
group theory - week 9

Continuous groups

Georgia Tech PHYS-7143
Homework HW9 due Tuesday 2021-06-29

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.1 Irreps of SO(2) 2 points
Exercise 9.2 Reduction of product of two SO(2) irreps 1 point
Exercise 9.3 Irreps of O(2) 2 points
Exercise 9.4 Reduction of product of two O(2) irreps 1 point

Bonus points
Exercise 9.5 A fluttering flame front 4 points
Exercise 9.6 O(2) fundamental domain for a PDE (difficult) 10 points

Total of 6 points = 100 % score.
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GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

2021-06-22 Predrag Lecture 17 Continuous groups

2021-06-22 Predrag Lecture 18 Lie groups

The fastest way to watch any week’s lecture videos is by letting YouTube run the

lecture playlist

These lectures are about the basic ideas of how one goes from finite groups to the
continuous ones. We have worked one example out in week 2, the discrete Fourier
transform of example 2.6 Projection operators for cyclic group CN . The cyclic group
CN is generated by the powers of the rotation by 2π/N , and in the N → ∞ limit one
only needs to understand the algebra of Tℓ, generators of infinitesimal transformations,
D(θ) = 1 + i

∑
ℓ θℓTℓ. Applied to functions, they turn out to be partial derivatives.

Continuous symmetries - an introduction (2 min)

They still do not get it! (6 min)

◦ Lie groups, sect. 9.3: Definition of a Lie group; Cyclic group CN → contin-
uous SO(2) plane rotations; Infinitesimal transformations; SO(2) generator of
rotations.

What is a symmetry? (8 min)

Group element; transformation generator (8 min)

What is a symmetry group? (7 min)

What is a group orbit? (3 min)

What is dynamics? (2 min)

Group SO(2) (3 min)

Unitary groups are mothers of all finite / compact symmetries.
(1 h 4 min)

• The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of SO(2), but from then on this way of thinking about continuous
symmetries gets to be increasingly awkward. A fresh restart is afforded by ma-
trix groups, and in particular the unitary group U(n) = U(1) ⊗ SU(n), which
contains all other compact groups, finite or continuous, as subgroups.

Special orthogonal group SO(n) (9 min)

Symplectic group Sp(n) (9 min)
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GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

9.1 Other sources (optional)
Do not get intimidated by this week’s lectures notes.

• What’s the payback? While for you the geometrically intuitive representation is
the set of rotation [2×2] matrices, group theory says no! They split into pairs of 1-
dimensional irreps, and the basic building blocks of our 2-dimensional rotations
on our kitchen table (forget quantum mechanics!) are the U(1) [1×1] complex
unit vector phase rotations.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2). In particular, note that while geometrically
intuitive representation is the set of rotation [2×2] matrices, they split into
pairs of 1-dimensional irreps.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sect. 6.6 completes discussion of Fourier analysis as continuum limit of
cyclic groups Cn, compares SO(2), O(2), discrete translations group, and
continuous translations group.

Chen, Ping and Wang [2] Group Representation Theory for Physicists, Sect
5.2 Definition of a Lie group, with examples (click here).

AWH Chapter 17 Group Theory, Sect. 17.7 Continuous groups (click here).

◦ Sect. 9.4 Character orthogonality theorem

Infinitesimal symmetries: Lie derivative (8 min)

Tell no Lie to plumbers (39 sec)

It’s a matter of no small pride for a card-carrying dirt physics theorist to claim
full and total ignorance of group theory (XX min)

9.2 Discussion (optional)
Calligraphic M denotes the state space manifold as well as any subspace, such
as a group orbit (3:38 min)

Why are continuous transformation group elements represented by exponentials?
(5:39 min)

How did we get the Lie algebra? Why is (almost) every symmetry we care about
a subgroup of an unitary group? (9 min)

How did we get the SO(2) generator? (2 min)

Orthogonal and unitary transformations (7 min)

Fourier modes are so simple, that no one calls them irreps. But add more sym-
metries, and there have to be fewer irreps. (11 min)
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GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

Why did we move from orthogonal group O(n) to special orthogonal group
SO(n)? (3:32 min)

Why SU(n) rather than U(n)? (6:30 min)

Why is SU(n) dimension n2 − 1? (56 sec)

What are these “characters”? And why is there a Journal of Linear Algebra,
today? Inconclusive blah blah. (12 min)

Rant 1 - Is beauty symmetry? The first piece of art found in China is a perfect
disk carved out of jade. All of Bach is symmetries. (9 min)

Rant 2 - students find letter A beautifully symmetric, but Predrag finds zero ‘O’
the most beautiful grade. (1 min)

Rant 3 - SO(3) & SU(2) preview and a long rant - listen to it at your own risk.
Roger Penrose thoughts on quantum spacetime and quantum brain. Are laws of
physics time invariant? Waiting for dark energy to go away. Arrow of time. (17
min)

Rant 4 - SO(3) & SU(2) preview and a long rant - listen to it at your own risk.
Get this: math uses 2d complex vectors (spinors) to build our real 3d space. And
all we see - starlight, graphene, greenhouse effect, helioseismography, gravita-
tional wave detectors - it is all irreps! (12 min)

Rant 5 - Help me, I’m bullied by a mathematician. (3 min)

Rant 6 - you can always count on Prof. Z. (1/2 min)

Question 9.1. Henriette Roux, pondering exercise 4.2, writes
Q I want to make sure I understand the concept of irreducible representations.

1. If a representation (which can be thought of as a sort of basis) is reducible, all group
element matrices can be simultaneously diagonalized. I want to be able to see how this
definition of reducibility matches with the notion of block diagonalizability of an overall
representation D(g).

2. AWH p. 822-823 has a discussion of this, but I’m wondering if there’s an intuitive way to
connect these two definitions or if it’s just linear algebra.

3. We have familiarized ourselves with the concept of (conjugacy) classes. Here, we now
add in the concept of character, which is just the trace of any matrix in a given class
(and every matrix of the same class will have the same trace b/c of the properties of
classes/traces).

4. So to find the characters for a given representation, we just need to find the classes and
then take the trace of a matrix representation in each class?

5. My next and related question then concerns what character means conceptually. Does it
relate classes to other classes within a given representation, or different representations
(whether reducible or not), or both? AWH says that “the set of characters for all elements
and irreducible representations of a finite group defines an orthogonal finite-dimensional
vector space."
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GROUP THEORY - WEEK 9. CONTINUOUS GROUPS

6. How does a vector space come about from a set of traces, each of which I normally think
of as just a number, like the determinant? And finally,

7. How can we use our knowledge of classes/character to find irreducible representations,
since that seems to be an important goal in examining a group.

8. Exercise 4.2 (c) says to find the characters for this representation, which seems to imply
that character depends on representation. But I would’ve thought that character, which is
a trace of a matrix, is invariant under any similarity transform, which is how you get from
a reducible representation to an irreducible representation.

9. Do the multiplicities of irreducible representations correspond to the multiplicity of char-
acters (i.e. the number of elements in each class)? If so, why? (Or if not, why not?)

10. The same thing for classes, correct? Classes shouldn’t depend on representation b/c they
can be thought of as corresponding to a physical operation (e.g. transposition or cyclic
permutation), something which is independent of basis.

.
A Great framing for a discussion, thanks! I’ll probably reedit this post several times, every-
body’s input is very welcome. Items numbered as in above:

(2) My favorite step-by-step, pedagogical exposition are the chapters 2 Representation The-
ory and Basic Theorems and 3 Character of a Representation of Dresselhaus et al. [4].
There is too much material for our course, but if you want to understand it once for all
times, it’s worth your time.

(3) Correct.

(4) Correct. Note, however, that while every matrix representation has a trace, and thus a
character, you want to decompose this character into the sum of irrep characters, as it is
obvious after the block diagonalization has been attained.

(5) The unitary diagonalization matrix, whose entries are characters, takes character-weighted
sums of classes in order to project them onto irreps, just like what the Fourier represen-
tation does. The result (as we know from projection operators analysis), are mutually
orthogonal sub-spaces.

(6) Whenever you do not understand something about finite groups, ask yourself - how does
it work for finite lattice Fourier representation?
There the vector space comes via a unitary transformation from the configuration coor-
dinates (where each group element is represented by a full matrix) to the diagonalized,
irreducible subspaces coordinates (Fourier modes).
The unitary F matrix is full of ωij , ie, characters of the cyclic group Cn. That’s where
the characters come from.
Now mess up C3 by adding a reflection. Dihedral group D3, the group of rotations and re-
flections, has more symmetry constrains, it cannot have 6 irreps, as reflection invariance
mixes together the two senses of rotation. Now there are 3 classes, ie, kinds of things
the group does: nothing, flip, rotate. The unitary transformation that diagonalizes group
element matrices is now morally a smaller unitary [3×3] matrix from ‘classes’ in config-
uration space to ‘irreps’ in the diagonalized representation, where some sub-spaces must
have dimension higher than one.
The surprise, for me, is that the entries in the unitary diagonalization matrix can still be
written as traces of irreps, ie, characters. For me it is a calculation, a beautiful example
of mathematics leading us somewhere where our intuition falls short. If you find a good
intuitive explanation somewhere, please let us all know.
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(7) That’s automatic, now. Each irrep has the projection operator associated with it; we
construct it as a sub-product of factors in Hamilton-Cayley formula. Now we know we
can write it -just as we did with the Fourier representation- as sum over all class group
actions, each weighted by a the irrep’s character.

(8) Characters are elements of the unitary matrix with one index running over classes, the
other over irreps. So you expect character to differ from representation to representation;
very clear from D3 character table. As always, you already know that from the Fourier
representation example.

(9) They do not. Dresselhaus et al. [4] has the answer - enter it here once you understand it.

(10) Correct.

Question 9.2. Henriette Roux, digesting sect. 10.7.1, asks
Q Please explain when one keeps track of the order of tensorial indices?
A In a tensor, upper, lower indices are separately ordered - and that order matters. The simplest
example: if some indices form an antisymmetric pair, writing them in wrong order gives you a
wrong sign. In a matrix representation of a group action, one has to distinguish between the “in”
set of indices – the ones that get contracted with the initial tensor, and the “out” set of indices
that label the tensor after the transformation. If you understand Eq. (3.22) in birdtracks.eu, you
get it. Does that answer your question?

Question 9.3. Henriette Roux asks
Q Please explain the Mµν,δρ generators of SO(n).
A Let me know if you understand the derivation of Eqs. (4.51) and (4.52) in birdtracks.eu.
Does that answer your question?

9.3 Continuous symmetries: unitary and orthogonal
This week’s lectures are not taken from any particular book, they are about basic
ideas of how one goes from finite groups to the continuous ones that any physicist
should know. We have worked one example out earlier, in week 9 and ChaosBook
Sect. A24.4. It gets you to the continuous Fourier transform as a representation of
U(1) ≃ SO(2), but from then on this way of thinking about continuous symmetries
gets to be increasingly awkward. So we need a fresh restart; that is afforded by matrix
groups, and in particular the unitary group U(n) = U(1) ⊗ SU(n), which contains all
other compact groups, finite or continuous, as subgroups.

The main idea in a way comes from discrete groups: the cyclic group CN is gen-
erated by the powers of the smallest rotation by ∆θ = 2π/N , and in the N → ∞
limit one only needs to understand the commutation relations among Tℓ, generators of
infinitesimal transformations,

D(∆θ) = 1 + i
∑
ℓ

∆θℓTℓ +O(∆θ2) . (9.1)

These thoughts are spread over chapters of my book Group Theory - Birdtracks,
Lie’s, and Exceptional Groups [3] that you can steal from my website, but the book
itself is too sophisticated for this course.
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EXERCISES

9.4 Character orthogonality theorem
You might like my intuitive derivation [3] of the character orthogonality theorem for
continuous compact lie groups, birdtracks.eu sect. 8.2 Characters.

Note that the replacement of an irrep matrix representation D(µ)(g)a
b by its char-

acter χ(µ)(g) (a single scalar quantity) does not mean that any of the matrix indices
structure is lost; the full D(µ)(g)a

b can be recovered by differentiation, as in bird-
tracks.eu eq. (8.27).
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Exercises
9.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(9.2)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e

(k)
1 − i e

(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?
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EXERCISES

9.2. Reduction of a product of two SO(2) irreps. Determine the Clebsch-Gordan series for
SO(2). Hint: Abelian group has 1-dimensional characters. Or, you are just multiplying
terms in Fourier series.

9.3. Irreps of O(2). O(2) is a group, but not a Lie group, as in addition to continuous
transformations generated by (9.2) it has, as a group element, a parity operation

σ =

[
1 0
0 −1

]
which cannot be reached by continuous transformations.

(a) Is this group Abelian, i.e., does T commute with R(kθ)? Hint: evaluate first the
[T, σ] commutator and/or show that σD(k)(θ)σ−1 = D(k)(−θ) .

(b) What are the equivalence (i.e., conjugacy) classes of this group?

(c) What are irreps of O(2)? What are their dimensions?
Hint: O(2) is the n→ ∞ limit ofDn, worked out in exercise 4.4 Irreducible repre-
sentations of dihedral group Dn. Parity σ maps an SO(2) eigenvector into another
eigenvector, rendering eigenvalues of any O(2) commuting operator degenerate.
Or, if you really want to do it right, apply Schur’s first lemma to improper rotations

R
′
(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
σ =

(
cos kθ sin kθ
sin kθ − cos kθ

)
to prove irreducibility for k ̸= 0.

(d) What are irreducible characters of O(2)?

(e) Sketch a fundamental domain for O(2).

9.4. Reduction of a product of two O(2) irreps. Determine the Clebsch-Gordan series for
O(2), i.e., reduce the Kronecker product D(k)⊗D(ℓ) .

9.5. A fluttering flame front.

(a) Consider a linear partial differential equation for a real-valued field u = u(x, t)
defined on a periodic domain u(x, t) = u(x+ L, t):

ut + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.3)

In this equation t ≥ 0 is the time and x is the spatial coordinate. The subscripts x
and t denote partial derivatives with respect to x and t: ut = ∂u/d∂, uxxxx stands
for the 4th spatial derivative of u = u(x, t) at position x and time t. Consider the
form of equations under coordinate shifts x→ x+ ℓ and reflection x→ −x. What
is the symmetry group of (9.3)?

(b) Expand u(x, t) in terms of its SO(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.3) as a set of linear ODEs for the expansion coefficients. What
are the eigenvalues of the time evolution operator? What is their degeneracy?

(c) Expand u(x, t) in terms of its O(2) irreducible components (hint: Fourier expan-
sion) and rewrite (9.3) as a set of linear ODEs. What are the eigenvalues of the time
evolution operator? What is their degeneracy?

(d) Interpret u = u(x, t) as a ‘flame front velocity’ and add a quadratic nonlinearity to
(9.3),

ut +
1
2
(u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (9.4)

This nonlinear equation is known as the Kuramoto-Sivashinsky equation, a baby
cousin of Navier-Stokes. What is the symmetry group of (9.4)?
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(e) Expand u(x, t) in terms of its O(2) irreducible components (see exercise 9.3) and
rewrite (9.4) as an infinite tower of coupled nonlinear ODEs.

(f) What are the degeneracies of the spectrum of the eigenvalues of the time evolution
operator?

9.6. O(2) fundamental domain for Kuramoto-Sivashinsky equation. You have C2

discrete symmetry generated by flip σ, which tiles the space by two tiles.

• Is there a subspace invariant under this C2? What form does the tower of ODEs
take in this subspace?

• How would you restrict the flow (the integration of the tower of coupled ODEs) to
a fundamental domain?

This problem is indeed hard, a research level problem, at least for me and the grad students
in our group. Unlike the beautiful full-reducibility, character-orthogonality representation
theory of linear problems, in nonlinear problems symmetry reduction currently seems to
require lots of clever steps and choices of particular coordinates, and we am not at all sure
that our solution is the optimal one. Somebody looking at the problem with a fresh eye
might hit upon a solution much simpler than ours. Has happened before :)
Burak Budanur’s solution is written up in Budanur and Cvitanović [1] Unstable mani-
folds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-
Sivashinsky system sect. 3.2 O(2) symmetry reduction, eq. (17) (get it here).

9.7. Lie algebra from invariance. Derive the Lie algebra commutator and the Jacobi
identity as particular examples of the invariance condition, using both index and birdtracks
notations. The invariant tensors in question are “the laws of motion,” i.e., the generators
of infinitesimal group transformations in the defining and the adjoint representations.
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