
group theory - week 12

Lorentz group; spin

Georgia Tech PHYS-7143
Homework HW12 due Tuesday 2021-07-20

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 12.1 Lie algebra of SO(4) and SU(2)⊗ SU(2) 6 points
Exercise 12.2 SO(n) Clebsch-Gordan series for V ⊗V . 3 points
Exercise 12.3 Lorentz spinology 5 points
Exercise 12.4 Lorentz spin transformations 5 points

Bonus points
Exercise 12.5 The unbearable lightness of SO(4) Lie algebra 15 points

Total of 19 points = 100 % score.
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GROUP THEORY - WEEK 12. LORENTZ GROUP; SPIN

2021-07-08 Predrag Lecture 23
SO(4) = SU(2)⊗ SU(2); Lorentz group

Lecture 15 (Unedited) SU(2) irreps. SO(4) = SU(2)×SU(2). More importantly:
Minkowski metric, Lorentz group SO(1, 3) irreps are also labeled by pairs of
SU(2)× SU(2) irrep labels. (2:29:20 h)

Gutkin notes sect. 9.2 Representations of SU(2) and SO(3).

Gutkin notes sects. 9.5-9.8 Product representations of SO(3)

◦ sect. 12.3 Spinors and the Lorentz group

For Lorentz group, read Schwichtenberg [2] Sect. 3.7 (click here).

2021-07-13 Predrag Lecture 24 SO(1, 3); Spin

12.1 Other sources (optional)
◦ sect. 12.4 Irreps of SO(n)

14.3A Who ordered J+, J-? (7:37 min)

For SO(n) see also birdtracks.eu Chapt. 10 Orthogonal groups, pp. 121-123.

For SO(4) = SU(2) ⊗ SU(2) see also birdtracks.eu sect. 20.3.1 SO(4) or Cartan
A1 +A1 algebra.

◦ sect. 12.5 SO(4) of the Kepler problem

◦ sect. 12.5.1 Central force problems

John Wood’s (click here) notes and exercise 12.5 The unbearable lightness of
SO(4) Lie algebra. The challenge: achieve some elegance in deriving the SO(4)
commutator relations.

12.2 Discussion (optional)
Henriette Roux In this course the Levi-Civita tensor appears to be the unique con-

nection for SO(4); but in GR, I learnt that the choice of connection is actually
arbitrary and there are theories of gravity which need not use the Levi-Civita
tensor. Are these two different concepts which are not necessarily linked?

Predrag Sean Carroll answers your question in arXiv:9712019. He does not un-
derstand that the invariant tensors are good, as they are what defines a given
symmetry group:
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It is a remarkable property of the above tensors – the metric, the
inverse metric, the Kronecker delta, and the Levi-Civita tensor – that,
even though they all transform according to the tensor transformation
law, their components remain unchanged in any Cartesian coordinate
system in flat spacetime. In some sense this makes them bad examples
of tensors, since most tensors do not have this property.

However, he then goes on to explain that while in curved spacetime lengths and
volumes are measured in the spacetime dependent way, we still need a notion of
a volume of a hypercube as a skew product of its edges, ie, the determinant:

The Kronecker tensor can be thought of as the identity map from vec-
tors to vectors (or from dual vectors to dual vectors), which clearly
must have the same components regardless of coordinate system. The
other tensors (the metric, its inverse, and the Levi-Civita tensor) char-
acterize the structure of spacetime, and all depend on the metric. We
shall therefore have to treat them more carefully when we drop our
assumption of flat spacetime.

What he then does in his eq. (2.39) is to promote Levi-Civita from ‘tensor’ to
‘symbol’ in order to be able to compute determinants, just like we do in flat
space SO(n).

See also MathWorld discussion.

Are you happy now?

(A side, nomenclature remark: Levi-Civita is not a ‘connection’ in the sense the
word ‘connection’ is used in GR.)

12.3 Spinors and the Lorentz group
A Lorentz transformation is any invertible real [4× 4] matrix transformation Λ,

x′µ = Λµ
νx

ν (12.1)

which preserves the Lorentz-invariant Minkowski bilinear form ΛT ηΛ = η,

xµyµ = xµηµνy
ν = x0y0 − x1y1 − x2y2 − x3y3

with the metric tensor η = diag(1,−1,−1,−1).
A contravariant four-vector xµ = (x0, x1, x2, x3) can be arranged [3] into a Her-

mitian [2×2] matrix in Herm(2,C) as

x = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(12.2)

in the hermitian matrix basis

σµ = σ̄µ = (12,σ) = (σ0, σ1, σ2, σ3) , σ̄µ = σµ = (12,−σ) , (12.3)
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with σ given by the usual Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (12.4)

With the trace formula for the metric

1

2
tr (σµσ̄ν) = ηµν , (12.5)

the covariant vector xµ can be recovered by

1

2
tr (xσ̄µ) =

1

2
tr (xνσν σ̄µ) = xνη µ

ν = xµ (12.6)

The Minkowski norm squared is given by

detx = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xµx
µ , (12.7)

and with (12.3)

x =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
=

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
, (12.8)

the Minkowski scalar product is given by

xµyµ =
1

2
tr(x y) . (12.9)

The special linear group SL(2,C) in two complex dimensions is given by the set
of all matrices Λ such that

SL(2,C) = {Λ∈GL(2,C) | detΛ = +1}. (12.10)

Let a matrix Λ ∈ SL(2,C) act on x ∈ Herm(2,C) as

x 7→ x′ = ΛxΛ† (12.11)

where † denotes Hermitian conjugation. The Minkowski scalar product is preserved,
det x′ = det x . Thus x′ can also be represented by a real linear combination of gener-
alized Pauli matrices

x′ = σµx
′µ with x′µx

′µ = xµx
µ (12.12)

and Λ explicitly acts as a Lorentz transformation (12.1), with Λµ
ν = 1

2 tr (σ̄µΛσνΛ
†) .

The mapping is two-to-one, as two matrices ±Λ ∈ SL(2,C) generate the same Lorentz
transformation ΛxΛ† = (−Λ)x(−Λ)†. This Λ belong to the proper orthochronous
Lorentz group SO+(1, 3), and it can be shown that SL(2,C) is simply connected and
is the double universal cover of the SO+(1, 3).

Consider the fully antisymmetric Levi-Civita tensor ε = −ε−1 = −εT in two
dimensions

ε = iσ2 =

(
0 1

−1 0

)
. (12.13)
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This defines a symplectic (i.e., skew-symmetric) bilinear form ⟨u, v⟩ = −⟨v, u⟩ on two
spinors u and v, elements of the two-dimensional complex vector (or spinor) space C2

u =

(
u1

u2

)
, v =

(
v1

v2

)
, (12.14)

equipped with the symplectic form

⟨u, v⟩ = u1v2 − u2v1 = uTεv . (12.15)

This symplectic form is SL(2,C)-invariant

⟨u, v⟩ = uTεv = ⟨Λu,Λv⟩ = uTΛTεΛv , (12.16)

so one can interpret the group acting on spinors as SL(2,C) ∼= Sp(2,C) , the complex
symplectic group in two dimensions

Sp(2,C) = {Λ∈GL(2,C) |ΛTεΛ = ε} . (12.17)

Summary. The group of Lorentz transformations of spinors is the group SL(2,C)
of [2×2] complex matrices with determinant 1, i.e., the invariant tensor is the 2-index
Levi-Civita εAB . The SL(2,C) matrices are parametrized by three complex dimensions
and therefore six real ones (the matrices have four complex numbers and one complex
constraint on the determinant). This matches the 6 dimensions of the group manifold
associated with the Lorentz group SO(1, 3).

Andrew M. Steane writes “A spinor is the most basic mathematical object that can
be Lorentz-transformed.” His An introduction to spinors, arXiv:1312.3824, might help
you develop intuition about spinors.

Andrzej Trautman tracks the origin of spinors to Euclid, and General Relativity to
Clifford. He includes a letter from Hades saying, inter alia, “Unfortunately, it appears
that there is now in your world a race of vampires, called referees, who clamp down
mercilessly upon mathematicians unless they know the right passwords.”

12.4 Irreps of SO(n) (optional)
The dimension of the defining representation of is SO(n) is given by the trace of the
adjoint projection operator:

N = trPA = =
n(n− 1)

2
. (12.18)

Dimensions of the other reps are listed in table 12.1.

12.5 SO(4) of the Kepler problem (optional)
One of “hidden” symmetries of quantum mechanics is the SO(4) of the Kepler prob-
lem.
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Young tableaux × = • + +

Dimensions n2 = 1 + n(n−1)
2

+ (n+2)(n−1)
2

Projectors = 1
n

+
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���
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���

���
���
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���

+
{

− 1
n

}

Table 12.1: SO(n) Clebsch-Gordan series for V⊗V , worked out in detail in Group The-
ory – Birdtracks, Lie’s, and Exceptional Groups, birdtracks.eu Chapt. 10 Orthogonal
groups.

John Baez discusses it in a fun read here: “if we take the angular momentum
together with the Runge–Lenz vector, we get 6 conserved quantities—and these turn
out to come from the group of rotations in 4 dimensions, SO(4), which is itself 6-
dimensional. The obvious symmetries in this group just rotate a planet’s elliptical
orbit, while the unobvious ones can also squash or stretch it, changing the eccentricity
of the orbit. [...] wavefunctions for bound states of hydrogen can be reinterpreted as
functions on the 3-sphere, S3. The sneaky SO(4) symmetry then becomes obvious: it
just rotates this sphere! And the Hamiltonian of the hydrogen atom is closely connected
to the Laplacian on the 3-sphere. The Laplacian has eigenspaces of dimensions n2

where n = 1, 2, 3, . . . , and these correspond to the eigenspaces of the hydrogen atom
Hamiltonian. ”

When the energy is fixed, the symmetry becomes Lie algebra SO(3, 1) for positive-
energy, scattering states, or SO(4) for negative-energy, bound states.

Michele Cini’s lecture notes, p. 18 gives hydrogen as an example of why we don’t
believe in miracles such as “accidental” eigenvalue degeneracies, but assume that we
must have missed a “hidden” symmetry. Cini writes: “Wolfgang Pauli in 1926 first
solved [...] the H atom using the SO(4) symmetry.” I didn’t know that it was Pauli...

To dig deeper, skim through Baez Mysteries of the gravitational 2-body problem.
Bander and Itzykson [1] Group theory and the hydrogen atom (I) might be OK, but

I have not read it.

12.5.1 Central force problems (optional)
For another way of looking at the H atom (and all solvable central force problems)
download John Wood’s chapter (click here) from Quantum Mechanics for Nuclear
Structure: I. A Primer, IOP science series.

exercise 12.5
The SO(2, 1) method can be extended to solve relativistic central force problems

(one of my students did his Ph.D. thesis on this 20 years ago).
Q: Is the geometry associated with these algebraic structures, as applied to central

force problems, explored?
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Exercises
12.1. Lie algebra of SO(4) and SU(2) ⊗ SU(2). One particle Hamiltonian with a central

potential has in general SO(3) symmetry group. It turns out, however, that for Coulomb
potential the symmetry group is actually larger - SO(4), rather than SO(3). This explains
why the energy level degeneracies in the hydrogen atom are anomalously large. So SO(4)
and its representations are of a special importance in atomic physics.

(a) Show that the Lie algebra so(4) of the group SO(4) is generated by real antisym-
metric 4× 4 matrices.

(b) What is the dimension of so(4)?

A natural basis in so(4) is provided by antisymmetric matrices Mµν , µ, ν ∈ 1, 2, 3, 4,
µ ̸= ν, generators of SO(4) rotations which leave invariant the µν-plane. The elements
of these matrices are given by

(Mµν)ij = δiµδjν − δjµδiν (12.19)

(c) Check that these matrices satisfy the commutation relationship

[Mab,Mcd] =Madδbc +Mbcδad −Macδbd −Mbdδac. (12.20)

(d) Show that Lie algebras of the groups SO(4) and SU(2) × SU(2) are isomorphic.
Path:

(d.i) Define matrices

Jk =
1

2
εkijMi,j , Kk =Mk4, k = 1, 2, 3

and

Ak =
1

2
(Jk +Kk) and Bk =

1

2
(Jk −Kk) .

(d.ii) Show that A and B satisfy the same commutation relations as two copies of
su(2).

(e) How does one construct irreps of so(4) out of irreps of su(2)?

(f) Are groups SO(4) and SU(2)⊗ SU(2) isomorphic to each other?
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EXERCISES

(B. Gutkin)

12.2. SO(n) Clebsch-Gordan series for V ⊗V .
(a) Show that the product of two n-dimensional reps of SO(n) decomposes into three
irreps:

=
1

n
+

���
���
���
���
���
���

���
���
���
���
���
���

+

{
− 1

n

}
. (12.21)

(b) Compute the dimensions of the three irreps.
(c) Which one is the adjoint one, and why? Hint: check the invariance condition. (This
is worked out in detail in Group Theory – Birdtracks, Lie’s, and Exceptional Groups,
birdtracks.eu Chapt. 10 Orthogonal groups.)

12.3. Lorentz spinology.
Show that

(a)
x2 = xµx

µ = det x (12.22)

(b)

xµy
µ =

1

2
(det (x+ y)− det (x)− det (y)) (12.23)

(c)

xµy
µ =

1

2
tr (x y) , (12.24)

where y = σ̄µy
µ

12.4. Lorentz spin transformations.
Let a matrix Λ ∈ SL(2,C) act on hermitian matrix x as

x 7→ x′ = ΛxΛ† . (12.25)

(a) Check that x′ is Hermitian, and the Minkowski scalar product (12.23) is preserved.

(b) Show that Λ explicitly acts as a Lorentz transformation x′µ = Λµ
νx

ν .

(c) Show that the mapping from a Λ ∈ SL(2,C) to the Lorentz transformation in
SO(1, 3) is two-to-one.

(d) Consider the Levi-Civita tensor ϵ = −ϵ−1 = −ϵT in two dimensions,

ϵ =

(
0 1

−1 0

)
, (12.26)

and the associated symplectic form

⟨u, v⟩ = uTεv = u1v2 − u2v1 . (12.27)

Show that this symplectic form is SL(2,C)-invariant

⟨u, v⟩ = uTεv = ⟨Λu,Λv⟩ = uTΛTεΛv . (12.28)

12.5. The unbearable lightness of SO(4) Lie algebra. Download John Wood’s (click here)
notes. The challenge: achieve some elegance in deriving the SO(4) commutator bracket
relations, for example reduce the number of steps in the calculation by 30% or 50%.
The prize: a case of beer, details to be negotiated with John.
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The challenges start on p. 9-8, following eq. (9.21), i.e., “(i)”, “(iv)”, and “(v)”. For
instance, on p. 9-11 John indicates all of the cancellations. These suggest that his solution
is “calculating zero” unnecessarily. One could take linear combinations of the operators
that possess these commutator bracket relations; but the combinations do not seem a priori
warranted on the basis of the dynamics of the problem.

(J. Wood)
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