
group theory - week 7

Discrete Fourier representation

Georgia Tech PHYS-7143
Homework HW7 due Tuesday 2021-06-22

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 7.1 Am I a group? 2 points
Exercise 7.2 Product of two groups 2 points
Exercise 7.3 Laplacian is a non-local operator 4 points
Exercise 7.4 Lattice Laplacian diagonalized 8 points
Exercise 7.5 Work through ChaosBook Example A24.2
− Projection operators for discrete Fourier transform. 6 bonus points

Total of 16 points = 100 % score. Bonus points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 7. DISCRETE FOURIER REPRESENTATION

2021-06-15 Predrag Lecture 13 Fundamentalist vision
How I think of the fundamental domain is explained in my online lectures, Week
14, in particular the snippet Regular representation of permuting tiles.

2021-06-15 Predrag Lecture 14 Diffusion confusion
You also might find my online lectures, Week 13 helpful.

Discretization of continuum, lattices, discrete derivatives, discrete Fourier representa-
tions.

The fastest way to watch any week’s lecture videos is by letting YouTube run
the course playlist (2h 50 min + 45 min for extras).

Symmetry is your friend - overview. The power of thinking. (9 min)

Applied math version: how to discretize derivatives:
ChaosBook Appendix A24 Deterministic diffusion
Sects. A24.1 to A24.1.1 Lattice Laplacian.

Lattice discretization, lattice state (7 min)

Lattice derivative (6 min)

Shift operator: the generator of discrete translations (15 min)

(extra) Discussion: Shift matrix must have the periodic b.c.; Derivative
being nonlocal is easiest to grasp on discrete lattice. It’s so easy to make
errors in the continuum formulation. (14 min)

Derivative is a linear operator (15 min)

Lattice Laplacian (5 min)

Derivative is a non-local operator (6 min)

(extra) Discussion: Lattice discretization; What if geometry is not flat in all
directions, but spherical? What about General Relativity? Life’s persistent
questions, skated around. (14 min)

(extra) Discussion: What is a derivative? Hypercubic lattice is a graph,
with nodes connected by links. Every graph has a notion of derivative
associated with it; in particular a Laplacian. I was not allowed to say
"Laplacian" here, as I have not gotten to defining it in my lecture at that
point... (2 min)

A periodic lattice as the simplest example of the theory of finite groups:
ChaosBook Sects. A24.1.2 to A24.3.1.
ChaosBook Example A24.2 Projection operators for discrete Fourier represen-
tation.
ChaosBook Example A24.3 ‘Configuration-momentum’ Fourier space duality.
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EXERCISES

Have symmetry? Use it! (14 min)

(extra) Rant: Symmetrize you must. Karl Schwarzschild found his exact so-
lution in 1915, a month after the publication of Einstein’s theory of general
relativity, while serving on a World War I front. (3 min)

Have symmetry? Go to "eigen"subspace! Fourier decomposition of a 2-sites
periodic lattice. (7 min)

Periodic lattices (5 min)

Fourier eigenvalues (9 min)

Discrete Fourier representation (6 min)

Laplacian in Fourier representation (9 min)

Propagator in Fourier representation (6 min)

A meta truth; We live in The Matrix; Fourier transformation is just a matrix (10
min)

7.1 Optional reading
A theoretical physicist’s version of the above notes: Quantum Field Theory - a
cyclist tour, Chapter 1 Lattice field theory motivates discrete Fourier represen-
tations by computing a free propagator on a lattice.

(extra) Quantum Mechanics in a box: Sometimes it is simplest to impose the
periodic b.c. on a localized solution, than relax it towards the correct (infinite
extent) continuum solution. (5 min)

(extra) Rocket science needs complex numbers; Why Fourier? Digital image
processing! (8 min)

Exercises
7.1. Am I a group? Show that multiplication table

e a b c d f

e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e
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EXERCISES

describes a group. Or does it? (Hint: check whether this table satisfies the group axioms.)

7.2. Product of two groups. Let G1 and G2 be two finite groups. The elements of the
product set G = G1 ×G2 are defined as pairs (g1, g2), g1 ∈ G1 g2 ∈ G2.

(a) Show that G is a group with the multiplication operation (g1, g2) · (g′1, g′2) =
(g1g

′
1, g2g

′
2).

Let D1 be an irreducible representation of G1 and let D2 be an irreducible representation
of G2. For each g = (g1, g2) ∈ G define D(g) = D1(g1)×D2(g2)

(b) Show that D = D1 × D2 is an irreducible representation of G. What are the
characters of D?

7.3. Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference operator, its inverse (the “free”
propagator of statistical mechanics and quantum field theory) is a messier object. A way
to compute is to start expanding propagator as a power series in the Laplacian

1

m21−∆
=

1

m2

∞∑
n=0

1

m2n
∆n . (7.1)

As ∆ is a finite matrix, the expansion is convergent for sufficiently large m2. To get a
feeling for what is involved in evaluating such series, show that ∆2 is:

∆2 =
1

a4



6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6


. (7.2)

What ∆3, ∆4, · · · contributions look like is now clear; as we include higher and higher
powers of the Laplacian, the propagator matrix fills up; while the inverse propagator
is differential operator connecting only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattice site.
This matrix can be evaluated as is, on the lattice, and sometime it is evaluated this way,
but in case at hand a wonderful simplification follows from the observation that the lattice
action is translationally invariant, exercise 7.4.

7.4. Lattice Laplacian diagonalized. Insert the identity
∑

P(k) = 1 wherever you
profitably can, and use the shift matrix eigenvalue equation to convert shift σ matrices
into scalars. If M commutes with σ, then (φ†

k · M · φk′) = M̃ (k)δkk′ , and the matrix
M acts as a multiplication by the scalar M̃ (k) on the kth subspace. Show that for the
1-dimensional lattice, the projection on the kth subspace is

(φ†
k ·∆ · φk′) =

2

a2

(
cos

(
2π

N
k

)
− 1

)
δkk′ . (7.3)

In the kth subspace the propagator is simply a number, and, in contrast to the mess gen-
erated by (7.1), there is nothing to evaluating it:

φ†
k · 1

m21−∆
· φk′ =

δkk′

m2 − 2
(ma)2

(cos 2πk/N − 1)
, (7.4)

where k is a site in the N -dimensional dual lattice, and a = L/N is the lattice spacing.
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group theory - week 8

Space groups

Georgia Tech PHYS-7143
Homework HW8 due Tuesday 2021-06-29

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Space group 2 points
Exercise 8.2 Band structure of a square lattice 8 points

Bonus points
Exercise 8.3 Tight binding model 8 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 8. SPACE GROUPS

2021-06-17 Predrag Lecture 15 Space groups 2019-02-21 Claire Berger
has no time to teach this lecture. But if she did, she would: (i) Start with 2D
square lattice. (ii) Define Bravais lattice unit cell. (iii) Show that rotation sym-
metries compatible with a 2D lattice are (none), 2-, 3-, 4-, or 6-fold. (iv) Sketch
the resulting 17 wallpaper groups, sect. 8.3.1.

2021-06-17 Predrag Lecture 16 Reciprocal lattice
2019-02-21 Claire Berger has no time to teach this lecture. But if she did, she
would: (i) Start with Bragg diffraction off 2-layer square lattice to motivate the
reciprocal lattice. (ii) Show her group’s graphene diffraction measurements that
identify and distinguish the one- and the two-layer graphene. Reciprocal lattice
is not a mathematical construct - it is what experimentalists see. (iii) Construct
the reciprocal lattice and the first Brillouin zone. (iv) Show the Brillouin zone
for graphene, explain what is seen in experiments.

Lecture 10 (Unedited) Space groups. Bravais lattice. Reciprocal lattice. Brillouin
cell. Fundamental domain. (2:29:20 h)

9.1 Space groups (24:49 min; included in the above)

Gutkin lecture notes Lect. 7 Applications III. Energy Band Structure, Sects. 1.
Lattice symmetries and 2. Band structure.

8.1 Other sources (optional)
Gutkin lecture notes Lect. 7 Applications III. Energy Band Structure, Sects. 1.

Lattice symmetries and 2. Band structure.

If you are curious about graphene, work out Gutkin lecture notes sect. 7.3 Ap-
plications III. Energy Band Structure

Also good reads: Dresselhaus et al. [11] chapter 9. Space Groups in Real Space
(click here), and Cornwell [9] chapter 7. Crystallographic Space Groups (click here).

Walt De Heer learned this stuff from Herzberg [15] Molecular Spectra and Molec-
ular Structure. Condensed matter people like Kittel [21] Introduction to Solid State
Physics, but I am not a fan, because simple group theoretical facts are there presented
as condensed matter phenomena.

Quinn and Yi [24] Solid State Physics: Principles and Modern Applications intro-
duction to space groups looks compact and sensible. Band structure of graphene.

Martin Mourigal found the Presqu’île Giens, May 2009 Contribution of Symmetries
in Condensed Matter Summer School very useful. Villain [29] Symmetry and group
theory throughout physics gives a readable overview. The overheads are here, many of
them are of potential interest. Mourigal recommends

Canals and Schober [8] Introduction to group theory. It is very concise and precise,
a bastard child of Bourbaki and Hamermesh [13]. Space groups show up only once, on
p. 24: “By working with the cosets we have effectively factored out the translational
part of the problem.”
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GROUP THEORY - WEEK 8. SPACE GROUPS

Ballou [1] An introduction to the linear representations of finite groups appears
rather formal (and very erudite).

Grenier, B. and Ballou [12] Crystallography: Symmetry groups and group repre-
sentations.
The word crystal stems from Greek ‘krustallas’ and means “solidified by the cold.”

Schober [27] Symmetry characterization of electrons and lattice excitations gives
an eminently readable discussion of space groups.

Rodríguez-Carvajal and Bourée [25] Symmetry and magnetic structures
Schweizer [28] Conjugation and co-representation analysis of magnetic structures

deals with black, white and gray groups that Martin tries not to deal with, so all Mouri-
gal groups are gray.

Villain discusses graphene in the Appendix A of Symmetry and group theory through-
out physics [29].

8.2 Thoughts (optional)
This week’s notes are long, because I’m fascinated why –of all fields of physics where
problems are formulated on lattices– only condensed matter utilizes the theory of irreps
of space groups. For the course itself, read sect. 8.3 Space groups and sect. 8.3.1 Wall-
paper groups - the rest is speculations, mostly.

Why do I care? In this course we are learning theory of space groups as applied to
quantum mechanics of crystals - rather than diagonalizing the Hamiltonian and com-
puting energy levels, one works on the reciprocal lattice, and computes energy bands
(continuum limit of finely spaced discrete eigenvalues of finite, periodic lattices). If
fluctuations from strict periodicity are small, one can often identify the crystal by mea-
suring the intensities of Bragg peaks.

Then there are other kinds of lattices. In computational field theory (classical
and quantum) one discretizes the space-time, often on a cubic lattice; one example is
worked out here in sect. 8.4 Elastodynamic equilibria of 2D solids. The there are Ising
models in one, two, three dimensions, problems like deterministic diffusion on periodic
lattices of scatterers, coupled maps lattices. None of that literature ever (to best of my
knowledge) reduces the computations to the reciprocal space Brilluion zone. Why?

The funny thing is - I know the answer since 1976, but the siren song of classi-
cal crystallography is so enchanting that it has blinded me with science. I think that
is due to a deep and under-appreciated “chaos / turbulence” physics underlying these
problems. If deviations from the strict periodic structure are small (the basic “long
wavelength” assumption of sect. 8.4), the “integrable” thinking in terms of normal
modes applies, and you should use the crystallography described here. If the symmetry
of the law you are studying is a space group, but the deviations of typical solutions
are large (our deterministic diffusion, Ising models, ...), we have to think again. One
fundamental thing we learned in studies of transitions to chaos is that the traditional
Fourier analysis is useless - it just yields broad, shapeless continuous spectra. The pow-
erful way to think about these problems is Poincaré’s qualitative theory of solutions of
differential equations : analyse the geometry of their flows in their state space. I know
for a fact (from a study of cat maps and spatiotemporal cat maps - those I would have
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GROUP THEORY - WEEK 8. SPACE GROUPS

to explain one-on-one, as the papers are unpublished) that in that case the translational
eigenfunctions are hyperbolic sinhes and coshes, rather than the sines and cosines we
are used to as Cn eigenfunctions. For finite discrete symmetries you saw that irreps
were fine for linear problems, like coupled arrays of springs, but symmetry reduction
for a nonlinear problem like Lorenz equations required quite different techniques. For
space group symmetries the analogous nonlinear problems seem still quite unexplored.

8.3 Space groups
A space group, a subgroup of the group of rotations and translations in three dimen-
sions, is the set of transformations that leave a crystal invariant. A space group operator
is commonly denoted as

{R|t} , (8.1)

where t belongs to the infinite set of discrete translations, and R is one of the finite
number of discrete orientation (point group) symmetries. Translation symmetry, i.e.,
the periodicity of a crystal, manifests itself physically through phonons, magnons, and
other smooth, long-wavelength deformations. Discrete orientation symmetry manifests
itself through macroscopic anisotropies of crystals, and its natural faces. The experi-
mental challenge is to determine the crystal structure, typically by diffraction (study of
the reciprocal lattice). It is a challenge, as one measures only the intensities of Bragg
peaks, not their phases, but the answer should be one of the 230 space groups listed in
the International Tables for Crystallography, the “Bible” of crystallographers.

Unless you have run into a quasicrystal :). In that case Claire has a story to tell,
but it will have to remain private.

Understanding the Bible requires much more detail than what we can cover in a
week or two (it could take a lifetime), and has been written up many places. I found
Dresselhaus et al. [11] Chapter 9. Space Groups in Real Space quite clear on matrix
representation of space groups (click here). (The MIT course 6.734 online version
contains much of the same material.) I also found Béatrice Grenier’s overview over
crystallography helpful. Many online tools are available to ease the task, for example
the FullProf suite of crystallographic programs. The Bible was completed in 19th
century, but the field is undergoing a revival, as the study of topological insulators
requires diving deeper into crystallography than simply looking up the tables.

The translation group T , the set of translations t that put the crystallographic struc-
ture in coincidence with itself, constitutes the lattice. T is a normal subgroup of G. It
defines the Bravais lattice. Translations are of the form

t = tn = n1a1 + n2a2 + n3a3 , nj ∈ Z .

The basis vectors aj span the unit cell. There are 6 simple (or primitive) unit cells
that contain a single point, specified by the lengths of the unit translations a, b, c and
pairwise angles α, β, γ between them. The most symmetric among them is the cubic
cell, with a = b = c and α = β = γ = 90o.

The lattice unit cell is always a generating region (a tile that tiles the entire space),
but the smallest generating region –the fundamental domain– may be smaller than the
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GROUP THEORY - WEEK 8. SPACE GROUPS

lattice unit. At each lattice point the identical group of “atoms” constitutes the motif.
A primitive cell is a minimal region repeated by lattice translations. The lattice and the
motif completely characterize the crystal.

The cosets by translation subgroup T (the set all translations) form the factor (AKA
quotient) group G/T , isomorphic to the point group g (rotations). All irreducible rep-
resentations of a space group G can be constructed from irreducible representations of
g and T . This step, however, is tricky, as, due to the non-commutativity of translations
and rotations, the quotient group G/T is not a normal subgroup of the space group G.

The quantum-mechanical calculations are executed by approximating the infinite
crystal by a triply-periodic one, and going go to the reciprocal space by deploying CNj

discrete Fourier transforms. This implements the G/T quotienting by translations and
reduces the calculation to a finite Brilluoin zone. That is the content of the ‘Bloch
theorem’ of condensed matter physics. Further work is then required to reduce the
calculations to the point group irreps.

Point symmetry operations leave at least one point fixed. They are (a) inversion
through a point, (b) rotation around an axis, (c) roto-inversion around an axis and
through a point and (d) reflection through a mirror plane. The rotations have to be
compatible with the translation symmetry: in 3 spatial dimensions they can only be of
orders 1, 2, 3, 4, or 6. They can be proper (det = +1) or improper (det = −1).

The spectroscopists’ Schoenflies notation labels point groups as: cyclic Cn, dihe-
dral Cn′ , tetrahedral T and octahedralO rotation point groups, of order n = 1, 2, 3, 4, 6,
respectively. The superscript

′
refers to either v (parallel mirror plane) or h (perpen-

dicular mirror plane). The crystallographer’s preferred classification is, however, the
international crystallographic (Hermann-Mauguin) notation.

8.3.1 Wallpaper groups

Pedagogically, it pays to start with a discussion of two-dimensional space groups, or
wallpaper groups (there are 17 of those).

For wallpaper groups the Hermann-Mauguin notation begins with either p or c, for
a primitive cell or a face-centred cell. This is followed by a digit, n, indicating the
highest order of rotational symmetry: 1-fold (none), 2-fold, 3-fold, 4-fold, or 6-fold.
The first, resp. second of the next two symbols indicates the symmetry relative to one
translation axis of the pattern, referred to as the main, resp. second one. The symbols
are either m, g, or 1, for mirror, glide reflection, or none.

Section 9.3 Two-Dimensional Space Groups of Dresselhaus et al. [11] discusses
the most symmetric of the wallpaper groups, the tiling of a plane by squares, which in
the international crystallographic notation is denoted by #11, with point group p4mm.
We work out this space group in exercise 8.2. The largest invariant subgroup of C4v is
C4. In that case, the space group is p4, or #10. Prefix p indicates that the unit cell is
primitive (not centered). This is a ‘simple’, or symmorphic group, which makes calcu-
lations easier. There is, however, the third, non-symmorphic two-dimensional square
space group p4g or #12 (p4gm), see Table B.10 of ref. [11]. If someone can explain
its ‘Biblical’ diagram to me, I would be grateful. The wiki explanation, reproduced
here as figure 8.1 (b), is the best one that I have found so far, but I’m still scratching
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(a) (b)

Figure 8.1: The shaded (or yellow) area indicates a fundamental domain, i.e., the
smallest part of the pattern whose repeats tile the entire plane. (a) For the most sym-
metric 2D square lattice, with point group p4mm, the fundamental domain is indicated
by the shaded triangle ΓΛRSX∆Γ which constitutes 1/8 of the Brillouin zone, and
contains the basic wave vectors and the high symmetry points (Fig. 10.2 of Dressel-
haus et al. [11]). (b) For the 2D square lattice with the glide and reflect point group
p4g the fundamental domain is indicated by the yellow triangle (Figure drawn by M.
von Gagern).

my head:) The Bravais lattice ‘unit cell’ is a square in all three cases. In the crystallo-
graphic literature the ChaosBook’s ‘fundamental domain’ makes an appearance only in
the reciprocal lattice, as the Brilloun zone depicted for p4mm in figure 8.1 (a). How-
ever, the ‘wallpaper groups’ wiki does call ‘fundamental domain’ the smallest part of
the configuration pattern that, when repeated, tiles the entire plane.

The quantum-mechanical calculations are carried out in the reciprocal space, in our
case with the full Γ point, k = 0, wave vector symmetry (see Table 10.1 of ref. [11]),
and ‘Large Representations’.

Sect. 10.5 Characters for the Equivalence Representation look like those for the
point group, sort of.

8.3.2 One-dimensional line groups
One would think that the one-dimensional line groups, which describe systems exhibit-
ing translational periodicity along a line, such as carbon nanotubes, would be simpler
still. But even they are not trivial – there are 13 of them.

The normal subgroup of a line group L is its translational subgroup T , with its fac-
tor group L/T isomorphic to the isogonal point group P of discrete symmetries of its
1-dimensional unit cell x ∈ (−a/2, a/2]. In the reciprocal lattice k takes on the values
in the first Brillouin zone interval (−π/a, π/a]e. In Irreducible representations of the
symmetry groups of polymer molecules. I, Božović, Vujičić and Herbut [7] construct
all the reps of the line groups whose isogonal point groups are Cn,Cnv,Cnh, S2n, and
Dn. For some of these line groups the irreps are obtained as products of the reps of the
translational subgroup and the irreps of the isogonal point group.

According to W. De Heer, the Mintmire, Dunlap and White [23] paper Are Fullerene
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tubules metallic? which took care of chiral rotations for nanotubes by a tight-binding
calculation, played a key role in physicists’ understanding of line groups.

8.3.3 Time reversal symmetry
Consequences of time-reversal symmetry on line groups are discussed by Božović [6];
In the case when the Hamiltonian is invariant under time reversal [14], the symmetry
group is enlarged: L + θL. It is interesting to learn if the degeneracy of the levels is
doubled or not.

Johnston [19] Group theory in solid state physics is one of the many reviews that
discusses Wigner’s time-reversal theorems for a many-electron system, including the
character tests for time-reversal degeneracy, the double space groups, and the time-
reversal theorems (first discussed by Herring [14] in Effect of time-reversal symmetry
on energy bands of crystals).

8.4 Elastodynamic equilibria of 2D solids (optional)
Artificial lattices are often introduced to formulate classical field theories (described
by partial differential equations) and quantum field theories (described by path inte-
grals) as finite-dimensional problems, either for theoretical reasons (QM in a periodic
box), or in order to port them to computers. For example, lattice QCD approximates
Quantum Chromodynamics by a 4-dimensional cubic crystal. What follows is a simple
example of such formulation of a classical field theory, taken from Mehran Kardar’s
MIT course, Lect. 23.

Consider a perfect two-dimensional solid at T = 0. The equilibrium configuration
of atoms forms a lattice,

r0(m,n) = me1 + ne2 ,

where e1 and e2 are basis vectors, a = |ej | is the lattice spacing, and {m,n} are inte-
gers. At finite temperatures, the atoms fluctuate away from their equilibrium position,
moving to

r(m,n) = r0(m,n) + u(m,n) ,

As the low temperature distortions do not vary substantially over nearby atoms, one can
define a coarse-grained distortion field u(x), where x = (x1, x2) is treated as continu-
ous, with an implicit short distance cutoff of the lattice spacing a. Due to translational
symmetry, the elastic energy depends only on the strain matrix,

uij(x) = 1
2 (∂iuj + ∂jui) .

Kardar picks the triangular lattice, as its elastic energy is isotropic (i.e., invariant under
lattice rotations, see Landau and Lifshitz [22]). In terms of the Lamé coefficients λ and
µ,

βH =
1

2

∫
d2x (2µuijuij + λuiiujj)

= −1

2

∫
d2xui[2µ□ δij + (µ+ λ) ∂i∂j ]uj . (8.2)
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(here we have assumed either infinite or doubly periodic lattice, so no boundary terms
from integration by parts), with the equations of motion something like (FIX!)

∂2t ui = [2µ□ δij + (µ+ λ) ∂i∂j ]uj . (8.3)

(Note that Kardar keeps time continuous, but discretizes space. In numerical compu-
tations time is discretized as well.) The symmetry of a square lattice permits an addi-
tional term proportional to ∂2xu

2
x+∂

2
yu

2
y. In general, the number of independent elastic

constants depends on the dimensionality and rotational symmetry of the lattice in ques-
tion. In two dimensions, square lattices have three independent elastic constants, and
triangular lattices are “elastically isotropic” (i.e., elastic properties are independent of
direction and thus have only two [22]).

The Goldstone modes associated with the broken (PC: why “broken”?) transla-
tional symmetry are phonons, the normal modes of vibrations. Eq. (8.3) supports two
types of lattice normal modes, transverse and longitudinal.

The order parameter describing broken translational symmetry is

ρG(x) = eiG·r(x) = eiG·u(x) ,

where G is any reciprocal lattice vector. Since, by definition, G · r0 is an integer
multiple of 2π, ρG = 1 at zero temperature. Due to the fluctuations,

⟨ρG(x)⟩ = ⟨eiG·u(x)⟩

decreases at finite temperatures, and its correlations decay as ⟨ρG(x)ρ∗G(0)⟩ . This is
the order parameter ChaosBook and Gaspard use in deriving formulas for deterministic
diffusion. Kardar computes this in Fourier space by approximating G · q with its
angular average G2q2/2, ignoring the rotationally symmetry-breaking term cos q · x,
and getting only the asymptotics of the correlations right (the decay is algebraic).

The translational correlations are measured in diffraction experiments. The scat-
tering amplitude is the Fourier transform of ρG, and the scattered intensity at a wave-
vector q is proportional to the structure factor. At zero temperature, the structure factor
is a set of delta-functions (Bragg peaks) at the reciprocal lattice vectors.

The orientational order parameter that characterizes the broken rotational symmetry
of the crystal can be defined as

Ψ(x) = e6iθ(x) ,

where θ(x) is the angle between local lattice bonds and a reference axis. The factor of 6
accounts for the equivalence of the 6 possible C3v orientations of the triangular lattice.
(Kardar says the appropriate choice for a square lattice is exp(4iθ(x)) - shouldn’t the
factor be 8, the order of C4v?) The order parameter has unit magnitude at T = 0, and
is expected to decrease due to fluctuations at finite temperature. The distortion u(x)
leads to a change in bond angle given by

θ(x) = − 1
2 (∂xuy − ∂yux) .

(This seems to be dimensionally wrong? For detailed calculations, see the above Kar-
dar lecture notes.)
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8.5 Literature, reflections (optional)
Predrag The story of quantum scattering off crystals, I believe, starts with the Bouck-

aert, Smoluchowski and Wigner (1936) paper [5].

To understand the order of the full group Oh of symmetries of the cube, exer-
cise 5.1 a.ii, it is instructive to look at figure 8.2 (figs. 8.8 and 8.12 in Joshi [20]).
When a cube is a building block that tiles a 3D cubic lattice, it is referred to as
the ‘elementary’ or ‘Wigner-Seitz’ cell, and its Fourier transform is called ‘the
first Brillouin zone’ in ‘the reciprocal space’. The special points and the lines
of symmetry in the Brillouin zone are shown in figure 8.2 (a). The tetrahedron
ΓXMR, an 1/48th part of the Brillouin zone, is the fundamental domain, as the
action of the 48 elements of the point group Oh on it tiles the Brillouin zone
without any gaps or overlaps.

(a) (b)

Figure 8.2: (a) The special points and the lines of symmetry in the first Brillouin zone of a
simple cubic lattice define its fundamental domain, the tetrahedron ΓXMR. (b) Just not to get
any ideas that this is easy: the fundamental domain for the first Brillouin zone of a bcc lattice.
(From Joshi [20].)

Predrag OK, I’ll confess. The reason why it is lovely to teach graduate level physics
is that one is allowed to learn new things while doing it. I’ll now sketch one,
perhaps wild, direction that you are completely free to ignore.

Here is the problem of space groups in the nutshell. The Euclidean invari-
ance on Newtonian space-time (including its subgroups, such as the discrete
space groups), and the Poincaré invariance of special-relativistic space-time is a
strange brew: the space is non-compact (homogeneity), while rotations are com-
pact (isotropy). That leads to the conceptually awkward situation of mixing a
group of additions (translations) with a group of multiplications (rotations). To
work with such group we first translate objects to the origin and then rotate them
with the respect to the origin. That’s not nice, because by translation invariance
any point is as good as any other, there is no preferred origin. There is no reason
why one should translate first, rotate second. What one needs is a formalism that
implements translations and rotations on the same footing.

If I understand Hestenes [16] right (also David Finkelstein and perhaps Holger
Beck Nielsen have told me things in this spirit) a way to accomplish that is to
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replace the flat translational directions by a compact manifold where translations
and rotations are non-commuting multiplicative group operations.

A part of the Hestenes program is redoing crystallography. I have read Hestenes [17]
paper (but not the Hestenes and Holt [18] follow up). It looks very interesting,
but I will spare you from my comments here, as I do not know how to make this
formalism work for our purposes (character; explicit computations), so I should
not waste your time on that. If you do have a look at his, or at Coxeter [10]
discussion of planar tilings, please do report back to me.

Predrag Graphene is a two-dimensional sheet of carbon in which the carbon atoms
are arranged in a honeycomb lattice: each carbon atom is connected to three
neighbors. It was exfoliated by Schafhaeutl [4, 26] in 1840 (more recently, a con
man got a Nobel Prize for that), and formally defined for chemists by Boehm [3]
in 1986. In 1947 Wallace [30] calculated the electronic structure of graphene, as
a preliminary exercise to calculating electronic structure of graphite, and noted
that the velocity of the electrons was independent of their energies: they all travel
at the same speed (about 100 km per second, about 1/3000 of the speed of light):
plot of the energy of the electrons in graphene as a function of its momentum
(which is inversely proportional to its wavelength) is V shaped since the energy
of the electron is linearly proportional to its momentum (Wallace [30] Eq. 3.1).
The energy of a free electron is proportional to the square of its momentum, but
not so in a crystal. As this is reminiscent of massless elementary particles like
photons and neutrino’s, it has been renamed since ‘Dirac cones’, but Dirac has
nothing whatsoever to do with that. To learn more, talk to people from the Claire
Berger and Walt De Heer’s group [2] - I have extracted above history of graphene
from De Heer’s notes (the “con man” is my own angle on what went down with
this particular Nobel prize).
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EXERCISES

Figure 8.3: Square lattice of atoms

Exercises
8.1. Space group.

(a) Show that for any space group, the translations by vectors from Bravais lattice form
a normal subgroup.

(b) Can rotations of the lattice at a fixed point constitute a normal subgroup of a space
group?

(B. Gutkin)
8.2. Band structure of a square lattice. A charged particle (without spin) moves in a po-

tential created by an infinite square lattice of atoms, see figure 8.3.

(a) What are the symmetry groups of the Bravais and reciprocal lattices?
(b) Plot the 1st Brillouin zone. What is its symmetry? What is the corresponding

fundamental domain?

Let k be quasi-momentum and En(k) the energy of the nth band.

(c) At which points of the Brillouin zone is the group G(k) (the group which leaves
vector k invariant) nontrivial? What is it?

(d) What is the symmetry ofEn(k) as a function of k? At which points of the Brillouin
zone is the group velocity ∇En(k) equal 0?

(e) At which points of the Brillouin zone neighboring bands (generically) stick to each
other? How many bands can stick? Explain from the group theory prospective.

(f) Assume now that the lattice is slightly squeezed along one of the axis. What will
be the new symmetry of the system and its 1st Brillouin zone? Will the sticking
between bands be lifted or persiss?

(B. Gutkin)
8.3. Tight binding model. Verify your solution of exercise 8.2 within the 2-state tight bind-

ing model. Assume that particle can hop either from corner to corner of the square lattice
with coefficient t1 or from corner to the middle of the square with coefficient t2 (and vice
versa).

(a) Show the obtained energy bands Ei(k) as both contour- and 3-dimensional plots.
(b) Compare with the results from exercise 8.2.
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