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== show all your work for maximum credit,
== put labels, title, legends on any graphs
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Exercise 2.1 Gx ⊂ G 1 point
Exercise 2.2 Transitivity of conjugation 1 point
Exercise 2.3 Isotropy subgroup of gx 1 points
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Exercise 2.5 C4-invariant potential 7 (+2) points
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Exercise 2.7 Three masses on a loop 6 points
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GROUP THEORY - WEEK 2. FINITE GROUPS - DEFINITIONS

2.1 Week’s videos, reading
If I had had more time, I would have written less

— Blaise Pascal, a remark made to a correspondent

Please do not get intimated by the length of this week’s notes - they are here more
for me than for you, as notes on these topics for future reference. If you understand the
main sequence of video clips, and recommended reading, that should suffice to do the
problems. The rest is optional, you can quickly skim over...

2.1.1 Don’t wonna know group theory
The fastest way to watch any week’s lecture videos is by letting YouTube run the

Section playlist

◦ Sect. 2.4 Using symmetries

◦ Sect. 2.5 Normal modes: The free vibrations of systems, for undamped systems
with total energy conserved for which the frequencies of oscillation are real.

Normal modes (9:06 min)

◦ example 2.5 Vibrational spectra of molecules is taken from Gutkin lecture notes
example 5.1 Cn symmetry. The corresponding projection operators (1.25) are
worked out in example 2.6.

◦ Example 2.4 Vibrations of a classical CO2 molecule

A Hamiltonian with a symmetry (4:46 min)

CO2 molecule (4:07 min)

Projection operators (5:33 min)

(Anti)symmetric subspaces (3:04 min)

Zero mode (5:19 min)

2.1.2 Finite groups
Groups, permutations, rearrangement theorem, subgroups, cosets, classes,
all exemplified by the D3

∼= C3v
∼= S3 symmetries of an equilateral trian-

gle.

Section playlist

Dresselhaus et al. [4] Chapter 1 Basic Mathematical Background: Introduction.
The MIT course 6.734 online version contains much of the same material.

ChaosBook Chapter 10. Flips, slides and turns
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Discrete symmetry, an example: 3-disk pinball (4:03 min)

What is a group? (10:56 min)

(extra) Discussion: There might be many examples of it, but a ‘group’ itself
is an abstract notion. (3 min)

(extra) Discussion: permutations, symmetric group, simple groups, Italian
renaissance, French revolution, Galois (5:23 min)

by Socratica: (cannot add it to the section YouTube playlist)
a delightful introduction to group multiplication (or Cayley) tables. (7:32)

Active, passive coordinate transformations (3:08 min)

Following Mefisto: symmetry defined three (3) times (7:01 min)

Subgroups, classes, group orbits, reduced state space (7:57 min)

2.2 Other sources (optional)
Group theory and why I love 808,017,· · · ,000 (cannot add it to the section YouTube
playlist)
is a great video on group theory from 3Blue1Brown, writes Andrew Wu. I agree:
Well worth of your time, more motivational than my lectures. What it actually
focuses on - the monster group - is totally useless to us.

AWH Example 6.2.3 Degenerate eigenproblem

AWH Example 6.5.2 Normal modes

For a deep dive into this material, here is your rabbit hole.

For deeper insights, read Roger Penrose [7] (click here).

AWH Chapter 17 Group Theory (click here).

For a typical (but for this course advanced) application see, for example, Stone
and Goldbart [10], Mathematics for Physics: A Guided Tour for Graduate Stu-
dents, Section 14.3.2 Vibrational spectrum of H2O (click here).

◦ Glance through sect. 2.6 Group presentations and sect. 2.8 Literature, but I do
not expect you to understand this material.

Discussion 4 - Homework. (3 min)

There is no need to learn all these “Greek” words.

◦ If instead, bedside crocheting is your thing, click here.
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2.3 Using group theory without knowing any
It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read ChaosBook Appendix A.6 Gruppenpest). So what
we will do first is work out a few examples of physical applications of group theory
that you already know without knowing that you have been using “Group Theory.”

2.4 Using symmetries
Tyger Tyger burning bright,
In the forests of the night:
What immortal hand or eye,
Dare frame thy fearful symmetry?

—William Blake, The Tyger

The big idea #1 of this is week is symmetry.

If our physical problem is defined by a (perhaps complicated) Hamiltonian H, another
matrix M (hopefully a very simple matrix) is a symmetry if it commutes with the
Hamiltonian

[M,H] = 0 . (2.1)

Than we can use the spectral decomposition (1.30) of M to block-diagonalize H into
a sum of lower-dimensional sub-matrices,

H =
∑
i

Hi , Hi = PiHPi , (2.2)

and thus significantly simplify the computation of eigenvalues and eigenvectors of H,
the matrix of physical interest.

2.5 Normal modes
The big idea #2 of this is week is: many body systems (molecules, neu-
ronal networks, ...) are ruled by collective modes, not individual particles
(atoms, neurons, ...).

In the linear, harmonic oscillator approximation, the classical dynamics of a molecule
is governed by the Hamiltonian

H =
N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x⊤i Vijxj ,

where {xi} are small deviations from the equilibrium, resting points of the molecules
labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form by an
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D3 e C C2 σ(1) σ(2) σ(3)

e e C C2 σ(1) σ(2) σ(3)

C C C2 e σ(3) σ(1) σ(2)

C2 C2 e C σ(2) σ(3) σ(1)

σ(1) σ(1) σ(2) σ(3) e C C2

σ(2) σ(2) σ(3) σ(1) C2 e C
σ(3) σ(3) σ(1) σ(2) C C2 e

Table 2.1: The dihedral group D3 group multiplication table. Actually, we prefer
cyclic and dihedral groups notation ‘rotations’ rℓ and ‘flips’ σm, as in table 4.1.

orthogonal transformation, to a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =
N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.3)

2.6 Group presentations
Group theory? It is all about class & character.

— Predrag Cvitanović, One minute elevator pitch

Group multiplication (or Cayley) tables, such as Table 2.1, define each distinct
discrete group, but they can be hard to digest. A Cayley graph, with links labeled
by generators, and the vertices corresponding to the group elements, has the same
information as the group multiplication table, but is often a more insightful presentation
of the group.

Figure 2.1: A Cayley graph presentation of
the dihedral group D4. The ‘root vertex’ of the
graph, marked e, is here indicated by the letter
F, the links are multiplications by two genera-
tors: a cyclic rotation by left-multiplication by
element a (directed red link), and the flip by b
(undirected blue link). The vertices are the 8
possible orientations of the transformed letter F.

For example, the Cayley graph figure 2.1 is a clear presentation of the dihedral
group D4 of order 8,

D4 = (e, a, a2, a3, b, ba, ba2, ba3) , generators a4 = e , b2 = e . (2.4)
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Quaternion group is also of order 8, but with a distinct multiplication table / Cayley
graph, see figure 2.2. For more of such, see, for example, mathoverflow Cayley graph
discussion.

Figure 2.2: A Cayley graph presentation of the
quaternion group Q8. It is also of order 8, but
distinct from D4.

2.7 Permutations in birdtracks
The text that follows is a very condensed extract of birdtracks.eu chapter 6 Permuta-
tions, from Group Theory - Birdtracks, Lie’s, and Exceptional Groups [3]. I am usually
reluctant to use birdtrack notations in front of graduate students indoctrinated by their
professors in the 1890’s tensor notation, but I’m emboldened by the very enjoyable ar-
ticle on The new language of mathematics by Dan Silver [9]. Your professor’s notation
is as convenient for actual calculations as -let’s say- long division using roman numer-
als. So leave them wallowing in their early progressive rock of 1968, King Crimsons
of their youth. You chill to beats younger than Windows 98, to grime, to trap, to
hardvapour, to birdtracks.

In 1937 R. Brauer [2] introduced diagrammatic notation for the Kronecker δij op-
eration, in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically. His equation (39)

(send index 1 to 2, 2 to 4, contract ingoing (3·4), outgoing (1·3)) is the earliest published
diagrammatic notation I know about. While in kindergarten (disclosure: we were too
poor to afford kindergarten) I sat out to revolutionize modern group theory [3]. But I
suffered a terrible setback; in early 1970’s Roger Penrose pre-invented my “birdtracks,”
or diagrammatic notation, for symmetrization operators [6], Levi-Civita tensors [8],
and “strand networks” [5]. Here is a little flavor of how one birdtracks:

We can represent the operation of permuting indices (d “billiard ball labels,” tensors
with d indices) by a matrix with indices bunched together:

σβ
α = σ

a1a2...aq

b1...bp
,dp...d1
cq...c2c1 . (2.5)
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To draw this, Brauer style, it is convenient to turn his drawing on a side. For 2-index
tensors, there are two permutations:

identity: 1ab,
cd = δdaδ

c
b =

flip: σ(12)ab,
cd = δcaδ

d
b = . (2.6)

For 3-index tensors, there are six permutations:

1a1a2a3 ,
b3b2b1 = δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 = δb2a1

δb1a2
δb3a3

=

σ(23) = , σ(13) =

σ(123) = , σ(132) = . (2.7)

Here group element labels refer to the standard permutation cycles notation. There is
really no need to indicate the “time direction" by arrows, so we omit them from now
on.

The symmetric sum of all permutations,

Sa1a2...ap ,
bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

+ δb1a2
δb2a1

. . . δbpap
+ . . .

}
S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (2.8)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn across
p lines [6] will always denote symmetrization of the lines crossed. A factor of 1/p! has
been introduced in order for S to satisfy the projection operator normalization

S2 = S

... = ... . (2.9)

You have already seen such “fully-symmetric representation,” in the discussion of
discrete Fourier transforms, ChaosBook Example A24.3 ‘Configuration-momentum’
Fourier space duality, but you are not likely to recognize it. There the average was not
over all permutations, but the zero-th Fourier mode ϕ̃0 was the average over only cyclic
permutations. Every finite discrete group has such fully-symmetric representation, and
in statistical mechanics and quantum mechanics this is often the most important state
(the ‘ground’ state).

A subset of indices a1, a2, . . . aq , q < p can be symmetrized by symmetrization
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matrix S12...q

(S12...q)a1a2...aq...ap
,bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq

+ δb1a2
δb2a1

. . . δbqaq
+ . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =

...
... ...

2
1

q . (2.10)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...
......

...

... =

... ...

... ... . (2.11)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

...

=

...

. (2.12)

Diagrammatically this means that legs can be crossed and uncrossed at will.
One can construct a projection operator onto the fully antisymmetric space in a

similar manner [3]. Other representations are trickier - that’s precisely what the theory
of finite groups is about.

2.8 Other sources (optional)
The exposition (or the corresponding chapter in Tinkham [11]) that we follow here
largely comes from Wigner’s classic Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra [12], which is a harder going, but the more group theory
you learn the more you’ll appreciate it.

The structure of finite groups was understood by late 19th century. A full list of
finite groups was another matter. The complete proof of the classification of all finite
groups takes about 3 000 pages, a collective 40-years undertaking by over 100 mathe-
maticians, read the wiki. Not all finite groups are as simple or easy to figure out as D3.
For example, the order of the Ree group 2F4(2)

′ is 212(26+ 1)(24− 1)(23+ 1)(2−
1)/2 = 17 971 200 .

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs.

Hang in there! And relax. None of this will be on the test. As a matter of fact, there
will be no test.
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Question 2.1. Henriette Roux asks
Q What did you do this weekend?
A The same as every other weekend - prepared week’s lecture, with my helpers Avi the Little,
Edvard the Nordman, and Malbec el Argentino, under Master Roger’s watchful eye, see here.

2.9 Examples
Example 2.1. Discrete symmetries in physics:

• Point groups i.e., subgroups of O(3).

• Point groups + discrete translations e.g., symmetry groups of crystals.

• Permutation groups

SΨ(x1, x2, . . . xn) = Ψ(x2, x1, . . . xn).

• Boson wave functions are symmetric while fermion wave functions are anti-symmetric
under exchange of variables.

(B. Gutkin)

Example 2.2. The group multiplication table for D3: See table 4.1.

Example 2.3. Reflection and discrete rotation symmetries:

(a) Reflection symmetry V (x) = PV (x) = V (−x):(
− ℏ2

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Enψ(x) (2.13)

(see figure 2.3). If ψ(x) is solution then Pψ(x) is also solution. From this and non-
degeneracy of the spectrum follows that either Pψ(x) = ψ(x) or Pψ(x) = −ψ(x).
The first case corresponds to symmetric functions while the second one to anti-
symmetric one. Thus the whole spectrum can be decomposed in accordance to
a symmetry of the Hamiltonian (equations of motion).

(b) Rotation symmetry V (x) = gV (x), G = {e, g, g2}: By the same argument we
have three possibilities:

gψ(x) = ψ(x); gψ(x) = ei2π/3ψ(x); g−1ψ(x) = e−i2π/3ψ(x).

In addition, by the time reversal symmetry if ψ(x) is solution then ψ∗(x) is solu-
tion with the same eigenvalue as well. From this follows that the spectrum must
be degenerate. The spectrum is split into a real eigenfunction {ψ1(x)}, and a
degenerate pair of real eigenfunctions

ψ2(x) = ψ(x) + ψ∗(x);ψ3(x) = i(ψ(x)− ψ∗(x)) , where gψ(x) = ei2π/3ψ(x)

invariant under rotations by 1/3-rd of a circle.

(B. Gutkin)
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L R

Figure 2.3: (left) A reflection-symmetric double-well potential. (right) A 1/3rd-circle
rotation-symmetric plane billiard (infinite wall potential in 2D). (B. Gutkin)

M  Mm

Figure 2.4: A classical colinear CO2 molecule [1].

Example 2.4. Vibrations of a classical CO2 molecule: Consider one carbon and
two oxygens constrained to the x-axis [1] and joined by springs of stiffness k, as shown
in figure 2.4. Newton’s second law says

ẍ1 = − k

M
(x1 − x2)

ẍ2 = − k

m
(x2 − x3)−

k

m
(x2 − x1)

ẍ3 = − k

M
(x3 − x2) . (2.14)

The normal modes, with time dependence xj(t) = xj exp(itω) , are the common fre-
quency ω vibrations that satisfy (2.14),

Hx =

 A −A 0
−a 2 a −a
0 −A A

x1x2
x3

 = ω2

x1x2
x3

 , (2.15)

where a = k/m, A = k/M . Secular determinant det (H− ω21) = 0 now yields a cubic
equation for ω2.

You might be tempted to stick this [3×3] matrix into Mathematica or whatever, but
please do that in some other course. What would understood by staring at the output?
In this course we think.

First thing to always ask yourself is: does the system have a symmetry? Yes! Note
that the CO2 molecule (2.14) of figure 2.4 is invariant under x1 ↔ x3 interchange, i.e.,
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coordinate relabeling by matrix σ that commutes with our law of motion H,

σ =

0 0 1
0 1 0
1 0 0

 , σH = Hσ =

 0 −A A
−a 2 a −a
A −A 0

 . (2.16)

We can now use the symmetry operator σ to simplify the calculation. As σ2 =
1, its eigenvalues are ±1, and the corresponding symmetrization, anti-symmetrization
projection operators (1.38) are

P+ =
1

2
(1+ σ) , P− =

1

2
(1− σ) . (2.17)

The dimensions di = trPi of the two subspaces are

d+ = 2 , d− = 1 . (2.18)

As σ and H commute, we can now use spectral decomposition (1.30) to block-diagonalize
H to a 1-dimensional and a 2-dimensional matrix.

On the 1-dimensional antisymmetric subspace, the trace of a [1×1] matrix equals
its sole matrix element equals it eigenvalue

λ− = HP− =
1

2
(trH− trHσ) = (a+A)− a =

k

M
,

so the corresponding eigenfrequency is ω2
− = k/M . To understand its physical mean-

ing, write out the antisymmetric subspace projection operator (2.18) explicitly. Its non-
vanishing columns are proportional to the sole eigenvector

P− =
1

2

 1 0 −1
0 0 0
−1 0 1

 ⇒ e(−) =

 1
0

−1

 . (2.19)

In this subspace the outer oxygens are moving in opposite directions, with the carbon
stationary.

On the 2-dimensional symmetric subspace, the trace yields the sum of the remain-
ing two eigenvalues

λ+ + λ0 = trHP+ =
1

2
(trH+ trHσ) = (a+A) + a =

k

M
+ 2

k

m
.

We could disentangle the two eigenfrequencies by evaluating trH2P+, for example, but
thinking helps again.

There is still another, translational symmetry, so obvious that we forgot it; if we
change the origin of the x-axis, the three coordinates xj → xj − δx change, for any
continuous translation δx, but the equations of motion (2.14) do not change their form,

Hx = Hx+H δx = ω2x ⇒ H δx = 0 . (2.20)

So any translation e(0) = δx = (δx, δx, δx) is a nul, ‘zero mode’ eigenvector of H
in (2.16), with eigenvalue λ0 = ω2

0 = 0, and thus the remaining eigenfrequency is
ω2
+ = k/M + 2 k/m. As we can add any nul eigenvector e(0) to the corresponding

e(+) eigenvector, there is some freedom in choosing e(+). One visualization of the
corresponding eigenvector is the carbon moving opposite to the two oxygens, with total
momentum set to zero.

(Taken from AWH Example 6.2.3 Degenerate eigenproblem, but done here using
symmetries.)
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Example 2.5. Vibrational spectra of molecules: In the linear, harmonic oscillator
approximation the classical dynamics of the molecule is governed by the Hamiltonian

H =

N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x⊤i Vijxj ,

where {xi} are small deviations from the resting the equilibrium, resting points of the
molecules labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form
by an orthogonal transformation, a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =

N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.21)

Consider now the ring of pair-wise interactions of two kinds of molecules sketched in
figure 2.5 (a), given by the potential

V (z) =
1

2

N∑
i=1

(
k1(xi − yi)

2 + k2(xi+1 − yi)
2) , zi =

(
xi
yi

)
, (2.22)

whose [2N×2N ] matrix form is (aside to the cognoscenti: this is a Toeplitz matrix):

Vij =
1

2



k1 + k2 −k1 0 0 0 . . . 0 0 −k2
−k1 k1 + k2 −k2 0 0 . . . 0 0 0
0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1
−k2 0 0 0 0 . . . 0 −k1 k1 + k2


This potential matrix is a holy mess. How do we find an orthogonal transformation (2.21)
that diagonalizes it? Look at figure 2.5 (a). Molecules lie on a circle, so that suggests
we should use a Fourier representation. As the i = 1 labelling of the starting molecule
on a ring is arbitrary, we are free to relabel them, for example use the next molecule
pair as the starting one. This relabelling is accomplished by the [2N×2N ] permutation
matrix (or ‘one-step shift’, ‘stepping’ or ‘translation’ matrix) M of form


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

M


z1
z2
z3
...
zn

 =


zn
z1
z2
...

zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi
yi

)
(2.23)

Projection operators corresponding to M are worked out in example 2.6. They are N
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ω
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y
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Figure 2.5: (a) Chain with circular symmetry. (b) Dependance of frequency on the
representation wavenumber k. (c) Molecule with D3 symmetry. (B. Gutkin)

distinct [2N×2N ] matrices,

Pk =



I λ̄I λ̄2I . . . λ̄N−2I λ̄N−1I
λI I λ̄I . . . λ̄N−3I λ̄N−2I
λ2I λI I . . . λ̄N−4I λ̄N−3I

...
...

...
. . .

...
...

λN−2I λN−3I λN−4I . . . I λ̄I
λN−1I λN−2I λN−2I . . . λI I


, λ = exp

(
2πi

N
k

)

(2.24)
which decompose the 2N -dimensional configuration space of the molecule ring into
a direct sum of N 2-dimensional spaces, one for each discrete Fourier mode k =
0, 1, 2, · · · , N − 1.

The system (2.22) is clearly invariant under the cyclic permutation relabelling M ,
[V,M ] = 0 (though checking this by explicit matrix multiplications might be a bit tedious),
so the Pk decompose the interaction potential V as well, and reduce its action to the kth
2-dimensional subspace. Thus the [2N×2N ] diagonalization (2.21) is now reduced to
a [2×2] diagonalization which one can do by hand. The resulting kth space is spanned
by two 2N -dimensional vectors, which we guess to be of form:

η1 =
1√
n



1
0
λ
0
...

λn−1

0


, η2 =

1√
n



0
1
0
λ
...
0

λn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

V η1 = (k1 + k2)η1 − (k1 + k2λ)η2 , V η2 = (k1 + k2)η2 − (k1 + k2λ̄)η1 .

The corresponding eigenfrequencies are determined by the equation:

0 = det
((

k1 + k2 −(k1 + k2λ)
−(k1 + k2λ̄) k1 + k2

)
− ω2

2
I

)
=⇒

1

2
ω2
±(k) = k1 + k2 ± |k1 + k2λ

k| , (2.25)
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one acoustic (ω(0) = 0), one optical, see figure 2.5 (b) and the acoustic and optical
phonons wiki. (B. Gutkin)

Example 2.6. Projection operators for cyclic group CN .
Consider a cyclic group CN = {e, g, g2, · · · gN−1}, and let M = D(g) be a [2N×2N ]

representation of the one-step shift g. In the projection operator formulation (1.25),
the N distinct eigenvalues of M , the N th roots of unity λn = λn, λ = exp(i 2π/N),
n = 0, . . . N − 1, split the 2N -dimensional space into N 2-dimensional subspaces by
means of projection operators

Pn =
∏
m̸=n

M − λm I

λn − λm
=

N−1∏
m=1

λ−nM − λm I

1− λm
, (2.26)

where we have multiplied all denominators and numerators by λ−n. The numerator is
now a matrix polynomial of form (x − λ)(x − λ2) · · · (x − λN−1) , with the zeroth root
(x− λ0) = (x− 1) quotiented out from the defining matrix equation MN − 1 = 0. Using

1− xN

1− x
= 1 + x+ · · ·+ xN−1 = (x− λ)(x− λ2) · · · (x− λN−1)

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.25)),

Pn =
1

N

N−1∑
m=0

ei
2π
N

nmMm .

This form of the projection operator is the simplest example of the key group theory tool,
projection operator expressed as a sum over characters,

Pn =
1

|G|
∑
g∈G

χ̄(g)D(g) ,

upon which stands all that follows in this course. (B. Gutkin and P. Cvitanović)

2.10 What are cosets good for? (a discussion)
Question 2.2. Henriette Roux asks
Q What are cosets good for?
A Apologies for glossing over their meaning in the lecture. I try to minimize group-theory
jargon, but cosets cannot be ignored.

Dresselhaus et al. [4] (click here) Chapter 1 Basic Mathematical Background: Introduction
needs them to show that the dimension of a subgroup is a divisor of the dimension of the group.
For example, C3 of dimension 3 is a subgroup of D3 of dimension 6.

In ChaosBook Chapter 10. Flips, slides and turns cosets are absolutely essential. The
significance of the coset is that if a solution has a symmetry, then the elements in a coset act on
the solution the same way, and generate all equivalent copies of this solution. Example 10.7.
Subgroups, cosets of D3 should help you understand that.
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Henriette Roux writes: When talking about the cosets of a subgroup we demonstrated
multiplication between cosets with a specific example, but this wasn’t leading to
something along the lines of that the set of all left cosets of a subgroup (or the
set of all the right cosets of a subgroup) form a group, correct? It didn’t appear
so in the example since the “unit” {E,A} we looked appears to only have the
properties of an identity with multiplication from one direction (the direction
depending on if it is the set of left cosets or the set of right cosets). In the context
of the lecture I think this point was related to Lagrange’s theorem (although we
didn’t call it that) and I vaguely remember cosets being used in the proof of
Lagrange’s theorem but I wasn’t connecting it today. Are we going to cover that
in a future lecture?

Predrag You are right - Lagrange’s theorem (see the wiki) simply says the order of a
subgroup has to be a divisor of the order of the group. We used cosets to partition
elements of G to prove that. But what we really need cosets for is to define (see
Dresselhaus et al. [4] Sect. 1.7) Factor Groups whose elements are cosets of a
self-conjugate subgroup (click here). I will not cover that in a subsequent lecture,
so please read up on it yourself.

Henriette Roux You talked about the period of an elementX , and said that that period
is the set

{E,X, · · · , Xn−1} , (2.27)

where n is the order of the element X . I had thought that set was the subgroup
generated by the elementX and that the period of the elementX was a synonym
for the order of the element X? Is that incorrect?

Predrag To keep things as simple as possible, in Thursday’s lecture I followed Sect. 1.3
Basic Definitions of Dresselhaus et al. textbook [4], to the letter. In Def. 3 the
order of an element X is the smallest n such that Xn = E, and they call the set
(2.27) the period of X . I do not like that usage (and do not remember seeing it
anywhere else). As you would do, in ChaosBook.org Chap. Flips, slides and
turns I also define the smallest n to be the period of X and refer to the set (2.27)
as the orbit generated by X . When we get to compact continuous groups, the
orbit will be a (great) circle generated by a given Lie algebra element, and look
more like what we usually think of as an orbit.

I am not using my own ChaosBook.org here, not to confuse things further by
discussing both time evolution and its discrete symmetries. Here we focus on the
discrete group only (typically spatial reflections and finite angle rotations).
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[3] P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups (Prince-
ton Univ. Press, Princeton NJ, 2008).

[4] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to
the Physics of Condensed Matter (Springer, New York, 2007).

[5] R. Penrose, “Angular momentum: An approach to combinatorical space-time”,
in Quantum Theory and Beyond, edited by T. Bastin (Cambridge Univ. Press,
Cambridge, 1971).

[6] R. Penrose, “Applications of negative dimensional tensors”, in Combinatorial
mathematics and its applications, edited by D. J. A. Welsh (Academic, New
York, 1971), pp. 221–244.

[7] R. Penrose, The Road to Reality - A Complete Guide to the Laws of the Universe
(A. A. Knopf, New York, 2005).

[8] R. Penrose and M. A. H. MacCallum, “Twistor theory: An approach to the quan-
tisation of fields and space-time”, Phys. Rep. 6, 241–315 (1973).

[9] D. S. Silver, “The new language of mathematics”, Amer. Sci. 105, 364 (2017).

[10] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge Univ. Press, Cambridge UK, 2009).

[11] M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).

[12] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra (Academic, New York, 1931).

Exercises

2.1. Gx ⊂ G. The maximal set of group actions which maps a state space point x into itself,

Gx = {g ∈ G : gx = x} , (2.28)

is called the isotropy group (or stability subgroup or little group) of x. Prove that the set
Gx as defined in (2.28) is a subgroup of G.

2.2. Transitivity of conjugation. Assume that g1, g2, g3 ∈ G and both g1 and g2 are
conjugate to g3. Prove that g1 is conjugate to g2.

2.3. Isotropy subgroup of gx. Prove that for g ∈ G, x and gx have conjugate isotropy
subgroups:

Ggx = g Gx g
−1

2.4. D3: symmetries of an equilateral triangle. Consider group D3
∼= C3v , the symmetry

group of an equilateral triangle:
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EXERCISES

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 4.1)

2.5. C4 invariant potential. Consider the Schrödinger equation for a particle moving in a
two-dimensional bounding potential V , such that the spectrum is discrete. Assume that
V is CN -invariant (in some literature, ZN -invariant), i.e., V remains invariant under the
rotationR by the angle 2π/N . ForN = 3 case, figure 2.6 (a), the spectrum of the system
can be split into two sectors: {E0

n} non-degenerate levels corresponding to symmetric
eigenfunctions ϕn(Rx) = ϕn(x) and doubly degenerate levels {E±

n } corresponding to
non-symmetric eigenfunctions ϕn(Rx) = e±2πi/3ϕn(x).

(a) What is the spectral structure in the case of N = 4, figure 2.6 (b)?
How many sectors appear and what are their degeneracies?

(b) What is the spectral structure for general N?

(c) A constant magnetic field normal to the 2D plane is added to V .
How will it affect the spectral structure?

(d) (bonus question) Figure out the spectral structure if the symmetry group of potential
is D3 (also includes 3 reflections), figure 2.6 (c).

(Boris Gutkin)

(a) (b) (c)

Figure 2.6: Hard wall potential with (a) symmetry C3, (b) symmetry C4, and (c) symmetry
D3.

2.6. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the conjugacy classes of S3.
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(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

2.7. Three masses on a loop. Three identical masses, connected by three identical springs,
are constrained to move on a circle hoop as shown in figure 2.7. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (K. Y. Short)

Figure 2.7: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.
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