
group theory - week 4

Hard work builds character

Georgia Tech PHYS-7143
Homework HW4 due Tuesday 2021-06-08

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 4.3 All irreducible representations of D4 10 points

Bonus points
Exercise 4.4 Irreducible representations of dihedral group Dn 2 points
Exercise 4.5 Perturbation of Td symmetry 6 points
Exercise 4.7 Two particles in a potential 4 points

Total of 10 points = 100 % score. Bonus points accumulate, can help you later if you
miss a few problems.
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GROUP THEORY - WEEK 4. HARD WORK BUILDS CHARACTER

Table 4.1: The D3=C3v group multiplication table. The same as table 2.1, but written
as a class operator multiplication table.

D3 1 r r2 σ1 σ2 σ3

1 1 r r2 σ1 σ2 σ3

r r r2 1 σ3 σ1 σ2

r2 r2 1 r σ2 σ3 σ1

σ1 σ1 σ2 σ3 1 r r2

σ2 σ2 σ3 σ1 r2 1 r
σ3 σ3 σ1 σ2 r r2 1

D3 C1 C2 C3

C1 C1 C2 C3

C2 C2 2C1+C2 2C3

C3 C3 2C3 3C1+3C2

2021-06-01 Lecture 5

Character orthogonality theorem

Character orthogonality relations. (10:53 min)
Character defined. Character of identity = dimension of the representation.
Character orthogonality stated as an average of the group over irrep char-
acters (but not derived). Special cases checked. Completeness verified.
Example: Reflection group in 1 dimension. Characters and their orthogo-
nality checked.

A summary: it is all about class and character (18:50 min)
Presumes knowledge of CN irreps, argues that a reflection (DN ) mixes
them up, thus reducing the number of irreps. 3-disk classes. Character is
labelled by the class and the irrep label. Example: discrete Fourier trans-
form is an [N ×N ] unitary matrix. D4 character table.

(extra) Discussion: class and character (7:01 min)

2021-06-01 Predrag Lecture 6

Hard work builds character
Complete Dresselhaus et al. [1] sects. 3.3 “Wonderful Orthogonality Theorem
for Characters” to 3.8 “Setting up Character Tables” (click here). This material
is also covered in Tinkham [7] Chapter 3 Theory of Group Representations.

1. theory of finite groups are a natural generalization of discrete Fourier represen-
tations

2. it is all about class and character. “Character", in particular, I find very surprising
- one complex number suffices to characterize a matrix!
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4.1 Other sources (optional)
Group theory? It is all about class & character.

— Predrag Cvitanović, One minute elevator pitch

For a continuous group version of the character orthogonality theorem, see sect. 9.4. In
particular, the replacement of an irrep matrix representation D(µ)(g)a

b by its character
χ(µ)(g) (a single scalar quantity) leads to no loss of any of the matrix indices structure.

I enjoyed reading Mathews and Walker [6] Chap. 16 Introduction to groups. You
can download it from here. Goldbart writes that the book is “based on lectures by
Richard Feynman at Cornell University.” Very clever. Try working through the exam-
ple of fig. 16.2: deadly cute, you get explicit eigenmodes from group theory alone. The
main message is that if you think things through first, you never have to construct the
representation matrices in explicit form - recasting the calculation in terms of invari-
ants, such characters, will get you there much faster.

You might find Gutkin notes useful:
Lect. 4 Representation Theory II, up to Sect. 4.5 Three types of representations:

Character tables. Dual character orthogonality. Regular representation. Indicators for
real, pseudo-real and complex representations. See example 4.3 “Irreps for quaternion
multiplication table.”

Oliver Pierson ChaosBook.org chapter Discrete factorization - Character tables
(10:05 min)

Oliver Pierson ChaosBook.org chapter Discrete factorization - Projection into
invariant subspaces (5:31 min)

Lect. 5 Applications I. Vibration modes go through Wigner’s theorem, Cn symme-
try and D3 symmetry. Study Example 5.1. Cn symmetry. More quantum mechanics
applications follow in

sect. 6.2 Applications II. Quantum Mechanics, Sect. 2. Perturbation theory.
Does the proof in the Lect. 4 Representation Theory II Appendix that the number

of irreps equals the number of classes make sense to you? For an easy argument, see
Vedensky Theorem 5.2 The number of irreducible representations of a group is equal
to the number of conjugacy classes of that group. For a proof, work though Murnaghan
Theorem 7. If you prefer a proof that your professor cannot understand, click here.

For the record (I retract the heady claim I made in class):
Mathworld.Wolfram.com: “A character table often contains enough information to
identify a given abstract group and distinguish it from others. However, there exist
nonisomorphic groups which nevertheless have the same character table, for example
D4 (the symmetry group of the square) and Q8 (the quaternion group).”

exercise 4.3
Fun read along these lines: Hart and Segerman [2] discuss the distinction between

abstract groups and symmetry groups of objects. They exhibit two very different ob-
jects with

D4 = ⟨r, σ |σrσ = r−1, r4 = σ2 = e⟩ (4.1)

symmetry (describing the group this way is called a presentation of D4), and explain
the Cayley graph for D4 (its edges with arrows correspond to rotations, the other edges
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correspond to reflections). For quaternions they discuss a 1-dimensional space group
built of “monkey blocks” (but do not identify its crystallographic name). Q8 is a
subgroup of the symmetries of the 3-dimensional sphere S3 , the unit sphere in R4.
They offer a visualisation of the action of Q8 on a hypercube and construct a sculpture
whose symmetry group is Q8, using stereographic projection from the unit sphere in
4-dimensional space. Q8 is discussed here in example 4.3.

Simon Berman You would think that the analysis of three masses connected by har-
monic strings, see figure 4.1, is a simple exercise finding irreps of D3 symmetry,
but no, it merits a 2019 Phys. Rev. Lett., see Katz and Efrati [3] Self-driven frac-
tional rotational diffusion of the harmonic three-mass system. The article even
starts with our figure 4.1. We continue the discussion in sect. 6.4.

Example 4.1. D3 symmetry: Reflections and rotations of a triangle, figure 2.5 (c)

D(T ) =


0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 , D(σ1) =


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0

 (4.2)

D(σ2) =


0 0 0 0 −1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0

 , D(σ3) =


0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


(4.3)

G = {[e]; [g, g2]; [σ1, σ2, σ3]}, χ(1) = {1, 1, 1}, χ(2) = {1, 1,−1}, χ(3) = {2,−1, 0}

ri = χ(e)χ(i)(e)/6; ri = {1, 1, 2} =⇒ D = 2E ⊕A1 ⊕A2.

Pi =
1

3

∑
g∈G

χ(i)(g)D(g)

P1 =
1

3


0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1

 , P2 =
1

3


1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0

 (4.4)

The 3 equal masses connected by harmonic springs system of figure 4.1 is a text-
book example of such system, see for example problems 6.37 and 9.16 in Kotkin and
Serbo [4] Collection of Problems in Classical Mechanics.
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νν
1 2

3(ν1
−ν)2 2

Figure 4.1: Modes of a molecule with D3 symmetry. (B. Gutkin)

The vibrational modes associated with the two 1-dimensional representations are
given by

P1V = α


0
1
0
1
0
1

 and P2V = β


1
0
1
0
1
0

 ,

respectively. Here P1V represents symmetric mode shown in figure 4.1 (red). The sec-
ond mode P2V corresponds to the rotations of the whole system. The projection opera-
tor for the two-dimensional representation is

P3 =
2

6
(2D(I)−D(T )−D(T 2)) =

1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

 (4.5)

From this we have to separate two vectors corresponding to shift in x and y directions.

ηx =



1
0

−1/2√
3/2

−1/2

−
√
3/2

 , ηy =



0
1

−
√
3/2

−1/2√
3/2

−1/2



P3V =


α

1√
6


2
0
−1
0
−1
0


︸ ︷︷ ︸

ξ1

+β
1√
2


0
0
1
0
−1
0


︸ ︷︷ ︸

ξ2

+γ
1√
6


0
2
0
−1
0
−1


︸ ︷︷ ︸

ξ3

+δ
1√
2


0
0
0
1
0
−1


︸ ︷︷ ︸

ξ4


,

where ηx =
√

3/2(ξ4 + ξ1), ηy =
√

3/2(ξ3 − ξ2). Vectors ξi are columns of P3 and their
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linear combinations. The orthogonal vectors are given by

ν1 =
√

3/2(ξ1 − ξ4) =



1
0

−1/2

−
√
3/2

−1/2√
3/2

 , ν2 =
√

3/2(ξ2 + ξ3) =



0
1√
3/2

−1/2

−
√
3/2

−1/2

 .

(B. Gutkin)

Example 4.2. (Pseudo)real and complex representations. There are three types
of representation: real, pseudo-real and complex (see Montaldi for details). For real
representations matrices D(g) can be brought into real form such that Dij(g) = D̄ij(g).
This implies in particular that all the characters are real. For pseudo-real representation
the characters are also real but matrices D(g) cannot be brought into real form. Finally,
for complex representations the characters are complex. In the last case D(g) and
the conjugate D̄(g) constitute two different representation (since they characters are
different), while in the real and pseudo-real case both representations are equivalent,
i.e., D̄(g) = UD(g)U†.
Indicator. To distinguish between three types of representations one looks at the indi-
cator:

Ind(α) =
1

|G|
∑
g∈G

χ(α)(g2) ∈ {1, 0,−1} , (4.6)

where 1, −1, 0 are obtained for real, complex and pseudo-real representations, respec-
tively.
Proof: For a general irreducible representation we have

D(α)(g) = UD̄(β)(g)U†, (4.7)

where α ̸= β for a complex representation (since χ(α)(g) ̸= χ̄(α)(g)) and α = β for real
and pseudo-real representations. From D(α)(g2) = D(α)(g)D(α)(g) follows

Ind(α) =
mα∑

i,j=1

mα∑
k,n=1

∑
g∈G

1

|G|
∑
g∈G

Uk,jD
(α)
i,k (g)D̄

(β)
j,n (g)U

†
ni,

with mα being dimension of α. By the orthogonality theorem this expression is zero for
α ̸= β which is the case of complex α. For real and pseudo-real representations we
have

Ind(α) =
1

mα
tr
(
UŪ
)
.

Now note, that for α = β eq. (4.7) yields

D(α)(g)UŪ = UŪD(α)(g).

By the first Schur’s lemma it follows then that UŪ = γI, or U = γU⊤ which also implies
γ2 = 1. This leaves only two possibilities γ = 1 for real and γ = −1 for pseudo-real
representations. In the first case we have UU⊤ = I and Ind(α) = 1, while in the second
one UU⊤ = −I and Ind(α) = −1. Note finally, that 1 = det

(
UŪ
)
= γmα . So γ = −1

might appear only ifmα is even. In other words, a pseudo-real irreducible representation
must be of even dimension.

PHYS-7143-21 week4 54 2021-07-29

HTTP://BIRDTRACKS.EU/COURSE3/SCHEDULE.HTML
https://www.maths.manchester.ac.uk/~jm/wiki/Representations/CharacterTheory
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Example 4.3. Quaternions: Quaternion multiplication table is

{±1,±i,±j,±k} i2 = j2 = k2; ij = k.

This group has five conjugate classes:

{1}, {−1}, {±i}, {±j}, {±k}.

The only possible solution for the equation
∑5

i=1m
2
i = 8 is mi = 1, i = 1, . . . 4, m5 = 2.

In addition to fully symmetric representation, the other three one-dimensional represen-
tations are easy to find: χ(1) = 1, χ(−1) = 1, while χ(i) = −1, χ(j) = −1, χ(k) = 1;
χ(i) = −1, χ(k) = −1, χ(j) = 1 or χ(k) = −1, χ(j) = −1, χ(i) = 1. The two-
dimensional representation can be find by the orthogonality relation:

2 + χ(−1)± χ(k)± χ(i)± χ(j) = 0,=⇒ χ(−1) = −2, χ(k) = χ(i) = χ(j) = 0 .

Since the indicator equals

Ind = (2χ(1) + 6χ(−1))/8 = −1,

the last representation is pseudo-real. Note that this representation can be realized
using Pauli matrices:

{±I,±σx,±σy,±σz}.

(B. Gutkin)
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EXERCISES

Exercises
4.1. Characters of D3. (continued from exercise 2.4) D3

∼= C3v , the group of symmetries
of an equilateral triangle: has three irreducible representations, two one-dimensional and
the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a permutation group or one of its sub-
groups, and elements of the permutation group can be expressed as cycles. Express
the elements of the group D3 as cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2 → 3, and 3 → 1.

(b) Use your representation from exercise 2.4 to compute the D3 character table.

(c) Use a more elegant method from the group-theory literature to verify your D3 char-
acter table.

(d) Two D3 irreducible representations are one dimensional and the third one of multi-
plicity 2 is formed by [2×2] matrices. Find the matrices for all six group elements
in this representation.

4.2. Decompose a representation of S3. As an illustration of the utility of the character
orthonormality relations (3.1), let’s work out the reduction of the matrix representation of
S3 permutations. The identity element acting on three objects [a b c] is a 3 × 3 identity
matrix,

D(E) =

1 0 0
0 1 0
0 0 1


Transposing the first and second object yields [b a c], represented by the matrix

D(A) =

0 1 0
1 0 0
0 0 1


since 0 1 0

1 0 0
0 0 1

ab
c

 =

ba
c


1. Find all six matrices for this representation.

2. Split this representation into its conjugacy classes.

3. Evaluate the characters χ(Cj) for this representation.

4. Determine multiplicities ca of irreps contained in this representation.

5. (bonus) Construct explicitly all irreps.

6. (bonus) Explain whether any irreps are missing in this decomposition, and why.

4.3. All irreducible representations of D4. Dihedral group D4, the symmetry group of
a square, consists of 8 elements: identity, rotations by π/2, π, 3π/2, and 4 reflections
across symmetry axes: D4 = ⟨g, σ|g4 = σ2 = e, gσ = σg3⟩

(a) Find all conjugacy classes.
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(b) Determine the dimensions of irreducible representations using the relationship∑
i

d2i = |G|, (4.8)

where di is the dimension of ith irreducible representation.

(c) Determine the remaining items of the character table.

(d) Compare with the character table of quaternions, example 4.3. Are they the same
or different?

(e) Determine the indicators for all irreps of D4. Are they the same as for the irreps of
the quaternion group?

If you are at loss how to proceed, take a look at Landau and Lifschitz [5] Vol.3: Quantum
Mechanics

(Boris Gutkin)

4.4. Irreducible representations of dihedral group Dn.

(a) Determine the dimensions of all irreps of dihedral group Dn, n odd.

(b) Determine the dimensions of all irreps of dihedral group Dn, n even.

This exercise is meant to be easy - guess the answer from the irreps dimension sum rule
(4.8), and what you already know about D1, D3 and D4. Working out also D2 case
(cut a disk into two equal halves) might be helpful. A more serious attempt would require
counting conjugacy classes first. This exercise might help you later, when you are looking
at irreps of the orthogonal groups O(n); turns out they are different for n odd or even
n, and that has physical consequences: what you learn by working out a problem in 2
dimensions might be misleading for working it out in 3 dimensions.

4.5. Perturbation of Td symmetry.
A non-relativistic charged particle moves in an infinite bound potential V (x) with Td

symmetry. Consult exercise 5.1 Vibration Modes of CH4 for the character table and other
Td details.

(a) What are the degeneracies of the quantum energy levels? How often do they appear
relative to each other (i.e., what is the level density)?

A weak constant electric field is now added now along one of the 2π/3 rotation axes,
splitting energy levels into multiplets.

(b) What is the symmetry group of the system now?

(c) How are the levels of the original system split? What are the new degeneracies?

(Boris Gutkin)

4.6. Selection rules for Td symmetry.
The setup is the same as in exercise 4.5, but now assume that instead of a constant field, a
time dependent electric field E0 cos(ωt) is added to the system, with E0 not necessarily
directed along any of the symmetry axes. In general, when |En − Em| = ℏω, such
time-dependent perturbation induces transitions between energy levels En and Em.

(a) What are the selection rules? Between which energy levels of the system are tran-
sitions possible?
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(b) Would the answer be different if a magnetic field B0 cos(ωt) is added instead?
Explain how and why.

4.7. Two particles in a potential.
Two distinguishable particles of the same mass move in a 2-dimensional potential V (r)
having D4 symmetry. In addition they interact with each other with the term λW (|r1 −
r2|).

(a) What is the symmetry group of the Hamiltonian if λ = 0? If λ ̸= 0?.

(b) What are the degeneracies of the energy levels if λ = 0?

(c) Assuming that λ ≪ 1 (weak interaction), describe the energy level structure, i.e.,
degeneracies and quasi-degeneracies of the energy levels. What will be the answer
if the interaction is strong?

Hint: when interaction is weak we can think about it as perturbation. (Boris Gutkin)
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