1) |l,m〉 ⊗ |j, p〉 =

l+j∑
L=|l−j|

Cl,j,Lm,p,M |L,M〉, M = m+ p.

We can also invert this decomposition in order to express the eigenstates of total angular momentum
in terms of eigenstates of individual angular momenta:

(7.2) |L,M〉 =

l∑
m=−l

C̄l,j,Lm,M−m,M |l,m〉 ⊗ |j, p〉.
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The Clebsch-Gordan coefficients Cl,j,Lm,p,M = Cl,j,Lm,M−m provide transformation matrices from the

basis of |l,m〉 ⊗ |j, p〉 to the basis |L,M〉 where D(l) ⊗D(j) is block-diagonal. For SO(3), Cl,j,Lm,p,M

can be chosen to be real.

7.1. Adding spin. As an example consider addition of angular momentum with the spin:

D(l) ⊗D(1/2) = D(l+1/2) ⊕D(l−1/2).

The total angular momentum can take values j = l ± 1/2. For the sake of concreteness consider
the case j = l + 1/2:

|j M〉 = C
(m)
+ |l m〉|+〉+ C

(m)
− |l m+ 1〉|−〉, M = m+ 1/2.

Applying to the both sides of the equation J+ we obtain:

|j M + 1〉 =

(
C

(m)
+

(
l +m+ 1

l +m+ 2

)1/2

+ C
(m)
−

(
1

(l −m)(l +m+ 2)

)1/2
)
|l m+ 1〉|+〉

+ C
(m)
−

(
l −m− 1

l −m

)1/2

|l m+ 2〉|−〉.

From this follows recursion relationship:(
C

(m+1)
+

C
(m+1)
−

)
=


(
l+m+1
l+m+2

)1/2 (
1

(l−m)(l+m+2)

)1/2
0

(
l−m−1
l−m

)1/2
(C(m)

+

C
(m)
−

)

Example l = 1. Since | 32 ±
3
2 〉 = | ± 1〉| ± 1

2 〉 ⇒ C
(−2)
+ = 0, C

(−2)
− = 1. By recursion we obtain:

|3
2
− 1

2
〉 =

√
1

3
| − 1〉|1

2
〉+

√
2

3
|0〉| − 1

2
〉; |3

2

1

2
〉 =

√
1

3
|1〉| − 1

2
〉+

√
2

3
|0〉|1

2
〉.

In the coordinate representation the above solutions can be written down in the spinor form as:

Φ
1
2
3
2

(x) = χ(r)

√ 2
3Y

(0)
1 (θ, ϕ)√

1
3Y

(1)
1 (θ, ϕ)

 Φ
− 1

2
3
2

(x) = χ(r)

√ 1
3Y

(−1)
1 (θ, ϕ)√

2
3Y

(0)
1 (θ, ϕ)


Φ

3
2
3
2

(x) = χ(r)

(
Y

(1)
1 (θ, ϕ)

0

)
Φ
− 3

2
3
2

(x) = χ(r)

(
0

Y
(−1)
1 (θ, ϕ)

)
.

8. Wigner-Eckart theorem

8.1. Motivation. In quantum mechanics we often consider interaction of systems with an
external environment. Such interaction is described by adding a coupling term λX to the system
HamiltonianH. By the perturbation theory this interaction induces transitions between eigenstates
|m′〉, |m′〉 of H with the rates proportional to:

Pm→m′ ∼ |〈m|X|m′〉|2.

Using the group theory we can often determine which transitions are possible (or prohibited)
without making explicit calculations.3 In addition, in some cases it is also possible to relate to
each other the transition rates induced by different observables.

3 Are selection rules are restricted to the first order of the perturbation theory? Seems to depend on a particular
case.
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8. WIGNER-ECKART THEOREM 57

As a simple example, let look at parity P . The transitions

〈l|X|l′〉 = 〈l|P−1PXP−1P |l′〉 = (−1)l+l
′
p(X)〈l|X|l′〉

are zeroes if parity of X, p(X) 6= (−1)l+l
′
. For example if X is a vector component, p(X) = −1

and the transitions between l = 0 to l = 2 are forbidden.

8.2. Scalar observable X. By definition a scalar observable is invariant under the rotation:

(8.1) exp(−iϕ(nL̂))X exp(iϕ(nL̂)) = X.

For example this would be the case for any X = f(L̂2). Note that

〈ml|X|l′m′〉 = f(l(l + 1))δl,l′δm,m′

where the prefactor depends only on l. The same statement can be proven for any X satisfying
(8.1). Indeed first by inserting commutators:

(8.2) 〈ml|[X, L̂z]|l′m′〉 = 0, 〈ml|[X, L̂2]|l′m′〉 = 0

one obtains that m = m′, l = l′. Second by using L̂+ one gets

(8.3)
√

(l +m)(l −m+ 1)〈ml|X|l m〉 = 〈ml|XL̂−|l m+ 1〉

= 〈ml|L̂−X|l m+ 1〉 =
√

(l +m)(l −m+ 1)〈m+ 1 l|X|l m+ 1〉.
Therefore the result does not depend on m.

8.3. General observable X. Wigner-Eckart theorem generalizes the above statement to the
case when Xi is transforming according to a representation of SO(3) (or some other symmetry

group). For instance Xi might be a vector, tensor or spinor. In general case let X
(l)
i , i = −l, . . . l

be an observable which is transformed under rotation as:

(8.4) UX
(l)
i U−1 = D

(l)
i,kX

(l)
k , U = exp(−iϕ(nL̂)),

where D
(l)
i,k is 2l + 1 × 2l + 1 matrix representing rotation U in the spherical basis of the vectors

{|l m〉,m = −l, . . . l}. The set of observable X(l) = {X(l)
i , i = −l, . . . l} is called spherical tensor

of rank l. Its components are transformed exactly as spherical harmonics Y ml under the action of
SO(3), which motivates the name.

For infinitesimal transformations (8.4) implies:

(8.5) [L3, X
(l)
k ] = kX

(l)
k ,

3∑
i=1

[Li[Li, X
(l)
k ]] = l(l + 1)X

(l)
k .

In other words, operators X
(l)
i , i = −l, . . . l provide spherical basis of ˆso(3) representation with the

angular momentum l.

Example: Vector like observable e.g., x̂, p̂. For a vector {Vx, Vy, Vz} the following three

components X
(1)
0 = Vz, X

(1)
±1 = ∓(Vx ± iVy)/

√
2 provide spherical basis for the representation

D(1). Indeed it follows immediately from the defining property of vectors UViU
−1 = Ri,j(φ)Vj :

[L3, Vi] = −iε3ikVk =⇒ [L3, X
(1)
0 ] = 0, [L3, X

(1)
±1 ] = ±X(1)

±1 .

Theorem 8.1. (Wigner-Eckart theorem). Let X
(l)
m be an observable which transforms under

rotation, as in eq. (8.4), then

〈m′l′|X(l)
m |l′′m′′〉 = 〈l′||X(l)||l′′〉Cl

′,l,l′′

m′,m,m′′ ,

where 〈l′||X(l)||l′′〉 does not depend on m′,m′′ and m.
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Proof: By using

(8.6) [L±, X
(l)
m ] =

√
(l ∓m)(l ±m+ 1)X

(l)
m±1

we have

(8.7)
√

(l′ ±m′)(l′ ∓m′ + 1)Z(m′ ∓ 1,m,m′′) =
√

(l′′ ∓m′′)(l′′ ±m′′ + 1)Z(m′,m,m′′ ± 1)+

+
√

(l ∓m)(l ±m+ 1)Z(m′,m± 1,m′′),

where Z(m′,m,m′′) = 〈m′l′|X(l)
m |l′′m′′〉. But exactly the same equation holds for the ClebschGor-

dan coefficients Cl
′,l,l′′

m′,m,m′′ . Hence

〈m′l′|X(l)
m |l′′m′′〉 ∼ C

l′,l,l′′

m′,m,m′′ ,

with the proportionality constant depending only on l′, l, l′′.

9. Applications

Transitions induced by the operators x, y, z. It is easy to check that X0 = z,X±1 =
(−x± iy)/

√
2 are the eigenvectors of Lz (in adjoint representation):

[Lz, Xk] = kXk.

By Wigner-Eckart theorem

〈m′ l′|z|l m〉 = aCl
′,1,l
m′,0,m.

From this follows that the only possible transitions are: m′ = m, l = l′ ± 1 (the transition l′ = l is
forbidden by parity). Analogously

〈m′ l′|x|l m〉 = 〈m′ l′|X−1 −X1|l m〉/
√

2 = a/
√

2(Cl
′,1,l
m′,−1,m − C

l′,1,l
m′,1,m)

with the same a. So the possible transitions in this case are m′ ± 1 = m, l = l′ ± 1.

Zeeman effect. In the presence of magnetic field an additional interaction term has to be
added to the Hamiltonian of the system:

P

l=0

j=1/2

j=3/2

j=1/2

m=−3/2

m=−1/2

m=1/2

m=3/2

m=1/2

m=−1/2

m=1/2

m=−1/2

{

{

{{

{l=1

S

Central potential + Magnetic field + Spin orbit interaction

end

Figure 2. Zeeman effect. Without taking into account spin orbit-interactions the
levels of an electron in a central potential are 2(2l + 1) times degenerate, where l is
angular momentum and the factor 2 is due to the spin. After adding spin-orbit coupling
L ·S the energy levels are determined by the total angular momentum j = l±1/2. So the
degeneracies are partially lifted. Note, however, that because of Kramers degeneracies, all
energy levels must be (at least) twice degenerate. Finally, by adding magnetic field both
time reversal symmetry and SO(3) symmetry are broken (to SO(2)) and the degeneracies
are lifted completely.
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V = − eH

2Mc
(Lz + 2Sz).

This leads to the splitting of degeneracies in the atomic energy levels. To account for such splittings
in first order perturbation theory we need to calculate matrix elements:

〈mj|Sz|jm〉,
where 〈mj| are eigenstates of the total angular momentum Jz, J

2. By Wigner-Eckart theorem:

〈mj|Si|jm′〉
〈mj|Ji|jm′〉

= a(j),=⇒ 〈mj|Sz|jm〉 = ma(j).

It remains to find the constant a(j). For this note:

(9.1) 〈mj|S · J |jm〉 =
∑
i

∑
m′

〈mj|Si|jm′〉〈m′j|Ji|jm〉 =

a(j)
∑
i

∑
m′

〈mj|Ji|jm′〉〈m′j|Ji|jm〉 = a(j)〈mj|J2|jm〉

Since 2SJ = J2 + S2 − L2, we have

a(j) =
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

Finally

∆Em,j = − eH

2Mc
m

(
1 +

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

)
, j = |l − s|, . . . l + s.
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LECTURE 10

Representations of simple algebras, general construction.
Application to SU(3)

1. Adjoint representation and Killing form

Let Li, i = 1, . . . n be generators of a Lie algebra g:

[Li, Lj ] = CkijLk.

Since Li, i = 1, . . . n themselves form the linear space V = {
∑n
i=1 aiLi} we can consider action of

Li on V . This is so called adjoint representation Ad:

Lj ·
n∑
i=1

aiLi :=

n∑
i=1

ai[Lj , Li] =

n∑
i=1

a′iLi, a′k = Ckj,iai.

Therefore:
(AdLj)k,i = Ckj,i.

Note that coefficients Ckj,i are antisymmetric in j, i.

We can also introduce scalar product (Killing form) on V through the adjoint representation:

(Li, Lj) := Tr(AdLiAdLj) =
∑
l,k

CkilC
l
jk =: gij .

The Cartan metric gij is the object of the fundamental significance. In particular it determines
whether the algebra is simple or semi-simple (condition A) and whether it is compact (condition
B):

(1.1) Condition A: det (g) 6= 0, Condition B: g < 0.

In the following we assume (1.1) hold. Under this assumption we can always chose a basis in V
where gij = δij and

Ckil = gijC
j
il =: Ckil = Tr([AdLkAdLi]AdLl)

is fully antisymmetric.

2. Cartan sub-algebra and roots

We now define Cartan sub-algebra - a maximal set h of commuting generators:

[Hi, Hj ] = 0, i = 1 . . . l,

where l is called the rank of the Lie algebra. The idea is to diagonalize simultaneously h in the
adjoint representation:

(2.1) (AdHi) · Eα = αiEα,⇐⇒ Civα = αivα ,

where Ci is the matrix with the elements [Ci]kl ≡ Ckil. Taking the basis where gij = δij (i.e.,
(Hi, Hj) = δij) we see that Ci is antisymmetric and its eigenvalues are purely real. Note that since
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Ci has l zero eigenvalues corresponding to Hi the number of non-trivial solutions in eq. (2.1) is
dim g − l. The theorem of Cartan asserts that all these solutions are non-degenerate.

Taking a general element H =
∑l
i=1 ciHi from h one has:

(AdH) · Eα = [H,Eα] = α(H)Eα, α(H) =

l∑
i=1

ciαi.

The dim g − l linear forms α are called roots of the algebra.

After defining the roots of g we can chose the basis such that:

(Hi, Hj) = δij , (Eα, Eβ) = δα,−β , (Hi, Eβ) = 0.

This is so called Cartan-Weyl basis. In this basis:

(2.2) [Hi, Eα] = αiEα, [Eα, E−α] =
∑

αiHi, [Eβ , Eα] = Nα,βEα+β .

3. Main properties of root systems

The root system R(g) of a simple Lie algebra fulfills the following properties:

• If α is root then −α is root as well
• If α, β are roots then either α+ β is also root or [Eβ , Eα] = 0.
• Weyl reflection (comes later). Give a root β it Weyl reflection:

σα(β) = β − 2(αβ)

α2
α

is also a root.
• The roots can be split into positive and negative R(g) = R−(g) ∪ R+(g). The first

component α1 of a positive (negative) root is larger (resp. smaller) then 0.
• There is a basis of l (positive) simple roots α(k), k = 1 . . . l such that any α ∈ R+(g):

α =

l∑
k=1

nkα
(k), nk ≥ 0.

4. Building up representations of g

Using (2.2) we can construct an su(2) sub-algebra of g associated with any root α. This
sub-algebra gα is generated by the triplet:

gα = {Hα =
αi
|α|2

Hi, |α|−1Eα, |α|−1E−α}, α ∈ R(g).

A general representation of g is constructed in the following way. Let |λ〉 be an eigenvector of
h, i.e.,

Hi|λ〉 = λi|λ〉, i = 1, . . . l, ⇒ Hα|λ〉 =
(λ, α)

|α|2
|λ〉.

Since vectors |α|−1E−α|λ〉 form representation of gα the number (λ,α)
|α|2 must be half integer:

(4.1) 2
(λ, α)

|α|2
∈ Z .
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In particular by taking the adjoint representation we obtain:

2
(β, α)

|α|2
∈ Z, β, α ∈ R(g).

A general recipe for construction of the representations:

• Construct reciprocal lattice Λ = {
∑l
k=1mkλ

(k),mk ∈ Z} generated by fundamental

weights λ(k): 2 (λ(i),α(j))
|α(j)|2 = δij . All vectors from Λ obey (4.1).

• Take the highest weight λ ∈ Λ, which is annihilated by all raising operators:

Hi|λ〉 = λi|λ〉, i = 1, . . . l, Eα|λ〉 = 0, α ∈ R+(g).

• Apply lowering generators, up to the point when it vanishes:

{|λn〉 =
∏

α∈R−(g)

Enαα |λ〉}.

The corresponding weights are then given by:

Hi|λn〉 = λi +
∑
α

nααi|λn〉.

In other words all the weights are situated on the lattice generated by the roots of the system,
shifted by the highest weight λ. In the basis free notation:

H|λn〉 = λn(H)|λn〉, λn = λ+
∑

α∈R−(g)

nαα.

5. Representations of su(3)

5.0.1. Transition from su(3) to sl(3,C). To find representation of the group SU(3) we look
at the representations of its Lie algebra su(3). It is convenient to consider its complexification
su(3)C ∼= sl(3,C) which has the same representations as su(3) itself:

su(3)→ sl(3,C).

5.0.2. Cartan-Weyl basis of sl(3,C). : 1

(5.1) H1 =
1

2

1 0 0
0 −1 0
0 0 0

 H2 =
1

2
√

3

1 0 0
0 1 0
0 0 −2


(5.2)

E1 = ET−1 =
1√
2

0 1 0
0 0 0
0 0 0

 E2 = ET−2 =
1√
2

0 0 0
0 0 1
0 0 0

 E3 = ET−3 =
1√
2

0 0 1
0 0 0
0 0 0

 .

The commutation relations are given by

[H1, E±k] = ±α(k)(H1)E±k, [H2, E±k] = ±α(k)(H2)E±k, k = 1, 2, 3

where
α(1)(H1) = 1, α(2)(H1) = −1/2, α(3)(H2) = 1/2;

1Note: H1 = I3, H2 = T8 =
√

3
2
Y
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α

α α1 3

2

λ

λ

1

2

Figure 1. Root system for su(3)

α(1)(H2) = 0, α(2)(H2) =
√

3/2, α(3)(H2) =
√

3/2.

Note also that
[E1, E2] = E3 ⇒ α(3)(Hi) = α(1)(Hi) + α(2)(Hi).

The corresponding roots αk, k = 1, 2, 3 are shown in figure 1. The reciprocal lattice is generated
by two weights:

λ(1) =
1

3
(2α(2) + α(1)) λ(2) =

1

3
(2α(1) + α(2)).

5.0.3. Adjoint representation [8]. This representation consists of 6 roots of the system and
in addition contains 2 vectors with zero weights corresponding to H1, H2. The highest weight is
λ = α(3).

5.0.4. Fundamental representations [3], [3̄]. These are the representations of minimal dimen-
sion (3) akin 1/2 representation for su(2). There are two such representations: [3] with the highest
weight λ = λ(1) and [3̄] with the highest weight λ = λ(2).

5.0.5. General representation D(p, q). A general representation D(p, q) is constructed by fixing
highest weight to be λ = pλ(1) + qλ(2). The integers p and q show how many times we can apply
operators Eα1

, Eα2
to the highest weight, before it vanishes (see fig. XXX):

Ep+1
α2
|λ〉 = 0, Eq+1

α1
|λ〉 = 0.

The resulting representation diagram is a hexagon with D3 symmetry. This symmetry is easily
understood if one considers the induced representations of gα groups. These representations must
be symmetric under reflection about the line orthogonal to the root α and passing through the
origin. Note also that D(q, p) is complex conjugate representation for D(p, q). Note that the
fundamental representations correspond to: D(1, 0) = [3], D(0, 1) = [3̄], while adjoint is D(1, 1) =
[8].

The multiplicities of the weights in the representation are 1 at the outer layer and then in-
creasing by one at each next layer before it reaches “triangular“ part of the representation. At this
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D(2,4)

Figure 2. Construction of a general representation D(p, q). The multiplicity of
each layer is increased up to the point when it reaches triangular structure, then the
multiplicities stay the same.

point the multiplicities stay constant.2 The resulting dimension of the representation is therefore
given by (easy exercise in combinatorics):

dim(D(p, q)) =
1

2
(p+ 1)(q + 1)(p+ q + 2).

The number t := (p − q) mod 3 = 2(λ, α(1) + α(2)) is called triality of the representation It
distinguishes between three classes of representations. All weights from the same representation
have the same t. This is easy to see since adding of roots to λ does not change this number. For
D(1, 0), D(0, 1) and D(1, 1) this number is 1,−1 and 0, respectively.

5.1. Tensor product representations. It is also easy to multiply different representations
using graphical picture. See the case [3]⊗ [3̄] = [8]⊕ [1] in figure 3.

= =
[8] [1]

[3][3]

Figure 3. Tensor product of two fundamental representations: [3]⊗ [3̄].

2The proof will be added later.

SU3 - 2016-03-05





LECTURE 11

Strong interactions: flavor SU(3)

In the classical physics elementary particles might have different characteristics: masses,
charges, angular moments, energies, etc. Symmetries provide conservation laws but no organi-
zation principle in this zoo. From the point of view of 19th century physics there is no compelling
reason reason to have any particular number of particles, specific charges or spins.

In quantum mechanics the symmetries play a much deeper role. Symmetries provide organi-
zation principles. To a large extent, a list of its symmetries defines the fundamental physics of the
system. In particular, elementary particles can be associated with irreducible representation of in-
ternal symmetry groups. Assume that a system is governed by a Hamiltonian H whose continuous
symmetry group is G = G1 × G2 × · · · × Gk. Tthe states |Λ〉 of isolated stable particles must be
eigenvectors of H. But since H commutes with the generators Qi of Gi, i = 1, . . . k, the states

|Λ〉 = |λ1λ2 . . . λk〉

must belong to a particular representation labeled by the numbers λ1, λ2, . . . λk. Therefore knowl-
edge of irreducible representations of the symmetry group of the system provides a valuable in-
formation on possible elementary particles. In opposite direction, knowledge of particles physical
characteristics often allows their organization them into (approximate) multiplets (whose members
have similar properties), allowing us to deduce the internal symmetry group from experimental
data.

1. Internal symmetries: isospin

When the neutron was discovered 1932, Heisenberg came up with a deep idea that in a pro-
found way extended quantum mechanics to subatomic realm. Until then quantum theory was
based on classical notions such as 3D rotations and translations of a particle, but now particles
themselves became arranged into quantum multiplets. He posited that the proton and neutron,
which appeared identical under strong interactions, are two possible states of a single particle in
an abstract “isospin” space,

(1.1) |p〉 =

(
p
0

)
, |n〉 =

(
0
n

)
,

by analogy to the spin ±1/2. The strong interaction Hamiltonian Hs is assumed invariant under
the “isospin” group SU(2), [H, I] = 0. Using the total isospin I and its third component I3 as
quantum numbers |I, I3〉, we can denote nucleons as

(1.2) |p〉 = |1
2
,

1

2
〉 , |p〉 = |1

2
,−1

2
〉

with the electromagnetic and weak interactions splitting them as a weak perturbation. The SU(3)
symmetry then implies that there should exist states corresponding to I = 1, etc., with such states
– pions

π+ = |1 , 1〉 , π0 = |1, 0〉 , π− = |1 ,−1〉
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68 Lecture 11. STRONG INTERACTIONS: FLAVOR SU(3)

of nearly identical masses were discovered soon thereafter.

The assumed invariance of the strong interaction Hamiltonian Hs under the isospin group
immediately constrains possible nuclear reactions. It connects different reaction amplitudes by
the Wigner-Eckart theorem. For example, using this symmetry we can relate amplitudes of three
different reactions:

π0p→ π+n, π0p→ π0p, π+n→ π+n .

The corresponding states can be decomposed as:

|π0p〉 := |1 0〉 ⊗ |1
2

1

2
〉 =

√
2

3
|3
2

1

2
〉+

√
1

3
|1
2

1

2
〉(1.3)

|π+n〉 := |1 1〉 ⊗ |1
2

−1

2
〉 =

√
1

3
|3
2

1

2
〉 −

√
2

3
|1
2

1

2
〉(1.4)

|π0n〉 := |1 0〉 ⊗ |1
2

−1

2
〉 =

√
2

3
|3
2

−1

2
〉+

√
1

3
|1
2

−1

2
〉(1.5)

Since H is invariant (a “scalar“) under isospin transformations, [H, I] = 0, Wigner-Eckart theorem
relates various scattering amplitudes:

〈π0p|H(I)|π+n〉 = I3/2

√
2

3
− I1/2

√
2

3
; 〈π+n|H(I)|π+n〉 = I3/2

1

3
+ I1/2

2

3

〈π0p|H(I)|π0p〉 = 〈π0p|H(I)|π0p〉 = I3/2
2

3
+ I1/2

1

3

With an eye on the strangeness to follow, let’s rephrase the SU(2) of isospin the way it is
done today, in terms of “quarks.” The 2-dimensional fundamental representation describes the
approximate isospin symmetry of the u and d quarks. The pion triplet transforms as the 2⊗ 2 =
3⊕ 1 tensors constructed from the traceless part of the quark-antiquark outer products q ⊗ q,

(1.6)

(
u
d

)
⊗
(
u d

)
=

(
uu ud

du dd

)
=

(
uu−dd

2 ud

du −uu−dd2

)
+

1

2
(uu+ dd)1 .

A generator of SU(2) transformations (an arbitrary traceless hermitian matrix) can be represented
in terms of Pauli matrices

σ1 =
1

2

(
0 1
1 0

)
, σ2 =

1

2

(
0 i
−i 0

)
, σ3 =

1

2

(
1 0
0 −1

)
,

as

(1.7) π =
1√
2

3∑
j=1

πjσj =
1√
2

(
π3 π1 − iπ2

π1 + iπ2 −π3

)
=

(
π0
√
2

π+

π− − π0
√
2

)
where one can express the pion isospin 1 triplet (the adjoint rep of SU(2)) in terms of either real

fields (π1, π2, π3) or charged pion complex fields π± = (π1 ∓ iπ2)/
√

2. The isospin 0 singlet in the
decomposition (1.6)

(1.8) η =

(
η0√
2

0

0 − η0√
2

)
is known as the η meson. If quarks are assigned quantum numbers

I I3
u 1/2 1/2
d 1/2 -1/2
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2. INTERNAL SYMMETRIES: STRANGENESS 69

(a) (b)

Figure 1. (a) The meson (pseudoscalars) octet. (b) The quark triplet, the
anti-quark triplet and the gluon octet. (Wikipedia).

we can read off the isospin I3 of each pion in (1.7) by adding the quantum numbers of their quark
constituents (1.6). Kaons and anitkaons form two further SU(2) meson doublets. We shall now
incorporate all of them into a single flavor SUn3 octet, as in figure 1.

2. Internal symmetries: strangeness

For Heisenberg, the nucleons (1.1) were the elementary constituents of matter. By 1956 Sakata
has extended this list to (p, n,Λ) where Λ was a recently discovered heavy particle, a hyperon, and
extended Heisenberg’s symmetry from SU(2) to SU(3). Mesons were supposed to be extremely
strongly bound states of these baryons (from Greek bary- meaning heavy).

This scheme did well for mesons, but failed for baryons. It took some courage to go to the next
level of abstraction. In the process, Heisenberg’s nucleons got demoted from their “elementary”
status. In the modern parlance, nucleons are composed of the “up” and “down” “flavors” of quarks,
p = uud, n = udd, with (1.2) replaced by

(2.1) |u〉 = |1
2
,

1

2
〉 , |d〉 = |1

2
,−1

2
〉 .

“Up” and “down” quark masses are nearly the same, making isospin a very good approximate
symmetry. However, by 1940’s and 1950’s experimentalists have found a whole zoo of other slowly
decaying particles produced by cosmic rays and accelerators. Nobody has asked for them (theo-
retical physicists have predicted about two yet fundamentally unexpected particles in the whole
history of physics), so they appeared “strange.” They could be made sense of if a new quantum
number was added, strangeness S, and they obeyed the empirical Gell-Mann-Nishijima relation

(2.2) Q = I3 +
1

2
(B + S) ,

where Q is electric charge, B is the baryon number. By late 1950’s the known particles were
empirically neatly arranged into baryon and meson octets of figure 2 (a) and figure 1 (a). Gell-
Mann (and, somewhat later, Ne’eman and Zweig) took the apparent SU(3) symmetry seriously
and took the next fundamental step.

2.1. The Eightfold Way. Within the sub-multiplets of particles e.g., {p, n}, {π+, π0, π−}
the charge is growing by one. So to label each of these sub-multiplets one adds an additional number
- hypercharge Y = Qmax +Qmin (Y/2 is then the average charge of a sub-multiplets), which is
related to the charge, Q = Y/2 + I3, by the Gell-Mann-Nishijima relation (2.2). If we label now
each particle from the baryon octet by a point in Y -I3 plane the resulting picture resembles
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70 Lecture 11. STRONG INTERACTIONS: FLAVOR SU(3)

(a) (b)

Figure 2. (a) The S = 1/2 ground state baryon octet. Particles along the same
horizontal line share the same strangeness, s, while those on the same diagonals
share the same charge, q. (b) The S = 3/2 baryon decuplet. Wikipedia.

Table 1. Quark quantum numbers.

Q I I3 Y B
u 2/3 1/2 1/2 1/3 1/3
d -1/3 1/2 -1/2 1/3 1/3
s -1/3 0 0 -2/3 1/3

the adjoint 8 representation for SU(3), see figure 2 (a). Equally simple picture is obtained for the
meson octet, figure 1.

3. Quarks

A surprising fact is that none of the observed particle multiplets correspond to the fundamen-
tal representation. While initially this was considered only a mathematical curiosity, today the
fundamental representations are reserved for fundamental constituents of matter, the quarks (resp.
anti-quarks) {u, d, s} (resp. {ū, d̄, s̄}). The current belief -color confinement- is that such particles
do not exist in isolation since they have a non-vanishing SU(3) color charge: only colorless particles
can exist. This implies that the observed particles can be combinations of type qq̄ (mesons) or qqq,
q̄q̄q̄ (baryons). In addition, recent experimentally measured decays are consistent with existence
of qqqqq̄ (pentaquarks). Currently there is no evidence for existence of a qqq̄q̄ (tetraquarks).

Gell-Mann and Ne’eman added a ‘strange’ quark to the up-down flavors (2.1)

(3.1)

u0
0

 ,

0
d
0

 ,

0
0
s

 ,

and eliminated the baryon number B from the classification in favor of “hypercharge”, the sum
Y = B + S in (2.2). To be consistent with the quantum numbers of observed particles, quarks are
assigned the quantum numbers listed in table 1.

Flavor SU(3) transformations are generated by eight Lie algebra generators U = exp(
∑
φjλj) .

Gell-Mann fundamental or defining representation basis {λj} for su(3) Lie algebra is handcrafted
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3. QUARKS 71

for hypercharge Y symmetry breaking to isospin su(2) Pauli matrices (upper left corner):

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 = 2I0 =
1

2

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0


λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0


λ8 = Y =

1√
3

1 0 0
0 1 0
0 0 −2

(3.2)

They provide a metric for the adjoint representation

(3.3) tr (λjλk) = 2δjk ,

(factor 2 is Gell-Mann’s normalization convention) and satisfy Lie algebra commutator relations

(3.4) [λj , λk] = 2ifjk`λ` .

The 3-dimensional fundamental representation describes the approximate flavor symmetry of the
three quarks u, d, and s. Individual isolated quarks are not observed in nature, but their mesonic
and baryonic composite states are. The meson octet arises from the 3 ⊗ 3 = 1 ⊕ 8 tensors
constructed from the traceless part of the quark-antiquark outer products q ⊗ q (see figure 3),

(3.5)

ud
s

⊗ (u d s
)

=

uu ud us

du dd ds

su sd ss

 .

For example, the pion π+ belongs to a non-vanishing entry in a 3⊗ 3 tensor obtained by the
outer product

(3.6) π+ = u⊗ d =

u0
0

⊗ (0 d 0
)

=

0 ud 0
0 0 0
0 0 0

 .

Filling in all q ⊗ q combinations and taking the traceless part yields a 8-parameter adjoint repre-
sentation of SU(3) in terms of the traceless hermitian matrix (see (1.7) for the SU(2) example):

Φ =


π0
√
2

+ η√
6

π+ K+

π− − π0
√
2

+ η√
6

K0

K− K0 − 2η√
6



=


π0
√
2

π+ 0

π− − π0
√
2

0

0 0 0

+

 0 0 K+

0 0 K0

K− K0 0

+
η√
6

1 0 0
0 1 0
0 0 −2

 ,(3.7)

where we have replaced the constituent q⊗q combinations by the names of the elementary particles
they build. Similarly, the baryon octet and decuplet arise from the 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 .
In this way the meson and baryon octets are seen to correspond to the root system of the adjoint
representation, in agreement with the empirical arrays of figure 2 (a) and figure 1 (a).
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3.1. Gell-MannOkubo mass formula. The “strange” η meson is heavier than pions, a
phenomenological fact that we now use to split the masses of the approximate flavor SU(3) octet
into pion, kaon and η sectors. Gell-Mann explicit basis (3.2), modulo some overall factors and
i’s, is set up to break the symmetry by singling out the strangeness (hypercharge Y ) in the su(3)
space, and leaving as the residual non-trivial symmetry (the little group of Y ) the su(2) of isospin.

Φ is a q ⊗ q tensor which transforms as Φ → U†ΦU . Hence we can write a flavor SU(3)
invariant action bilinear in particle fields (the mass matrix for free relativistic particles at rest; a
“Hamiltonian”) as

(3.8) H0 =
1

2
µ2tr Φ2 +M0trBB ,

with baryon mass M0 (baryons are fermions), and meson mass squared µ2 (mesons are pseu-
doscalars).

Now we break the symmetry by singling out the Y direction. It suffices to consider a term
whose only nonzero entry is

(3.9) ∆ =

0 0 0
0 0 0
0 0 1

 ,

with perturbation mass matrix

(3.10) H0 =
α

2
µ2tr Φ2∆ + βtrB∆B ,

To evaluate the mass matrix for mesons, take trace of Φ squared, (3.7), using (3.3), etc. The three
new, non-degenerate perturbed masses (m2

π,m
2
K ,m

2
η) will be parametrized by the perturbation

strength α. Eliminate α to obtain a Gell-Mann-Okubo mass formula for the splitting of meson
octet,

(3.11) m2
η =

4m2
K −m2

π

3
.

This happens to be off by only 3.5%, which is great, considering that we do not know how to
compute these masses from a fundamental theory. In all generality, this argument also leads to a
sum rule for the masses of hadrons within a specific multiplet, determined by their isospin I and
strangeness S:

(3.12) MI,S = a0 + a1S + a2

[
I (I + 1)− 1

4
S2

]
,

where a0, a1, and a2 are fitting parameters.

Gell-Mann received the 1969 Nobel prize for this work. He predicted existence of two new
baryons, and in particular the mass of the strangeness spin S = 3/2 baryon Ω− whose existence
was confirmed 6 years later. Gell-Mann calculation relied on the explicit λ matrix representations:
the elegant calculation presented here, relying on invariance alone (in the spirit of Wigner 3n-j
coefficients) was Okubo’s. Subsequent discoveries of other flavors of quarks: ‘charm’, ‘bottom’,
and ‘top’, much heavier than u, d, and s, have made it clear that the flavor SU(3) is only an
approximate symmetry, a useful guide to strong interaction properties of the particles composed
of u, d, and s. The current “standard model” is a much more complicated, uglier affair.

The Gell-Mann-Okubo mass sum rules [1–3] are an easy consequence of the approximate
SU(3) flavor symmetry. Determination of quark masses is much harder - they are parameters
of the standard model, determined by optimizing the spectrum of particle masses obtained by
lattice QCD calculations as compared to the experimental baryon and meson masses. The best
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Figure 3. A lattice gauge theory calculation of the light QCD spectrum. Hori-
zontal lines and bands are the experimental values with their decay widths. The
π,K and and Ξ have no error bars because they are used to set the light and
strange quark masses and the overall scale respectively. From Scholarpedia.

determination of the mass spectrum as of 2012 is given in figure 3. Up, down quarks are about 3
and 6 MeV, respectively, with strange quark mass about 100 MeV, all with large error brackets.

The 1/3 electric charge of quarks has lead to reappearance of SU(3) in yet another, still more
profound guise, as the exact “color” SU(3) gauge symmetry, or QCD (Quantum ChromoDynamics),
a conceptual advance that underpins almost all of the “fundamental” physics since 1970’s. To
understand that, you need to take a full-fledged QFT course.
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LECTURE 12

Many particle systems. Young tableaux

Motivation for Young tableaux is coming from two primary sources:

• First, they provide an effective way to classify all irreps of the symmetric group Sn. This
is of great importance on its own, since by Cayley’s theorem any finite group can be seen
as a subgroup of Sn.
• Second, the same construction (with some minor adjustments) provides irreps of SU(n).

Before looking at the details of the Young tableau construction, let us briefly discuss the reason
for connections between representations of SU(N) and Sn. A system of n identical particles forms
a tensor representation of a symmetry group e.g., SU(N):

D(g)ψ1(x1)⊗ ψ2(x2)⊗ · · · ⊗ ψn(xn) = D(l)ψ1(x1)⊗D(l)ψ2(x2)⊗ · · · ⊗D(l)ψn(xn).

In order to split this representation into a sum of irreducible representations one can use the
following trick. A tensor representation is invariant under the action of a permutation

σψ1(x1)⊗ ψ2(x2)⊗ · · · ⊗ ψn(xn) = ψσ(1)(x1)⊗ ψσ(2)(x2)⊗ · · · ⊗ ψσ(n)(xn).

This just follows from a simple fact that, D(g) commutes with any σ ∈ Sn. In the reverse direction,
each irreducible representations of Sn remains invariant under the action of the symmetry group.
In this way the irreducible representations for SU(N) can be constructed by finding irreducible
subspaces of the tensor products under the action of symmetry group Sn. A familiar example is
provided by the product states of two particles with the spin 1/2,

Example D1/2 ⊗D1/2 = D0 ⊕D1:

V0 =

{
1√
2

(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉)
}
,

V1 =

{
1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉) , |+〉 ⊗ |+〉, |−〉 ⊗ |−〉
}
.

Here the 1-dimensional antisymmetric subspace V0 corresponds to the irrep D0 with the spin 0,
while 3-dimensional symmetric subspace V1 corresponds to the irrep D1 with the spin 1.

1. Irreducible representations of Sn

The basic idea behind the Young tableaux construction is to consider the regular representation
Dreg of Sn and split it into different symmetry subspaces:

(1.1) Dreg =
⊕
λ∈R

rλDλ,

where R is the set of all irreducible representations and rλ = dim Dλ. Each representation in this
decomposition is then uniquely associated with some Young tableaux.
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1.1. Regular representation. The vector space V on which Dreg acts is constructed by
defining the basis {Ψσ|σ ∈ Sn} of dimension n!, such that any element v from V is given by a
linear combination:

(1.2) v =
∑
σ∈Sn

cσΨσ.

The action of Dreg(g), g ∈ Sn on V is then defined by the permutation of basis elements:

(1.3) g · eσ := Ψgσ.

As for any regular representation, we have dimDreg = |Sn| = n!.

We are going to show now that the space V can be split into subspaces invariant under the
action of Dreg. We first consider two special cases and then turn to a general one.

1.2. Symmetrization. Let us define the operator of full symmetrization

(1.4) Ŝ =
∑
σ∈Sn

σ,

and apply it to an arbitrary element of the basis e.g., Ψe:

(1.5) ΨS = ŜΨe =
∑
σ∈Sn

Ψσ.

Since gŜ = Ŝ for all g ∈ Sn, the vector ΨS is invariant under the action of any element from Sn.
In other words Dreg acts on VS = {ΨS} as one-dimensional trivial representation and Ŝ is the
corresponding projection operator (up to a normalization).

1.3. Antisymmetrization. Alternatively, we can define the antisymmetrization

(1.6) Â =
∑
σ∈Sn

(−1)ε(σ)σ,

where ε(σ) is parity of σ. After applying it to Ψe one gets

(1.7) ΨA = ÂΨe =
∑
σ∈Sn

(−1)ε(σ)Ψσ.

By gÂ = (−1)ε(g)Â, we have gΨA = (−1)ε(g)ΨA. This state defines the subspace VA = {ΨA} on

which Dreg acts as the one-dimensional alternating representation with Â being the corresponding
projection operator (up to a normalization).

1.4. Projection operators for general irrep. So far we have constructed projection op-
erators corresponding to two very special irreps. We give now a general construction providing
any general irrep of Sn. Let λ = (λ1, λ2, . . . , λk), λi+1 ≥ λi be partition of n into sum n =

∑
i λi.

With each such partition we will associate a Young diagram. The k’th row of Young diagram is
composed of λk empty boxes. Now fill these boxes by the numbers 1, 2, . . . n such that in each
horizontal and each vertical line the numbers are ordered from lowest to largest. The resulting
diagram Y with the filled numbers is called Young tableau. For the diagrams consisting of just one
(vertical or horizontal) line there is only one way to place ordered numbers. In all other cases there
exist several Young tableaux corresponding to one and the same Young diagram. For instance, if
λ = (3, 1) there are three options:

(1.8) −→ 1 2 3
4

1 2 4
3

1 3 4
2
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1. IRREDUCIBLE REPRESENTATIONS OF SN 77

Given a Young tableau Y one can construct the corresponding Young symmetrizer:

(1.9) P̂Y = ÂY ŜY .

Here ŜY is symmetrization operation along each horizontal line (row) of Y , and ÂY is antisym-
metrization along each vertical line (column) of Y .

Example. The following example illustrates action of P̂Y , Y = 1 2
3

on the state Ψe ≡
Ψ(1, 2, 3).

P̂Y Ψ(1, 2, 3) = (e− (13))(e+ (12))Ψ(1, 2, 3) = (e− (13))(Ψ(1, 2, 3) + Ψ(2, 1, 3)) =

= Ψ(1, 2, 3) + Ψ(2, 1, 3)−Ψ(3, 2, 1) + Ψ(2, 3, 1).

It can be shown then that (for a proof see Fulton & Harris [1]):

• The subspace VY := P̂Y V is invariant under the action of any element σ from Sn:

σ · P̂Y Ψ = P̂Y Ψ′.

• With the proper normalization P̂Y are orthogonal projection operators:

PY PY ′ = δY,Y ′PY ,
∑
Y

PY = 1, PY =
dimVY
n!

P̂Y .

• The dimensions of VY are the same for all Young tableaux corresponding to the same
Young diagram.

Main result. From the above follows that P̂Y provide splitting of Dreg into irreps:

Dreg =
⊕
λ

rλDλ,

where each copy of Dλ leaves invariant the subspace VY with Y being one of the Young diagrams
corresponding to partition λ. Therefore the number of the irreps of Sn is the same as the number
of different Young diagrams. Note that this is consistent with the fact that the number of irreps
is the same as the number of conjugacy classes in Sn. The dimension of Dλ is the same as the
number of times (i.e., rλ) it appears in Dreg which in turn equals the number of Young tableaux
for a given λ. These dimensions can be easily computed using a “hook” rule (easier to state than
prove): Enter into each box of the Young diagram the number of boxes below and to the right of
the box, including the box itself. Then dim Dλ for Sn is n! divided by the product of the numbers
in all the boxes. For instance, if λ = (3, 1, 1):

5 2 1
2
1

−→ dim Dλ = 5!/5 · 2 · 2 · 1 · 1 = 6.

This result allows a construction of all irreps of Sn in a simple, systematic way.

Example: Irreps of S3
∼= D3.{

1 2
3

⊕ 1 3
2

}
⊕ 1 2 3 ⊕

1
2
3
.

Here the first two Young tableaux correspond to one and the same irrep of dimension 2. The
second and the third one correspond to symmetric and antisymmetric irreps of the dimension 1,
respectively. Note that 12 + 12 + 22 = 3! = |S3|, as it should be for a regular representation.
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Example: Irreps of S4
∼= Td. 1 2

3
4

⊕
1 3
2
4

⊕
1 4
2
3

 ⊕
{

1 2 3
4

⊕ 1 3 4
2

⊕ 1 2 4
3

}

⊕
{

1 2
3 4

⊕ 1 4
3 2

}
⊕ 1 2 3 4 ⊕

1
2
3
4

.

The upper tableaux correspond to the two three-dimensional representations, while the lower ones
to the two two-dimensional and two one-dimensional irreps, respectively. As expected, 12 + 12 +
22 + 32 + 32 = 4! = |S4|.

2. Irreducible representations of SU(N)

+ = + = + +; 1 12 2 12

= 2
1

Figure 1. Decomposition of product 1/2 ⊗ 1/2 representation into symmetric and
antisymmetric irreducible parts l = 1, l = 0 for SU(2).

Irreducible representations of SU(N) are constructed by applying Young symmetrizers PY to
the vectors from the tensor product vector space:

ψσ1(x1)⊗ ψσ2(x2)⊗ · · · ⊗ ψσn(xn).

Since the index σi runs here over values 1, . . . N , the Young diagram cannot contain more the N
rows (otherwise application of PY to the above vectors would give 0). Each diagram satisfying
this condition, in turn, defines some irrep of SU(N). Its dimension is determined by the number
of different ways the numbers 1, . . . N can be placed in the boxes such that order is kept in each
horizontal and vertical line. We show two examples of Young tableaux for SU(2), SU(3) in figures 1
and 2.

3 2
1

= +

+ +

+ +

+

3 32
2

3 3 3
21

3 1 3 1
1 2

2 2 2
1 1

1

3
3

+

8
1

;= =+

+ +
3 3

3
6

Figure 2. Tensor product of two fundamental representations SU(3) and its decom-
position into irreducible representations.
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LECTURE 13

Classification of semi-simple Lie algebras

Among Lie algebras there is an important class of so-called semi-simple algebras which allows
full classification. Not all Lie algebras appearing in physics are semisimple, the counterexamples
include e.g., Poincaré algebra and Heisenberg algebra which contain elements (translations resp.
unity operator) commuting with any other element of the group. However any algebra induced by
a compact Lie group is indeed semisimple.

1. Semisimple algebras

1.1. Reminder. Adjoint representation. Killing form.

(Li, Lj) = Tr(Ad(Li)Ad(Lj)) = gij

1.2. Semisimple algebras. A subalgebra I of an algebra g is called an ideal if it remains
invariant under commutation operation:

[I, g] =⊂ I.

Each ideal generates a normal subgroup of the corresponding Lie algebra G and vice-versa.

Lie algebra is called simple if it does not contain ideals and semisimple if it does not contain
Abelian ideals. Any semisimple Lie algebra satisfies condition that it is non-degenerate: det g 6= 0,
i.e.,:

if (X,L) = 0 for all L ∈ g =⇒ X = 0.

Simple algebras are building blocks of semisimple Lie algebras. Namely any semisimple algebra
is a direct sum of simple Lie algebras:

g = g1 ⊕ g2 ⊕ · · · ⊕ gk.

We will show this by using Killing form. Let I be an ideal of g. Consider its orthogonal complement
P , (P, I) = 0. It is easy to see that, first P is also an ideal:

([P,L], I) = ([L, I], P ) = 0 for any L =⇒ [P,L] ∈ P,

second g is direct sum of P and I:

([P, I], L) = ([L, I], P ) = 0 for any L =⇒ [P, I] = 0.

If both P and I are simple then we found the decomposition, otherwise just continue the process.

2. Roots

2.1. Weyl-Cartan basis.
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80 Lecture 13. CLASSIFICATION OF SEMI-SIMPLE LIE ALGEBRAS

2.1.1. Main properties.

2(α, β)/|α|2 ∈ Z, for any α, β ∈ R

If (α, β) < 0 then β + nα ∈ R for all n = 0, · · · − 2(α, β)/|α|2. From this follows:

σα(β) = β − α2(α, β)

|α|2
∈ R

if (α, β) < 0 =⇒ α+ β ∈ R; if (α, β) > 0 =⇒ α+ β ∈ R.

n1 = 2(α, β)/|α|2, n2 = 2(α, β)/|β|2, n1n2 ≤ 4.

Let cos(ϑ) = (α, β)/|α||β| = 1
2

√
n1n2, where ϑ is the angle between roots α, β. Four different cases

are possible:

• n1 = n2 = 0, θ = π/2
• n1 = n2 = 1, θ = π/3, |α| = |β|
• n1 = 1, n2 = 2, θ = π/4, |α| =

√
2|β|

• n1 = 1, n2 = 3, θ = π/6, |α| =
√

3|β|

Figure 1. Root system for Lie algebras of rank 2.

For the algebra of rank 2 these possibilities lead to the root systems shown in figure 1.

2.1.2. Positive roots. Not all roots are independent, since they are l-dimensional vectors, where
l is rank of the algebra. To construct an l-dimensional basis we introduce concept of positive
R+ and negative R− roots. Choose an arbitrary direction ~n in the space spanned by all roots.
α ∈ R± if (α,~n) ≥ 0 (resp. ≤ 0). The half of all roots are positive resp. negative, since both
±α ∈ R. A simple root α(i) is a one which cannot be represented as sum of two other positive
roots. We can immediately see that any positive root can be represented as sum over simple roots:

α =
∑

niα
(i).

Furthermore the number of simple roots is exactly l i,e., simple roots are independent and span
the whole space. To show this first note that for two different simple roots α(i)α(j) ≤ 0. If
(α(i)α(j)) ≥ 0 then α(i)−α(j) ∈ R+ or α(j)−α(i) ∈ R+ and either α(i) can be represented as sum
of two positive roots: (α(i) − α(j)) + α(j) or alternatively α(j). This would contradict simplicity of
either α(i) or α(j). We need to show now that all α(i) are linearly independent. Suppose that∑

ciα
(i) = 0.
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3. A B C D E F G CLASSIFICATION 81

Since all α(i) are positive we can divide the left side int two parts such that∑
ciα

(i) =
∑

c′jα
(j)

all coefficients are positive. From this follows:

(
∑

ciα
(i))2 = (

∑
ciα

(i)
∑

c′jα
(j)) =

∑
cic
′
j(α

(i)α(j)) ≤ 0⇒ ci = c′j = 0.

Simple algebra of rank l has precisely l simple roots and

• they are linearly independent
• form a basis of R+.

3. A B C D E F G classification

Any semisimple Lie algebra is uniquely identified by its root system. In its own turn the root
system can be described by the Cartan matrices:

Kij = 2(α(i), α(j))/|α(j)|2,
which is the matrix of scalar products between simple roots. To depict this information graphically
one uses so-called Dynkin diagrams, where each root stands for a circle and the number of lines
connecting roots α(i), α(j) is given by |ninj |,

ni = 2(α(i), α(j))/|α(i)|2, nj = 2(α(i), α(j))/|α(j)|2.

In addition one puts arrow from α(i) to α(j) if the length of α(j) is smaller than the length of α(i).

3.1. Rank 2 algebras. For algebras of rank two we have only few options for the root system.
They are shown in figure 1). The corresponding Cartan matrices are given by:

SO(4)

(
2 0
0 2

)
; SU(3)

(
2 −1
−1 2

)
; SO(5)

(
2 −1
−2 2

)
; SO(4)

(
2 −1
−3 2

)
and the Dynkin diagrams are shown in figure 2.

SU(3) SO(5) 2GSU(2)SU(2)+

α1 α2

Figure 2. Dynkin diagrams for Lie algebras of rank 2.

3.2. Explicit root system for SU(N). For SU(N) the Cartan subalgebra is clearly spanned
by all diagonal matrices:

H = diag {x1, x2 . . . xN} ,
∑
i

xi = 0.

The “raising-lowering” operators Eij are just matrices with one non-zero element at i, j position:

E
(a,b)
m,k = δa,kδb,m, [H,E(a,b)] = (xa − xb)︸ ︷︷ ︸

(α(a,b)·x)

E(a,b).
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From this we conclude that the corresponding roots are given by N dimensional vectors:

α(a,b) = ea − eb, ei = (0, . . . 0, 1i, 0, . . . , 0).

The scalar product between roots is 1 if roots have non-zero element at the same position and zero
otherwise. Furthermore, N − 1 simple roots are given by:

α(i) = α(i,i+1), i = 1, . . . N − 1.

It is straightforward to see that:

(α(i)α(i+1)) = −1, (α(i)α(j)) = 0, |i− j| 6= 0, 1,

implying that the Cartan matrix is:

K =


2 −1 0 . . . 0 0
−1 2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2

 .

The corresponding Dynkin diagram AN−1 is shown in figure 3). Note that the same Lie algebra
appears for non-compact groups: SU(p, q), SL(N) (all matrices with determinant one).

3.2.1. Other infinite series. Other infinite series Bl, ClDl of simple Lie algebras come from the
orthogonal and symplectic groups SO(2N + 1), Sp(2N), SO(2N).

...

...

...

...

A

B

C

D

l

l

l

l

α α α α α1 l2 −2 l l−1

...
1 2 α

α

α

α l

l−1

l−3

l−2

α α

l=6,7,8
E l

G2

F4

Figure 3. Dynkin diagrams for simple Lie algebras. Regular series shown on the left.
Exceptional on the right.

3.2.2. Exceptional algebras. The severe constraints on the possible angles between simple roots
imply that there are only few options to construct a valid root system beyond four infinite series.
This geometrical rigidity allows full classification of simple Lie algebras. The proof can be separated
into few main steps.

• A) Dynkin diagram cannot contain any loop, i.e., it must be a tree.

To prove this assume that such a loop consisting of V vertices exists and let e1, e2 . . . eV be nor-
malized roots forming this loop. By considering the following inequality:

|
k∑
i=1

ei|2 ≥ 0 =⇒ k > −
∑
i<j

2(eiej) > L,

where L is a number of bonds we come to the contradiction with an obvious fact that in the loops
V = L.

• B) The number of lines emanating from any vertex is maximum 3.
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Suppose e1, . . . el are joined to el+1. By (A) all e1, . . . el are orthonormal to each other. Extend
this basis by another orthogonal vector ẽl+1. Then

el+1 =

l∑
i=1

(eiel+1)ei + (ẽl+1el+1)ẽl+1 =⇒
∑

(eiel+1)2 = 1− (ẽl+1el+1)2 < 1.

But the left hand side of the last expression is the number of links divided by 4.

• C) By constructing a one-line bond from any admissible diagram one obtains another
admissible diagram.

• D) If 3 bonds are connected to a vertex then the lengthes of their “legs” satisfy:

1

p+ 1
+

1

q + 1
+

1

r + 1
> 1.

Under assumption p ≥ q ≥ r from the last inequality it follows that the only solutions are:

p = 2, q = 2, r = 1, p = 3, q = 2, r = 1 p = 4, q = 2, r = 1,

which correspond to E6, E7, E8. Finally the inspection of “linear” diagrams gives one additional
root system F4.

Remark: It is actually a non-trivial problem to reconstruct the corresponding Lie algebra for
each of the above root systems.

4. Representation

The representations of simple Lie algebras are constructed by introducing the set of funda-
mental weights and considering reciprocal lattice:

2(λ(i)α(j))/|α(j)|2 = δij , Λ = {
∑
i

niλ
(i)|ni ∈ Z}.

Any representation Dλ = D(m1,m2, . . .ml) is uniquely determined by the highest weight λ =∑
imiλ

(i). The dimension of the representation is given by:

dimDλ =

∏
α∈R+

(α, λ+ λ̄)∏
α∈R+

(α, λ̄)
, λ̄ =

1

2

∑
α∈R+

α.
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LECTURE 14

Infinite dimensional symmetries. String theory.

TBA
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