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Chapter 1

Introduction

PC: introduction finished,
except for AJ: insert dot-
ted line Freudenthal “magic
square” into fig. 1.1

This monograph offers a derivation of all classical and exceptional semisimple Lie
algebras through a classification of “primitive invariants.” Using somewhat un-
conventional notation inspired by the Feynman diagrams of quantum field theory,
the invariant tensors are represented by diagrams; severe limits on what simple
groups could possibly exist are deduced by requiring that irreducible representa-
tions be of integer dimension. The method provides the full Killing-Cartan list
of all possible simple Lie algebras, but fails to prove the existence of F4, E6, E7

and E8.
One simple quantum field theory question started this project; what is the

group-theoretic factor for the following Quantum Chromodynamics gluon self-
energy diagram

= ? (1.1)

I first computed the answer for SU(n). There was a hard way of doing it, using
Gell-Mann fijk and dijk coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “birdtracks” method that
will be developed here. It works nicely for SO(n) and Sp(n) as well. Out of
curiosity, I wanted the answer for the remaining five exceptional groups. This
engendered further thought, and that which I learned can be better understood
as the answer to a different question. Suppose someone came into your office
and asked, “On planet Z, mesons consist of quarks and antiquarks, but baryons
contain three quarks in a symmetric color combination. What is the color group?”
The answer is neither trivial nor without some beauty (planet Z quarks can come
in 27 colors, and the color group can be E6).

Once you know how to answer such group-theoretical questions, you can an-
swer many others. This monograph tells you how. Like the brain, it is divided
into two halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calculations are carried out
for unitary, orthogonal, and symplectic groups (chapters 3–15). Except for the
“negative dimensions” of chapter 13 and the “spinsters” of chapter 14, none of
that is new, but the methods are helpful in carrying out daily chores, such as

1



2 CHAPTER 1. INTRODUCTION

Bourbaki
Cartan-Killing!

classification
Cartan-Killing!

classification

evaluating Quantum Chromodynamics group-theoretic weights, evaluating lat-
tice gauge theory group integrals, computing 1/N corrections, evaluating spinor
traces, evaluating casimirs, implementing evaluation algorithms on computers,
and so on.PC: give a list of references

which use this The interesting half, chapters 16–21, describes the “exceptional magic” (a
new construction of exceptional Lie algebras), the “negative dimensions” (re-
lations between bosonic and fermionic dimensions). Open problems, links to
literature, software and other resources, and personal confessions are relegated to
the epilogue, monograph’s Web page birdtracks.eu. The methods used are appli-
cable to field-theoretic model building. Regardless of their potential applications,
the results are sufficiently intriguing to justify this entire undertaking. In what
follows we shall forget about quarks and quantum field theory, and offer instead
a somewhat unorthodox introduction to the theory of Lie algebras. If the style
is not Bourbaki [29], it is not so by accident.

There are two complementary approaches to group theory. In the canonical
approach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing [191] and Cartan [43] used to obtain the
complete classification of semisimple Lie algebras, and which has been brought to
perfection by Coxeter [67] and Dynkin [106]. There exist many excellent reviews
of applications of Dynkin diagram methods to physics, such as refs. [315, 127].

In the tensorial approach pursued here, the bases are arbitrary, and every
statement is invariant under change of basis. Tensor calculus deals directly with
the invariant blocks of the theory and gives the explicit forms of the invariants,
Clebsch-Gordan series, evaluation algorithms for group-theoretic weights, etc.

The canonical approach is often impractical for computational purposes, as
a choice of basis requires a specific coordinatization of the representation space.
Usually, nothing that we want to compute depends on such a coordinatization;
physical predictions are pure scalar numbers (“color singlets”), with all tensorial
indices summed over. However, the canonical approach can be very useful in de-
termining chains of subgroup embeddings. We refer the reader to refs. [315, 127]
for such applications. Here we shall concentrate on tensorial methods, borrowing
from Cartan and Dynkin only the nomenclature for identifying irreducible repre-
sentations. Extensive listings of these are given by McKay and Patera [238] and
Slansky [315].

To appreciate the sense in which canonical methods are impractical, let us
consider using them to evaluate the group-theoretic factor associated with dia-
gram (1.1) for the exceptional group E8. This would involve summations over
8 structure constants. The Cartan-Dynkin construction enables us to construct
them explicitly; an E8 structure constant has about 2483/6 elements, and the
direct evaluation of the group-theoretic factor for diagram (1.1) is tedious even
on a computer. An evaluation in terms of a canonical basis would be equally
tedious for SU(16); however, the tensorial approach illustrated by the example
of sect. 2.2 yields the answer for all SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial
approach to exceptional groups. The other is the desire to understand their

P. Cvitanović: Group Theory, intro, last edited June 30, 2007 printed October 14, 2007
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3

geometrical significance. The Killing-Cartan classification is based on a mapping
of Lie algebras onto a Diophantine problem on the Cartan root lattice. This
yields an exhaustive classification of simple Lie algebras, but gives no insight into
the associated geometries. In the 19th century, the geometries or the invariant
theory were the central question, and Cartan, in his 1894 thesis, made an attempt
to identify the primitive invariants. Most of the entries in his classification were
the classical groups SU(n), SO(n), and Sp(n). Of the five exceptional algebras,
Cartan [44] identified G2 as the group of octonion isomorphisms and noted already
in his thesis that E7 has a skew-symmetric quadratic and a symmetric quartic
invariant. Dickson [95] characterized E6 as a 27-dimensional group with a cubic ⇓PRELIMINARY

⇑PRELIMINARYinvariant. The fact that the orthogonal, unitary and symplectic groups were
invariance groups of real, complex, and quaternion norms suggested that the
exceptional groups were associated with octonions, but it took more than 50
years to establish this connection. The remaining four exceptional Lie algebras
emerged as rather complicated constructions from octonions and Jordan algebras,
known as the Freudenthal-Tits construction. A mathematician’s history of this
subject is given in a delightful review by Freudenthal [131]. The problem has been
taken up by physicists twice, first by Jordan, von Neumann, and Wigner [175],
and then in the 1970’s by Gürsey and collaborators [151, 153, 154]. Jordan et
al.’s effort was a failed attempt at formulating a new quantum mechanics that
would explain the neutron, discovered in 1932. However, it gave rise to the
Jordan algebras, which became a mathematics field in itself. Gürsey et al. took
up the subject again in the hope of formulating a quantum mechanics of quark
confinement; however, the main applications so far have been in building models
of grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical
for the evaluation of group-theoretic weights. The reason is this: the construc-
tion involves [3×3] octonionic matrices with octonion coefficients, and the 248-
dimensional defining space of E8 is written as a direct sum of various subspaces.
This is convenient for studying subgroup embeddings [294], but awkward for
group-theoretical computations.

The inspiration for the primitive invariants construction came from the ax-
iomatic approach of Springer [317, 318] and Brown [34]: one treats the defining
representation as a single vector space, and characterizes the primitive invariants
by algebraic identities. This approach solves the problem of formulating efficient
tensorial algorithms for evaluating group-theoretic weights, and it yields some
intuition about the geometrical significance of the exceptional Lie groups. Such
intuition might be of use to quark-model builders. For example, because SU(3)
has a cubic invariant εabcqaqbqc, Quantum Chromodynamics, based on this color
group, can accommodate 3-quark baryons. Are there any other groups that could
accommodate 3-quark singlets? As we shall see, G2, F4, and E6 are some of the
groups whose defining representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants con-
struction of exceptional groups yields several unexpected results. First, it gener-
ates in a somewhat magical fashion a triangular array of Lie algebras, depicted in
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4 CHAPTER 1. INTRODUCTION

Wigner, E.˜P.

E8
248

248

E7
56

133
D6

66

32

E7

133

133
E6

78

78

F4

52

26

F4

52

52

A5
15

35

A5

35

20
C3

21

14

A2

8

6
E6

78

27
2A2

16

9

C3

21

14
A2

8

8
A1

5

3

3A1

9

4

3A1

9

8

A1

3

3

A2

8

8
A1

3

3

U(1)
1

1

A1

3

4

(1)U2
2

2

U(1)
1

2

0

1
0

1

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

G2

14

14
D4

28

28

D4

28

8

2G
14

7

A2

8

3

A1

3

20

0

3

2
2U(1)

Figure 1.1: The “Magic Triangle” for Lie algebras. The “Magic Square” is framed by the
double line. For a discussion, consult chapter 21.

fig. 1.1. This is a classification of Lie algebras different from Cartan’s classifica-
tion; in this new classification, all exceptional Lie groups appear in the same series
(the bottom line of fig. 1.1). The second unexpected result is that many groups
and group representations are mutually related by interchanges of symmetriza-
tions and antisymmetrizations and replacement of the dimension parameter n by
−n. I call this phenomenon “negative dimensions.”PC: draw a dotted square

box in fig. 1.1 For me, the greatest surprise of all is that in spite of all the magic and the
strange diagrammatic notation, the resulting manuscript is in essence not very
different from Wigner’s [348] 1931 classic. Regardless of whether one is doing
atomic, nuclear, or particle physics, all physical predictions (“spectroscopic lev-
els”) are expressed in terms of Wigner’s 3n-j coefficients, which can be evaluated
by means of recursive or combinatorial algorithms.

Parenthetically, this book is not a book about diagrammatic methods in group
theory. If you master a traditional notation that covers all topics in this book in
a uniform way, more elegantly than birdtracks, more power to you. I would love
to learn it.
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Chapter 2

A preview

PC: chapter finished
The theory of Lie groups presented here had mutated greatly throughout its
genesis. It arose from concrete calculations motivated by physical problems; but
as it was written, the generalities were collected into introductory chapters, and
the applications receded later and later into the text.

As a result, the first seven chapters are largely a compilation of definitions �
and general results that might appear unmotivated on first reading. The reader
is advised to work through the examples, sect. 2.2 and sect. 2.3 in this chapter,
jump to the topic of possible interest (such as the unitary groups, chapter 9, or
the E8 family, chapter 17), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-
theoretic tools. They are not particularly sophisticated, and they rest on a few
simple ideas. The text is long, because various notational conventions, examples,
special cases, and applications have been laid out in detail, but the basic concepts
can be stated in a few lines. We shall briefly state them in this chapter, together
with several illustrative examples. This preview presumes that the reader has
considerable prior exposure to group theory; if a concept is unfamiliar, the reader
is referred to the appropriate section for a detailed discussion.

2.1 Basic concepts

A typical quantum theory is constructed from a few building blocks, which we
shall refer to as the defining space V . They form the defining multiplet of the
theory – for example, the “quark wave functions” qa. The group-theoretical
problem consists of determining the symmetry group, i.e., the group of all linear
transformations

q′a = Ga
bqb a, b = 1, 2, . . . , n ,

which leaves invariant the predictions of the theory. The [n×n] matrices G form
the defining representation (or “rep” for short) of the invariance group G. The
conjugate multiplet q (“antiquarks”) transforms as

q′a = Ga
bq

b .

5
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Combinations of quarks and antiquarks transform as tensors, such as

p′aq
′
br

′c = Gab
c, d

efpfqer
d ,

Gab
c, d

ef = Ga
fGb

eGd
c

(distinction between Ga
b and Ga

b as well as other notational details are explained
in sect. 3.2). Tensor reps are plagued by a proliferation of indices. These indices
can either be replaced by a few collective indices:

α =
{

c
ab

}
, β =

{
ef

d

}
,

q′α = Gα
βqβ , (2.1)

or represented diagrammatically:

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

f

��
��
��
��

a
b
c d

G e =
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
��� e

���
���
���
���c d

fa
b .

(Diagrammatic notation is explained in sect. 4.1.) Collective indices are con-
venient for stating general theorems; diagrammatic notation speeds up explicit
calculations.

A polynomial

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

is an invariant if (and only if) for any transformation G ∈ G and for any set of
vectors q, r, s, . . . (see sect. 3.4)

H(Gq,Gr, . . . Gs) = H(q, r, . . . , s) . (2.2)

An invariance group is defined by its primitive invariants, i.e., by a list of
the elementary “singlets” of the theory. For example, the orthogonal group O(n)
is defined as the group of all transformations that leaves the length of a vector
invariant (see chapter 10). Another example is the color SU(3) of QCD that leaves
invariant the mesons (qq̄) and the baryons (qqq) (see sect. 15.2). A complete list
of primitive invariants defines the invariance group via the invariance conditions
(2.2); only those transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant
tensors in order to define them. For example, the O(n) group is defined by the
requirement that it leaves invariant a symmetric and invertible tensor gab = gba,
det(g) �= 0. Such definition is basis independent, while a component definition
g11 = 1, g12 = 0, g22 = 1, . . . relies on a specific basis choice. We shall define
all simple Lie groups in this manner, specifying the primitive invariants only by
their symmetry and by the basis-independent algebraic relations that they must
satisfy.

These algebraic relations (which I shall call primitiveness conditions) are hard
to describe without first giving some examples. In their essence they are state-
ments of irreducibility; for example, if the primitive invariant tensors are δa

b , habc
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Wigner-Eckart theorem
Schur’s Lemma
clebsch
characteristic equation

and habc, then habch
cbe must be proportional to δe

a, as otherwise the defining
rep would be reducible. (Reducibility is discussed in sect. 3.5, sect. 3.6, and
chapter 5.)

The objective of physicists’ group-theoretic calculations is a description of
the spectroscopy of a given theory. This entails identifying the levels (irreducible
multiplets), the degeneracy of a given level (dimension of the multiplet) and the
level splittings (eigenvalues of various casimirs). The basic idea that enables us
to carry this program through is extremely simple: a hermitian matrix can be
diagonalized. This fact has many names: Schur’s lemma, Wigner-Eckart theorem,
full reducibility of unitary reps, and so on (see sect. 3.5 and sect. 5.3). We
exploit it by constructing invariant hermitian matrices M from the primitive
invariant tensors. The M ’s have collective indices (2.1) and act on tensors. Being
hermitian, they can be diagonalized

CMC† =

⎛⎜⎜⎜⎜⎝
λ1 0 0 . . .
0 λ1 0
0 0 λ1

λ2
...

. . .

⎞⎟⎟⎟⎟⎠ ,

and their eigenvalues can be used to construct projection operators that reduce
multiparticle states into direct sums of lower-dimensional reps (see sect. 3.5):

Pi =
∏
j �=i

M − λj1
λi − λj

= C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

. . . 0
. . . 0

...

1 0 . . . 0
0 1
...

. . .
...

0 . . . 1

...

0 . . .
0 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (2.3)

An explicit expression for the diagonalizing matrix C (Clebsch-Gordan coeffi-
cients or clebsches, sect. 4.2) is unnecessary – it is in fact often more of an im-
pediment than an aid, as it obscures the combinatorial nature of group-theoretic
computations (see sect. 4.8).

All that is needed in practice is knowledge of the characteristic equation for
the invariant matrix M (see sect. 3.5). The characteristic equation is usually a
simple consequence of the algebraic relations satisfied by the primitive invariants,
and the eigenvalues λi are easily determined. The λi’ s determine the projection
operators Pi, which in turn contain all relevant spectroscopic information: the
rep dimension is given by trPi, and the casimirs, 6-j’s, crossing matrices, and
recoupling coefficients (see chapter 5) are traces of various combinations of Pi’s.
All these numbers are combinatoric; they can often be interpreted as the number
of different colorings of a graph, the number of singlets, and so on.
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qq

E +...8

G +...2 F +...4 E +...6

SU(  )n

SO(  )n Sp(  )n

E +...7

Primitive invariants

qqq

qqqq

higher order

qq

Invariance group

Figure 2.1: Additional primitive invariants induce chains of invariance subgroups.

The invariance group is determined by considering infinitesimal transforma-
tions

Ga
b � δa

b + iεi(Ti)ba .

The generators Ti are themselves clebsches, elements of the diagonalizing matrix
C for the tensor product of the defining rep and its conjugate. They project out
the adjoint rep and are constrained to satisfy the invariance conditions (2.2) for
infinitesimal transformations (see sect. 4.4 and sect. 4.5):

(Ti)a
′

a h c...
a′b... + (Ti)b

′
b h c...

ab′... − (Ti)cc′h
c′...

ab... + . . . = 0

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��

��
��
�� +

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��

��
��
�� −

. . ..

���
���
���

���
���
���

���
���
���
���

���
���
���
���

b

a

c

+ . . . = 0 . (2.4)

As the corresponding projector operators are already known, we have an explicit
construction of the symmetry group (at least infinitesimally – we will not consider
discrete transformations).

If the primitive invariants are bilinear, the above procedure leads to the fa-
miliar tensor reps of classical groups. However, for trilinear or higher invariants
the results are more surprising. In particular, all exceptional Lie groups emerge
in a pattern of solutions which I will refer to as a Magic Triangle. The flow
of the argument (see chapter 16) is schematically indicated in fig. 2.1, with the
arrows pointing to the primitive invariants that characterize a particular group.
For example, E7 primitives are a sesquilinear invariant qq̄, a skew symmetric qp
invariant and a symmetric qqqq (see chapter 20).

The strategy is to introduce the invariants one by one, and study the way
in which they split up previously irreducible reps. The first invariant might be
realizable in many dimensions. When the next invariant is added (sect. 3.6), the
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characteristic equation
group of invariance transformations of the first invariant splits into two subsets;
those transformations that preserve the new invariant, and those that do not.
Such decompositions yield Diophantine conditions on rep dimensions. These
conditions are so constraining that they limit the possibilities to a few that can
be easily identified.

To summarize: in the primitive invariants approach, all simple Lie groups,
classical as well as exceptional, are constructed by (see chapter 21)

1. defining a symmetry group by specifying a list of primitive invariants;

2. using primitiveness and invariance conditions to obtain algebraic relations
between primitive invariants;

3. constructing invariant matrices acting on tensor product spaces;

4. constructing projection operators for reduced rep from characteristic equa-
tions for invariant matrices.

Once the projection operators are known, all interesting spectroscopic numbers
can be evaluated.

The foregoing run through the basic concepts was inevitably obscure. Per-
haps working through the next two examples will make things clearer. The first
example illustrates computations with classical groups. The second example is
more interesting; it is a sketch of construction of irreducible reps of E6.

2.2 First example: SU(n)

How do we describe the invariance group that preserves the norm of a complex
vector? The list of primitives consists of a single primitive invariant,

m(p, q) = δa
b pbqa =

n∑
a=1

(pa)∗qa .

The Kronecker δa
b is the only primitive invariant tensor. We can immediately

write down the two invariant matrices on the tensor product of the defining
space and its conjugate,

identity : 1a c
d,b = δa

b δc
d =

��
��
��
��

��
��
��
��d

a

c

b

trace : T a c
d,b = δa

dδc
b =

c

a b

d
.

The characteristic equation for T written out in the matrix, tensor, and birdtrack
notations is

T 2 = nT

T a f
d,e T e c

f,b = δa
dδf

e δe
fδc

b = n T a c
d,b

= ������������ ������������ = n ������������ .
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Here we have used δe
e = n, the dimension of the defining vector space. The roots

are λ1 = 0, λ2 = n, and the corresponding projection operators are

SU(n) adjoint rep: P1 = T−n1
0−n = 1 − 1

nT

������������ =
��
��
��
��

��
��
��
��

− 1
n

������������

U(n) singlet: P2 = T−0·1
n−0 = 1

nT = 1
n ������������ .

(2.5)

AJ: No labels in (2.5); they
appear in manuscript. Now we can evaluate any number associated with the SU(n) adjoint rep, such as

its dimension and various casimirs.
The dimensions of the two reps are computed by tracing the corresponding

projection operators (see sect. 3.5):

SU(n) adjoint: d1 = trP1 = ���
���
���
���

��
��
��
��

= − 1
n

= δb
bδ

a
a − 1

n
δb
aδ

a
b

= n2 − 1

singlet: d2 = trP2 =
1
n

= 1 .

To evaluate casimirs, we need to fix the overall normalization of the generators
Ti of SU(n). Our convention is to take

δij = tr TiTj = ��
��
��

��
��
��

���
���
���

���
���
���

.

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator:

SU(n) : CF δb
a = (TiTi)ba =

��
��
��
��

ba
=

b��
��
��
��

��
��
��
��

a
− 1

n ��
��
��
��

a b

=
n2 − 1

n ��
��
��
��

a b
=

n2 − 1
n

δb
a . (2.6)

In order to evaluate the quadratic casimir for the adjoint rep, we need to replace
the structure constants iCijk by their Lie algebra definition (see sect. 4.5)

TiTj − TjTi = iCij�T�

��
��
��
��

���
���
���
���

−
��
��
��
��

��
��
��
��

=
��
��
��

��
��
��

.

Tracing with Tk, we can express Cijk in terms of the defining rep traces:

iCijk = tr(TiTjTk) − tr(TjTiTk)

= ��
��
��
�� − ���

���
���
��� .
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The adjoint quadratic casimir CimnCnmj is now evaluated by first eliminating
Cijk’s in favor of the defining rep:

δijCA = ��
��
��
��

��
��
��
��

i
m

j

n

= 2 ��
��
��
������

����
����
����

����
����
����

����
����
����

������ .

The remaining Cijk can be unwound by the Lie algebra commutator:

���
���
���
���

���
���
���
���

= ��
��
��
��

− ��
��
��
��

.

We have already evaluated the quadratic casimir (2.6) in the first term. The
second term we evaluate by substituting the adjoint projection operator

��
��
��
��

d

j

a

i

b c

= ������ ������ − 1
n

���
���
���
���

= − 1
n

tr(TiTkTjTk) = (Ti)ba(P1)ad,
c
b(Tj)dc = (Ti)aa(Tj)cc −

1
n

(Ti)ba(Tj)ab .

The (Ti)aa(Tj)cc term vanishes by the tracelessness of Ti’s. This is a consequence
of the orthonormality of the two projection operators P1 and P2 in (2.5) (see
(3.50)):

0 = P1P2 = ��
��
��
��

����
����
����
����

��
��
��
��

⇒ tr Ti = ������ = 0 .

Combining the above expressions we finally obtain

CA = 2
(

n2 − 1
n

+
1
n

)
= 2n .

The problem (1.1) that started all this is evaluated the same way. First we relate
the adjoint quartic casimir to the defining casimirs:

=
��
��
��
��

−
��
��
��
��

=
��
��
��
��

−
��
��
��
��

− . . . =
����

���
���
���
���

−
��
��
��
��

��
��
��
��

− . . .

=
���
���
���
���

− ��
��
��
��

− ��
��
��
��

+
���
���
���
���

− . . .

= n2−1
n

��
��
��
��

− ��
��
��
��

����
����
����
����

+ 2
n

���
���
���

���
���
���

+
���
���
���

���
���
���

��
��
��
��

− 1
n

��
��
��
��

+ . . .

and so on. The result is

SU(n) : 3.1 = n

{
��
��
��
��

+
��
��
��
��

}
+2

{
+ +

}
.
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The diagram (1.1) is now reexpressed in terms of the defining rep casimirs:

= 2n2

{
���
���
���
���

���
���
���
���

+ ��
��
��
��

���
���
���
���

}
+2n

{
+ . . .

}
+ 4

{
+ . . .

}
.

The first two terms are evaluated by inserting the adjoint rep projection operators:

SU(n) : ��
��
��
��

= ���
���
���

���
���
���

− 1
n

��
��
��
��

���
���
���
���

=
(

n2 − 1
n

)2

− 1
n ����

����
����

����
����
����

���
���
���

���
���
��� +

1
n2

���
���
���
���

��
��
��
��

=
(

n2 − 2 +
1
n2

− 1
n

(
n − 1

n

)
+

1
n2

)
=
(

n2 − 3 +
3
n2

)
,

and the remaining terms have already been evaluated. Collecting everything
together, we finally obtain

SU(n) : = 2n2(n2 + 12) .

This example was unavoidably lengthy; the main point is that the evaluation
is performed by a substitution algorithm and is easily automated. Any graph,
no matter how complicated, is eventually reduced to a polynomial in traces of
δa
a = n, i.e., the dimension of the defining rep.

2.3 Second example: E6 family

What invariance group preserves norms of complex vectors, as well as a symmetric
cubic invariant,

D(p, q, r) = dabcpaqbrc = D(q, p, r) = D(p, r, q) ?

We analyze this case following the steps of the summary of sect. 2.1:

i) Primitive invariant tensors

δb
a = a b , dabc =

a

b c

, dabc = (dabc)∗ =

a

b c

.

ii) Primitiveness. daefdefb must be proportional to δa
b , the only primitive 2-index

tensor. We use this to fix the overall normalization of dabc’s:

= .
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iii) Invariant hermitian matrices. We shall construct here the adjoint rep projec-
tion operator on the tensor product space of the defining rep and its conjugate.
All invariant matrices on this space are

δa
b δc

d =
a b

d c
, δa

dδc
b =

c

a b

d
, dacedebd = ���

���
���
���

e
d

a

��
��
��
��

b
��
��
��
��

c
������

���
���
���
���

.

They are hermitian in the sense of being invariant under complex conjugation
and transposition of indices (see (3.21)). The crucial step in constructing this
basis is the primitiveness assumption: 4-leg diagrams containing loops are not
primitive (see sect. 3.3).

The adjoint rep is always contained in the decomposition of V ⊗V̄ → V ⊗V̄
into (ir)reducible reps, so the adjoint projection operator must be expressible in
terms of the 4-index invariant tensors listed above:

(Ti)ab (Ti)dc = A(δa
c δd

b + Bδa
b δd

c + Cdadedbce)

������������ = A

{
+ B ������������ + C ���

���
���
�����

��
��
��

��
��
��
��

���
���
���
���

������

}
.

iv) Invariance. The cubic invariant tensor satisfies (2.4)

+ + = 0 .

Contracting with dabc, we obtain

+ 2 = 0 .

Contracting next with (Ti)ba, we get an invariance condition on the adjoint pro-
jection operator,

+ 2 = 0 .

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:

0 = (n + B + C) + 2
{

+ B + C

}
0 = B + C +

n + 2
3

.

v) The projection operators should be orthonormal, PμPσ = Pμδμσ. The adjoint
projection operator is orthogonal to (2.5), the singlet projection operator P2.
This yields the second relation on the coefficients:

0 = P2PA

0 =
1
n

������ ������ ������������ = 1 + nB + C .
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14 CHAPTER 2. A PREVIEW

Finally, the overall normalization factor A is fixed by PAPA = PA:

������ = ��
��
��
��

������ = A

{
1 + 0 − C

2

}
������ .

Combining the above three relations, we obtain the adjoint projection operator
for the invariance group of a symmetric cubic invariant:

������ ������ =
2

9 + n

{
3 + ������������ − (3 + n) ���

���
���
�����

��
��
��

��
��
��
��

������

���
���
���
���

}
. (2.7)

The corresponding characteristic equation, mentioned in the point iv) of the sum-
mary of sect. 2.1, is given in (18.10).

The dimension of the adjoint rep is obtained by tracing the projection oper-
ator:

N = δii = =
����������������

= nA(n + B + C) =
4n(n − 1)

n + 9
.

This Diophantine condition is satisfied by a small family of invariance groups,
discussed in chapter 18. The most interesting member of this family is the ex-
ceptional Lie group E6, with n = 27 and N = 78.

The solution to problem (1.1) requires further computation, but for excep-
tional Lie groups the answer, given in table 7.4, turns out to be surprisingly
simple. The part of the 4-loop that cannot be simplified by Lie algebra manipu-
lations vanishes identically for all exceptional Lie groups (chapter 17.PC: 12/4-98 the chap-

ter proofread vs the
manuscript version
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spectral decomposition
Harter, W.˜G.
Weyl, H.

Chapter 3

Invariants and reducibility

PC: chapter finished
Basic group-theoretic notions are introduced: groups, invariants, tensors, the
diagrammatic notation for invariant tensors.

The key results are the construction of projection operators from invariant
matrices, the Clebsch-Gordan coefficients rep of projection operators (4.18), the
invariance conditions (4.36) and the Lie algebra relations (4.48).

The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct
sums of lower-dimensional reps. Most of computations to follow implement the
spectral decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (3.48):

Pi =
∏
j �=i

M− λj1
λi − λj

.

The exposition given here in sects. 3.5–3.5 is taken from refs. [73, 74]. Who wrote
this down first I do not know, but I like Harter’s exposition [157, 158, 159] best.

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”: PC: find NB21 ref 16, p. 30

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

3.1 Preliminaries

In this section we define basic building blocks of the theory to be developed here:
groups, vector spaces, algebras, etc. This material is covered in any introduction
to linear algebra [136, 216, 257] or group theory [327, 155]. Most of the material

15



16 CHAPTER 3. INVARIANTS AND REDUCIBILITY

group—(textbf
group!order
order of a group
group!abelian
abelian group
subgroup
group—)
vector!space
space!vector
linear space
space!linear
scalar multiplication

reviewed here is probably known to the reader and can be profitably skipped on
the first reading. Nevertheless, it seems that a refresher is needed here, as an
expert (more so than a novice to group theory) tends to find the first exposure
to the diagrammatic rewriting of elementary properties of linear vector spaces
(chapter 4) hard to digest.

3.1.1 Groups

Definition. A set of elements g ∈ G forms a group with respect to multiplication
G × G → G if

(a) the set is closed with respect to multiplication; for any two elements a, b ∈ G,
the product ab ∈ G;

(b) multiplication is associative

(ab)c = a(bc)

for any three elements a, b, c ∈ G;

(c) there exists an identity element e ∈ G such that

eg = ge for any g ∈ G ;

(d) for any g ∈ G there exists an inverse g−1 such that

g−1g = gg−1 = e .

If the group is finite, the number of elements is called the order of the group
and denoted |G|. If the multiplication ab = ba is commutative for all a, b ∈ G, the
group is abelian.

Definition. A subgroup H ⊂ G is a subset of G that forms a group under
multiplication. e is always a subgroup; so is G itself.

3.1.2 Vector spaces

Definition. A set V of elements x,y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under
addition, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x,y ∈ V

(a + b)x = ax + bx

a(bx) = (ab)x
1x = x , 0x = 0 .
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span
vector!basis
basis vector
repeated index

summation
index summation,

repeated
group!general linear
gln@$GL(n,“mathbbF)$
standard representation

space
representation space
rep!standard
rep!dual
dual!rep
space!dual
dual!space

Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements
of V0, or the span of V0, is also a vector space.

Definition. A basis {e1, · · · , en} is any linearly independent subset of V whose
span is V. n, the number of basis elements, is called the dimension of the vector
space V.

In calculations to be undertaken a vector x ∈ V is often specified by the
n-tuple (x1, · · · , xn)t in F n, its coordinates x =

∑
eaxa in a given basis. We will

rarely, if ever, actually fix an explicit basis {e1, · · · , en}, but thinking this way
makes it often easier to manipulate tensorial objects.

Repeated index summation. Throughout this text, the repeated pairs of
upper/lower indices are always summed over

Ga
bxb ≡

n∑
b=1

Ga
bxb , (3.1)

unless explicitly stated otherwise.

Let GL(n, F) be the group of general linear transformations,

GL(n, F) = {G : F n → F n | det(G) �= 0} . (3.2)

Under GL(n, F) a basis set of V is mapped into another basis set by multiplication
with a [n×n] matrix G with entries in F,

e′ a = eb(G−1)ba .

As the vector x is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′
a = Ga

bxb .

Definition. We shall refer to the set of [n×n] matrices G as a standard rep of
GL(n, F), and the space of all n-tuples (x1, x2, . . . , xn)t, xi ∈ F on which these
matrices act as the standard representation space V .

Under a general linear transformation G ∈ GL(n, F), the row of basis vectors
transforms by right multiplication as e′ = eG−1, and the column of xa’s trans-
forms by left multiplication as x′ = Gx. Under left multiplication the column
(row transposed) of basis vectors et transforms as e′t = G†et, where the dual rep
G† = (G−1)t is the transpose of the inverse of G. This observation motivates
introduction of a dual representation space V̄ , the space on which GL(n, F) acts
via the dual rep G†.

Definition. If V is a vector representation space, then the dual space V̄ is the
set of all linear forms on V over the field F. PC: dual space defined,

thank B. Julia
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Kronecker delta
algebra—(textbf
structure constant
matrix!rep
rep!matrix
algebra!associative
associative algebra
matrix!product
product!matrix
Lie product
product!Lie

If {e1, · · · , en} is a basis of V , then V̄ is spanned by the dual basis {f1, · · · , fn},
the set of n linear forms fa such that

fa(eb) = δb
a ,

where δb
a is the Kronecker symbol, δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (3.3)

They transform under GL(n, F) as

y′a = (G†)bayb . (3.4)

For GL(n, F) no complex conjugation is implied by the † notation; that inter-
pretation applies only to unitary subgroups of GL(n, C). G can be distinguished
from G† by meticulously keeping track of the relative ordering of the indices,

Gb
a → Ga

b , (G†)ba → Gb
a . (3.5)

3.1.3 Algebra

Definition. A set of r elements tα of a vector space T forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any
two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =
r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (3.6)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ

tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβ
γ are called the structure constants of the algebra. They

form a matrix rep of the algebra,

(tα)βγ ≡ ταβ
γ , (3.7)

whose dimension is the dimension of the algebra itself.
Depending on what further assumptions one makes on the multiplication,

one obtains different types of algebras. For example, if the multiplication is
associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,
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algebra—)
defining!vector space
space!defining vector
vector!space!defining
dual!vector space
space!dual
vector!space!dual

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)ca = (tα)ba(tβ)cb , tα ∈ V ⊗ V̄ , (3.8)

and the Lie product

(tα · tβ)ca = (tα)ba(tβ)cb − (tα)bc(tβ)ab , tα ∈ V ⊗ V̄ . (3.9)
IMINARY

dit A. D. Kennedy
dderburn’s theorem Wedderburn’s theorem: Every semisimple algebra is a direct sum of simple

algebras, and a simple algebra is a matrix algebra over a division ring. PC: define a simple algebra

⇑PRELIMINARYAs a plethora of vector spaces, indices and dual spaces looms large in our
immediate future, it pays to streamline the notation now, by singling out one
vector space as “defining” and indicating the dual vector space by raised indices.

The next two sections introduce the three key notions in our construction
of invarince groups: defining rep, sect. 3.2 (see also comments on page 25); in-
variants, sect. 3.4; and primitiveness assumption, page 23. Chapter 4 introduces
diagrammatic notation, the computational tool essential to understanding all
computations to come. As these concepts can be understood only in relation to
one another, not singly, and an exposition of necessity progresses linearly, the
reader is asked to be patient, in the hope that the questions that naturally arise
upon first reading will be addressed in due course.

3.2 Defining space, tensors, reps

1

Definition. In what follows V will always denote the defining n-dimensional
complex vector representation space, that is to say the initial, “elementary multi-
plet” space within which we commence our deliberations. Along with the defining
vector representation space V comes the dual n-dimensional vector representation
space V̄ . We shall denote the corresponding element of V̄ by raising the index,
as in (3.3), so the components of defining space vectors, resp. dual vectors, are
distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (3.10)

Definition. Let G be a group of transformations acting linearly on V , with the
action of a group element g ∈ G on a vector x ∈ V given by an [n×n] matrix G

x′
a = Ga

bxb a, b = 1, 2, . . . , n . (3.11)
1Ref2: definition of the conjugate of a complex vector space is wrong, since “complex

conjugation of elements x ∈ V ” makes no sense when V is an abstract vector space. (We can
conjugate components with respect to a basis, but not elements of an abstract vector space!)
The correct definition says that the conjugate space V has the same underlying set as V : for
each element v ∈ V there is a corresponding element v in V . The difference is that V is made
into a complex vector space in a different way: addition is the same, but multiplying an element
v ∈ V by a complex number c gives cv. This mistake will come to haunt him on page 211.
PC: defined the dual space in the usual way, no complex conjugation any longer
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defining!rep
rep!defining
dual!rep
rep!dual
tensor
tensor!rep
rep!tensor
conjugate, hermitian
hermitian!conjugation

We shall refer to Ga
b as the defining rep of the group G. The action of g ∈ G on

a vector q̄ ∈ V̄ is given by the dual rep [n×n] matrix G†:

x′a = xb(G†)ba = Ga
bx

b . (3.12)

In the applications considered here, the group G will almost always be assumed
to be a subgroup of the unitary group, in which case G−1 = G†, and † indicates
hermitian conjugation:

(G†)ab = (Gb
a)∗ = Gb

a . (3.13)

Definition. A tensor x ∈ V p ⊗ V̄ q transforms under the action of g ∈ G as

x′a1a2...aq

b1...bp
= G

a1a2...aq

b1...bp
,
dp...d1
cq...c2c1 x

c1c2...cq

d1...dp
, (3.14)

where the V p⊗ V̄ q tensor rep of g ∈ G is defined by the group acting on all indices
of x.

G
a1a2...ap

b1...bq
,
dq ...d1
cp...c2c1 ≡ Ga1

c1G
a2

c2 . . . Gap
cpGbq

dq . . . Gb2
d21Gb1

d1 . (3.15)

Tensors can be combined into other tensors by
(a) addition:

zab...c
d...e = αxab...c

d...e + βyab...c
d...e , α, β ∈ C , (3.16)

(b) product:

zabcd
efg = xabc

e yd
fg , (3.17)

(c) contraction: Setting an upper and a lower index equal and summing over all
of its values yields a tensor z ∈ V p−1 ⊗ V̄ q−1 without these indices:

zbc...d
e...f = xabc...d

e...af , zad
e = xabc

e yd
cb . (3.18)

A tensor x ∈ V p ⊗ V̄ q transforms linearly under the action of g, so it can be
considered a vector in the d = np+q-dimensional vector space Ṽ = V p ⊗ V̄ q.ADK: x is a tensor in a

d-dimensional linear space
X, the representation
matrix G is in the [d×d]-
dimensional space End(X)
of endomorphisms of X.
PC: I would rather avoid
introducing ”endomor-
phisms”.

We can replace the array of its indices by one collective index:

xα = x
a1a2...aq

b1...bp
. (3.19)

One could be more explicit and give a table like

x1 = x11...1
1...1 , x2 = x21...1

1...1 , . . . , xd = xnn...n
n...n , (3.20)

but that is unnecessary, as we shall use the compact index notation only as a
shorthand.
Definition. Hermitian conjugation is effected by complex conjugation and index
transposition:

(h†)ab
cde ≡ (hedc

ba )∗ . (3.21)
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matrix!hermitian
hermitian!matrix
vector!invariant
invariant!vector
tensor!invariant
invariant!tensor
matrix!invariant
invariant!matrix

Complex conjugation interchanges upper and lower indices, as in (3.10); trans-
position reverses their order. A matrix is hermitian if its elements satisfy

(M†)ab = Ma
b . (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as M b

a = (M†)ba = Ma
b.

Definition. The tensor dual to xα defined by (3.19) has form

xα = x
bp...b1
aq ...a2a1 . (3.23)

Combined, the above definitions lead to the hermitian conjugation rule for col-
lective indices: a collective index is raised or lowered by interchanging the upper
and lower indices and reversing their order:

α =
{

a1a2 . . . aq

b1 . . . bp

}
↔ α =

{
bp . . . b1

aq . . . a2a1

}
. (3.24)

This transposition convention will be motivated further by the diagrammatic
rules of sect. 4.1.

The tensor rep (3.15) can be treated as a [d×d] matrix

Gα
β = G

a1a2...aq

b1...bp
,
dp...d1
cq...c2c1 , (3.25)

and the tensor transformation (3.14) takes the usual matrix form

x′
α = Gα

βxβ . (3.26)

3.3 Invariants

Definition. The vector q ∈ V is an invariant vector if for any transformation
g ∈ G

q = Gq . (3.27)

Definition. A tensor x ∈ V p ⊗ V̄ q is an invariant tensor if for any g ∈ G

x
a1a2...ap

b1...bq
= Ga1

c1G
a2

c2 . . . Gb1
d1 . . . Gbq

dqx
c1c2...cp

d1...dq
. (3.28)

We can state this more compactly by using the notation of (3.25)

xα = Gα
βxβ . (3.29)

Here we treat the tensor x
a1a2...ap

b1...bq
as a vector in [d×d]-dimensional space, d = np+q.

If a bilinear form M(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = Ga

cGb
dMc

d (3.30)
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invariant
invariant!composed is an invariant matrix. Multiplying with Gb

e and using the unitary condition
(3.13), we find that the invariant matrices commute with all transformations
g ∈ G:

[G,M] = 0 . (3.31)

If we wish to treat a tensor with equal number of upper and lower indices as
a matrix M : V p ⊗ V̄ q → V p ⊗ V̄ q,

Mα
β = Ma1a2...aq

b1...bp
,
dp...d1
cq...c2c1 , (3.32)

then the invariance condition (3.29) will take the commutator form (3.31). Our
convention of separating the two sets of indices by a comma, and reversing the
order of the indices to the right of the comma, is motivated by the diagrammatic
notation introduced below (see (4.6)).

Definition. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄ , which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyas

erdzc , (3.33)

as an invariant in V q ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients hab

cde are components of invariant tensor h ∈ V 3 ⊗ V̄ 2,
obeying the invariance condition (3.28).

Diagrammatic representation of tensors, such as

hab
cde =

a b c d e

h
(3.34)

makes it easier to distinguish different types of invariant tensors. We shall explain
in great detail our conventions for drawing tensors in sect. 4.1; sketching a few
simple examples should suffice for the time being.

The standard example of a defining vector space is our 3-dimensional Eu-
clidean space: V = V̄ is the space of all 3-component real vectors (n = 3),
and examples of invariants are the length L(x, x) = δijxixj and the volume
V (x, y, z) = εijkxiyjzk. We draw the corresponding invariant tensors as

δij = ji , εijk =
kji
. (3.35)

Definition. A composed invariant tensor can be written as a product and/or
contraction of invariant tensors.

Examples of composed invariant tensors are

δijεklm =
k mj

i

l

, εijmδmnεnkl =

n

j ki l

m

. (3.36)
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invariant!tree
tree invariant
invariant!primitive

tensor
primitive!invariant

tensor
Levi-Civita tensor
primitiveness assumption

The first example corresponds to a product of the two invariants L(x, y)V (z, r, s).
The second involves an index contraction; we can write this as V

(
x, y, d

dz

)
V (z, r, s).

In order to proceed, we need to distinguish the “primitive” invariant tensors
from the infinity of composed invariants. We begin by defining a finite basis for
invariant tensors in V p ⊗ V̄ q:

Definition. A tree invariant can be represented diagrammatically as a product
of invariant tensors involving no loops of index contractions. We shall denote
by T = {t0, t1 . . . tr−1} a (maximal) set of r linearly independent tree invariants
tα ∈ V p ⊗ V̄ q. As any linear combination of tα can serve as a basis, we clearly
have a great deal of freedom in making informed choices for the basis tensors.

Example: Tensors (3.36) are tree invariants. The tensor

hijkl = εimsεjnmεkrnε�sr =
s

i

j

l

k

m

n
r

, (3.37)

with intermediate indices m,n, r, s summed over, is not a tree invariant, as it
involves a loop.

Definition. An invariant tensor is called a primitive invariant tensor if it cannot
be expressed as a linear combination of tree invariants composed from lower-rank
primitive invariant tensors. Let P = {p1, p2, . . . pk} be the set of all primitives.

For example, the Kronecker delta and the Levi-Civita tensor (3.35) are the
primitive invariant tensors of our 3-dimensional space. The loop contraction
(3.37) is not a primitive, because by the Levi-Civita completeness relation (6.28)
it reduces to a sum of tree contractions:

i l

j k

=
j

i

k

l
+

j

i

k

l
= δijδkl + δilδjk , (3.38)

(The Levi-Civita tensor is discussed in sect. 6.3.)

Primitiveness assumption. Any invariant tensor h ∈ V p ⊗ V̄ q can be
expressed as a linear sum over the tree invariants T ⊂ V q ⊗ V̄ p: ADK: Why is this an as-

sumption? If there were
a primitive invariant with
more than one loop then we
would just define it to be
a new tree invariant. Since
the number of tree invari-
ants with a fixed number
of external legs is bounded
(they have a trivial bound
on the number of compo-
nents) this process only has
to be repeated a finite num-
ber of times. One remain-
ing question is whether the
number of tree invariants
could grow unboundedly as
the dimension of the funda-
mental rep grows.

h =
∑
α∈T

hαtα . (3.39)

In contradistinction to arbitrary composite invariant tensors, the number of
tree invariants for a fixed number of external indices is finite. For example, given
bilinear and trilinear primitives P = {δij , fijk}, any invariant tensor h ∈ V p (here
denoted by a blob) must be expressible as

= A , (p = 2) (3.40)
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algebra!of invariants
invariant!algebra = B , (p = 3)

= C + D , (p = 4)

+E + F + G
��
��
��
��

��
��
��
��

+ H

= I + J + · · · , (p = 5) · · · (3.41)

3.3.1 Algebra of invariants

Any invariant tensor of matrix form (3.32)

Mα
β = Ma1a2...aq

b1...bp
,
dp...d1
cq...c2c1

that maps V q ⊗ V̄ p → V q ⊗ V̄ p can be expanded in the basis (3.39). In this case
the basis tensors tα are themselves matrices in V q ⊗ V̄ p → V q ⊗ V̄ p, and the
matrix product of two basis elements is also an element of V q ⊗ V̄ p → V q ⊗ V̄ p

and can be expanded in an r element basis:

tαtβ =
∑
γ∈T

(τα)βγtγ . (3.42)

As the number of tree invariants composed from the primitives is finite, under
matrix multiplication the bases tα form a finite r-dimensional algebra, with the
coefficients (τα)βγ giving their multiplication table. As in (3.7), the structure
constants (τα)βγ form a [r×r]-dimensional matrix rep of tα acting on the vec-
tor (e, t1, t2, · · · tr−1). Given a basis, we can evaluate the matrices eβ

γ , (τ1)βγ ,
(τ2)βγ , · · · (τr−1)βγ and their eigenvalues. For at least one of these matrices all
eigenvalues will be distinct (or we have failed to choose a good basis). The projec-
tion operator technique of sect. 3.5 will enable us to exploit this fact to decompose
the V q ⊗ V̄ p space into r irreducible subspaces.PC: WRONG - maximum

# of Pi is the # commuting This can be said in another way; the choice of basis {e, t1, t2, · · · tr−1} is
arbitrary, the only requirement being that the basis elements are linearly inde-
pendent. Finding a (τα)βγ with all eigenvalues distinct is all we need to construct
an orthogonal basis {P0,P1,P2, · · ·Pr−1}, where the basis matrices Pi are the
projection operators, to be constructed below in sect. 3.5. For an application of
this algebra, see sect. 9.11.

3.4 Invariance groups

So far we have defined invariant tensors as the tensors invariant under transfor-
mations of a given group. Now we proceed in reverse: given a set of tensors, what
is the group of transformations that leaves them invariant?
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group!invariance
invariance group
Kronecker delta

Given a full set of primitives, (3.33) P = {p1, p2, . . . , pk}, meaning that no
other primitives exist, we wish to determine all possible transformations that
preserve this given set of invariant relations.
Definition. An invariance group G is the set of all linear transformations (3.28)
that preserve the primitive invariant relations (and, by extension, all invariant
relations)

p1(x, ȳ) = p1(Gx, ȳG†)
p2(x, y, z, . . .) = p2(Gx,Gy,Gz . . .) , . . . . (3.43)

Unitarity (3.13) guarantees that all contractions of primitive invariant tensors,
and hence all composed tensors h ∈ H, are also invariant under action of G. As
we assume unitary G, it follows from (3.13) that the list of primitives must always
include the Kronecker delta.

Example 1. If paqa is the only invariant of G

p′
a
q′a = pb(G†G)bcqc = paqa , (3.44)

then G is the full unitary group U(n) (invariance group of the complex norm
|x|2 = xbxaδ

a
b ), whose elements satisfy

G†G = 1 . (3.45)

Example 2. If we wish the z-direction to be invariant in our 3-dimensional space,
q = (0, 0, 1) is an invariant vector (3.27), and the invariance group is O(2), the
group of all rotations in the x-y plane.

Which rep is “defining”?

1. The defining space V need not carry the lowest-dimensional rep of G; it
is merely the space in terms of which we chose to define the primitive
invariants.

2. We shall always assume that the Kronecker delta δb
a is one of the primitive

invariants, i.e., that G is a unitary group whose elements satisfy (3.45).
This restriction to unitary transformations is not essential, but it simplifies
proofs of full reducibility. The results, however, apply as well to the finite-
dimensional reps of noncompact groups, such as the Lorentz group SO(3, 1).

⇓PRELIMINARY
What if a loop diagram cannot be reduced without adding more prim-
itive invariants? PC: credit Steve Giddings

A: By construction, an invariance group leaves invariant the given set of prim-
itives, and no others. Addition of another primitive constraints allowed
transformations and decreases the dimensionality of the invariance group:
in that case you are dealing with a new, different invariance group.
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color basis
projection

operator—(textbf
diagonalizing matrix
matrix!diagonalizing
characteristic equation

What I was alluding to is whether you know that for a given Lie group
(let’s say E6) a loop diagram can be reduced without adding more
primitive invariants? How does one know that one has found all the
primitive invariants?

A:

I am interested in the catalog of independent invariants that can be
formed from a given set of primitive invariants.PC: extend this set of refer-

ences

A: Examples of lists of invariants (“color bases”) and their counting are given
in chapter 7 and refs. [73, 79, 57, 100].

⇑PRELIMINARY

3.5 Projection operators

For M, a hermitian matrix, there exists a diagonalizing unitary matrix C such
that

CMC† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.46)

Here λi �= λj are the r distinct roots of the minimal characteristic polynomial

r∏
i=1

(M − λi1) = 0 (3.47)

(the characteristic equations will be discussed in sect. 6.6).
In the matrix C(M−λ21)C† the eigenvalues corresponding to λ2 are replaced

by zeroes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − λ2

λ1 − λ2

λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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orthogonality!relation
completeness!relationand so on, so the product over all factors (M−λ21)(M−λ31) . . . , with exception

of the (M−λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j �=1

(M − λj1)C† =
∏
j �=1

(λ1 − λj)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

PC: Anders, if in doubt, in
chapter 3 relabel λ, μ → i, j
rep labels in formulas, bird-
tracks

In this way, we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j �=i

M− λj1
λi − λj

, (3.48)

which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (3.49)

The matrices Pi are orthogonal �

PiPj = δijPj , (no sum on j) , (3.50)

and satisfy the completeness relation
r∑

i=1

Pi = 1 . (3.51)

As tr(CPiC
†) = trPi, the dimension of the ith subspace is given by

di = tr Pi . (3.52)

It follows from the characteristic equation (3.47) and the form of the projection
operator (3.48) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (3.53)

Hence, any matrix polynomial f(M) takes the scalar value f(λi) on the Pi sub-
space

f(M)Pi = f(λi)Pi . (3.54)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.
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spectral decomposition
simultaneous observables
observables,

simultaneous
irrep—(textbf
defining!irrep

3.6 Spectral decomposition

Suppose there exist several linearly independent invariant [d×d] hermitian ma-
trices M1,M2, . . ., and that we have used M1 to decompose the d-dimensional
vector space Ṽ = Σ ⊕ Vi. Can M2,M3, . . . be used to further decompose Vi?
This is a standard problem of quantum mechanics (simultaneous observables),
and the answer is that further decomposition is possible if, and only if, the in-
variant matrices commute:ADK: This should be

rephrased. PC: I tweaked
it a little bit now...

[M1,M2] = 0 , (3.55)

or, equivalently, if projection operators Pj constructed from M2 commute with
projection operators Pi constructed from M1,

PiPj = PjPi . (3.56)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λj [M
(i)
2 ,Pj ] = 0 . (3.57)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.
An invariant matrix M induces a decomposition only if its diagonalized form

(3.46) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to
the unit matrix.

In particular, the primitiveness relation (3.40) is a statement that the defining
rep is assumed irreducible.

According to (3.31), an invariant matrix M commutes with group transfor-
mations [G,M] = 0. Projection operators (3.48) constructed from M are poly-
nomials in M, so they also commute with all g ∈ G:

[G,Pi] = 0 (3.58)

(remember that Pi are also invariant [d×d] matrices). Hence, a [d×d] matrix rep
can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i,j

PiGPj =
∑

i

PiGPi =
∑

i

Gi . (3.59)
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irreducible!decomposition
decomposition!irreducible
class algebra
Harter, W.˜G.
projection operator—)
irrep—)
rep!irreducible—)

In the diagonalized rep (3.49), the matrix G has a block diagonal form:

CGC† =

⎡⎣G1 0 0
0 G2 0

0 0
. . .

⎤⎦ , G =
∑

i

CiGiCi . (3.60)

The rep Gi acts only on the di-dimensional subspace Vi consisting of vectors
Piq, q ∈ Ṽ . In this way an invariant [d×d] hermitian matrix M with r distinct
eigenvalues induces a decomposition of a d-dimensional vector space Ṽ into a
direct sum of di-dimensional vector subspaces Vi:

Ṽ
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (3.61)

For a discussion of recursive reduction, consult appendix A. The theory of
class algebras [157, 158, 159] offers a more elegant and systematic way of con-
structing the maximal set of commuting invariant matrices Mi than the sketch
offered in this section.
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propagator
Feynman diagram

Chapter 4

Diagrammatic notation

PC: chapter finished
Some aspects of the representation theory of Lie groups are the subject of this
monograph. However, it is not written in the conventional tensor notation but in-
stead in terms of an equivalent diagrammatic notation. We shall refer to this style
of carrying out group-theoretic calculations as birdtracks (and so do reputable
journals [51]). The advantage of diagrammatic notation will become self-evident,
I hope. Two of the principal benefits are that it eliminates “dummy indices,” and
that it does not force group-theoretic expressions into the 1-dimensional tensor
format (both being means whereby identical tensor expressions can be made to
look totally different). In contradistinction to some of the existing literature in
this manuscript I strive to keep the diagrammatic notation as simple and elegant
as possible.

4.1 Birdtracks

We shall often find it convenient to represent agglomerations of invariant tensors
by birdtracks, a group-theoretical version of Feynman diagrams. Tensors will be
represented by vertices and contractions by propagators.

Diagrammatic notation has several advantages over the tensor notation. Di-
agrams do not require dummy indices, so explicit labeling of such indices is un-
necessary. More to the point, for a human eye it is easier to identify topologically
identical diagrams than to recognize equivalence between the corresponding ten-
sor expressions.

If readers find birdtrack notation abhorrent, they can surely derive all results
of this monograph in more conventional algebraic notations. To give them a sense
of how that goes, we have covered our tracks by algebra in the derivation of the
E7 family, chapter 20, where not a single birdtrack is drawn. It it is like speaking
Italian without moving hands, if you are into that kind of thing.

In the birdtrack notation, the Kronecker delta is a propagator:

δa
b = b a . (4.1)

For a real defining space there is no distinction between V and V̄ , or up and down
indices, and the lines do not carry arrows.

31
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hermitian!conjugation
Any invariant tensor can be drawn as a generalized vertex:

Xα = Xabc
de = X

d
e
a
b
c

. (4.2)

Whether the vertex is drawn as a box or a circle or a dot is a matter of taste.
The orientation of propagators and vertices in the plane of the drawing is likewise
irrelevant. The only rules are as follows:

1. Arrows point away from the upper indices and toward the lower indices; the
line flow is “downward,” from upper to lower indices:

hcd
ab =

b

da

c

. (4.3)

2. Diagrammatic notation must indicate which in (out) arrow corresponds to
the first upper (lower) index of the tensor (unless the tensor is cyclically
symmetric);

Re
abcd =

a b c d e

index is the first index
Here the leftmost

R . (4.4)

3. The indices are read in the counterclockwise order around the vertex:

Xbce
ad =

b

the indices
Order of reading

a

X

e

d

c

. (4.5)

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external lines for the reader’s
convenience, but indices can always be omitted. An internal line implies a sum-
mation over corresponding indices, and for external lines the equivalent points on
each diagram represent the same index in all terms of a diagrammatic equation.

Hermitian conjugation (3.21) does two things:

1. It exchanges the upper and the lower indices, i.e., it reverses the directions
of the arrows.
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projection
operator—(textbf

clebsch—(textbf
2. It reverses the order of the indices, i.e., it transposes a diagram into its

mirror image. For example, X†, the tensor conjugate to (4.5), is drawn as

Xα = Xed
cba =

d
e
a
b
c

X , (4.6)

and a contraction of tensors X† and Y is drawn as

XαYα = X
bp...b1
aq ...a2a1Y

a1a2...aq

b1...bp
= YX . (4.7)

In sects. 3.1–3.2 and here we define the hermitian conjugation and (3.32) matrices
M : V p ⊗ V̄ q → V p ⊗ V̄ q in the multi-index notation

M

... ...

.. . ...

b1

bp
a1

aq

d1

dp

c1

cq

(4.8)

in such a way that the matrix multiplication

N

...
...

M

...
...

...
...

=

... ...

... ...
MN (4.9)

and the trace of a matrix

... ...

... ...

M (4.10)

can be drawn in the plane. Notation in which all internal lines are maximally
crossed at each multiplication [321] is equally correct, but less pleasing to the
eye.

4.2 Clebsch-Gordan coefficients
PC: Anders, if indoubt, in
chapter 4 relabel i, j → λ, μ
rep labels in formulas, bird-
tracks
AJ: Changed labels in bird-
tracks, not in formulas.

Consider the product⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1
1

1
0

0
0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C (4.11)
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clebsch
of the two terms in the diagonal representation of a projection operator (3.49).
This matrix has nonzero entries only in the dλ rows of subspace Vλ. We collect
them in a [dλ × d] rectangular matrix (Cλ)ασ , α = 1, 2, . . . d, σ = 1, 2, . . . dλ:

Cλ =

⎛⎝ (Cλ)11 . . . (Cλ)d1
...

...
(Cλ)ddλ

⎞⎠⎫⎬⎭︸ ︷︷ ︸
d

dλ . (4.12)

The index α in (Cλ)ασ stands for all tensor indices associated with the d =
np+q-dimensional tensor space V p⊗ V̄ q. In the birdtrack notation these indices
are explicit:

(Cλ)σ,
bp...b1
aq ...a2a1 =

b1

aq

λ ... ... . (4.13)

Such rectangular arrays are called Clebsch-Gordan coefficients (hereafter referred
to as clebsches for short). They are explicit mappings V → Vλ. The conjugate
mapping Vλ → V̄ is provided by the product

C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1
1

1
0

0
0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.14)

which defines the [d×dλ] rectangular matrix (Cλ)σα, α = 1, 2, . . . d, σ = 1, 2, . . . dλ:

Cλ =

⎛⎜⎝ (Cλ)11 . . . (Cλ)dλ
1

...
...

(Cλ)dλ
d

⎞⎟⎠
⎫⎪⎬⎪⎭︸ ︷︷ ︸

dλ

d

(Cλ)a1a2...aq

b1...bp
, σ =

b2

aq

1

σ

b

λ...

..
..

. (4.15)

The two rectangular Clebsch-Gordan matrices Cλ and Cλ are related by hermitian
conjugation.

The tensors, which we have considered in sect. 3.10, transform as tensor prod-
ucts of the defining rep (3.14). In general, tensors transform as tensor products
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orthonormality!relation
of various reps, with indices running over the corresponding rep dimensions:

a1 = 1, 2, . . . , d1

a2 = 1, 2, . . . , d2

x
ap+1...ap+q
a1a2...ap where

... (4.16)
ap+q = 1, 2, . . . , dp+q .

The action of the transformation g on the index ak is given by the [dk×dk] matrix
rep Gk.

Clebsches are notoriously index overpopulated, as they require a rep label
and a tensor index for each rep in the tensor product. Diagrammatic notation
alleviates this index plague in either of two ways:

1. One can indicate a rep label on each line:

C
aμaν
aλ , aσ = aμ

aλ

aν

aσ

��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

ν

μ
λ

σ
. (4.17)

(An index, if written, is written at the end of a line; a rep label is written
above the line.)

2. One can draw the propagators (Kronecker deltas) for different reps with
different kinds of lines. For example, we shall usually draw the adjoint rep
with a thin line.

By the definition of clebsches (3.49), the λ rep projection operator can be written
out in terms of Clebsch-Gordan matrices CλCλ:

CλCλ = Pλ , (no sum on i)

(Cλ)a1a2...ap

b1...bq
, α (Cλ)α,

dq...d1
cp...c2c1 = (Pλ)a1a2...dp

b1...bq
,

dq ...d1
cp...c2c1 (4.18)

λ

... ... = λ... ...P .

A specific choice of clebsches is quite arbitrary. All relevant properties of pro-
jection operators (orthogonality, completeness, dimensionality) are independent
of the explicit form of the diagonalization transformation C. Any set of Cλ is
acceptable as long as it satisfies the orthogonality and completeness conditions.
From (4.11) and (4.14) it follows that Cλ are orthonormal:

CλCμ = δμ
λ1 ,

(Cλ)β ,
a1a2...ap

b1...bq
(Cμ) bq ...b1

ap...a2a1 ,
α = δα

β δμ
λ

λ μ

... = μλ
. (4.19)
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completeness!relation
projection operator—)
clebsch—)

Here 1 is the [dλ×dλ] unit matrix, and Cλ’s are multiplied as [dλ×d] rectangular
matrices.

The completeness relation (3.51)∑
λ

CλCλ = 1 , ([d × d] unit matrix) ,

∑
λ

(Cλ)a1a2...ap

b1...bq
, α(Cλ)α,

dq ...d1
cp...c2c1 = δa1

c1 δa2
c2 . . . δ

dq

bq

∑
λ

λ

... ... = ... (4.20)

CλPμ = δμ
λCλ ,

PλCμ = δμ
λCμ , (no sum on λ, μ) , (4.21)

follows immediately from (3.50) and (4.19).

4.3 Zero- and one-dimensional subspaces

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically:

dλ = 0 ⇒ Pλ = λ

... ... = 0 . (4.22)

This follows from (3.49); dλ is the number of 1’s on the diagonal on the right-hand
side. For dλ = 0 the right-hand side vanishes. The general form of Pλ isPC: harmonize with

sect. 3.3.1

Pλ =
r∑

k=1

ckMk , (4.23)

where Mk are the invariant matrices used in construction of the projector op-
erators, and ck are numerical coefficients. Vanishing of Pλ therefore implies a
relation among invariant matrices Mk.

If a projection operator projects onto a 1-dimensional subspace, its expression,
in terms of the clebsches (4.18), involves no summation, so we can omit the
intermediate line

dλ = 1 ⇒ Pλ = ... ... = (Cλ)a1a2...ap

b1...bq
(Cλ) dq ...d1

cp...c2c1 . (4.24)

For any subgroup of SU(n), the reps are unitary, with unit determinant. On
the 1-dimensional spaces, the group acts trivially, G = 1. Hence, if dλ = 1, the
clebsch Cλ in (4.24) is an invariant tensor in V p⊗V̄ q.PC: Add section “Feyn-

mann diagrams for non-
physicists”
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infinitesimal
transformation—(textbf

transformation!infinitesimal—(te
adjoint rep
dimension!adjoint rep
adjoint rep!dimension
dimension!group
group!dimension
dimension!Lie algebra
Lie algebra!dimension
coordinate reflection
reflection, coordinate
flow, generator of
generator!of flow
generator!transformation
transformation!generator

4.4 Infinitesimal transformations

A unitary transformation G infinitesimally close to unity can be written as

Ga
b = δb

a + iDb
a , (4.25)

where D is a hermitian matrix with small elements, |Db
a| � 1. The action of

g ∈ G on the conjugate space is given by

(G†)ba = Ga
b = δa

b − iDa
b . (4.26)

D can be parametrized by N ≤ n2 real parameters. N , the maximal number of
independent parameters, is called the dimension of the group (also the dimension
of the Lie algebra, or the dimension of the adjoint rep).

In this monograph we shall consider only infinitesimal transformations of form
G = 1+ iD, |Da

b | � 1. We do not study the entire group of invariances, but only
the transformations (3.11) connected to the identity. For example, we shall not
consider invariances under coordinate reflections. ⇓PRELIMINARY

1 The generator of an infinitesimal transformation by an infinitesimal step
ε = (ε1, ε2, · · · , εN ) is determined by

iTj = + lim
εj→0+

1
εj

(
eiTjεj − I

)
. (4.27)

(If the flow is finite-dimensional and invertible, Tj is a generator of a group). ⇑PRELIMINARY

The generators of infinitesimal transformations (4.25) are hermitian matrices
and belong to the Da

b ∈ V⊗V̄ space. However, not any element of V⊗V̄ generates
an allowed transformation; indeed, one of the main objectives of group theory is
to define the class of allowed transformations.

In sect. 3.5 we have described the general decomposition of a tensor space
into (ir)reducible subspaces. As a particular case, consider the decomposition of
V ⊗V̄ . The corresponding projection operators satisfy the completeness relation
(4.20):

1 =
1
n

T + PA +
∑
λ�=A

Pλ

δa
dδc

b =
1
n

δa
b δc

d + (PA)ab ,
c
d +

∑
λ�=A

(Pλ)ab ,
c
d

=
1
n

+ +
∑

λ

λ
. (4.28)

If δμ
λ is the only primitive invariant tensor, then V ⊗V̄ decomposes into two sub-

spaces, and there are no other irreducible reps. However, if there are further
1Ref2: The idea of “infinitesimal transformations” as matrices with “small elements” is

sloppy, harking back to the days before calculus was made rigorous through the concept of
limit. Since this is a mathematics textbook rather than a physics one, it would be good to at
least mention that a precise treatment exists.
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adjoint rep
space!adjoint
Pauli matrix
Gell-Mann

lambda@$“lambda$
matrix

primitive invariant tensors, V ⊗ V̄ decomposes into more irreducible reps, indi-
cated by the sum over λ. Examples will abound in what follows. The singlet
projection operator T/n always figures in this expansion, as δa

b , c
d is always one

of the invariant matrices (see the example worked out in sect. 2.2). Furthermore,
the infinitesimal generators Da

b must belong to at least one of the irreducible
subspaces of V ⊗V̄ .

This subspace is called the adjoint space, and its special role warrants intro-
duction of special notation. We shall refer to this vector space by letter A, in
distinction to the defining space V of (3.10). We shall denote its dimension by
N , label its tensor indices by i, j, k . . ., denote the corresponding Kronecker delta
by a thin, straight line,

δij = i j , i, j = 1, 2, . . . , N , (4.29)

and the corresponding clebsches by

(CA)i, a
b =

1√
a
(Ti)ab =

b
i

a
a, b = 1, 2, . . . , n

i = 1, 2, . . . , N .

Matrices Ti are called the generators of infinitesimal transformations. Here a
is an (uninteresting) overall normalization fixed by the orthogonality condition
(4.19):

(Ti)ab (Tj)ba = tr(TiTj) = a δij

= a . (4.30)

The scale of Ti is not set, as any overall rescaling can be absorbed into the
normalization a. For our purposes it will be most convenient to use a = 1 as the
normalization convention. Other normalizations are commonplace. For example,
SU(2) Pauli matrices Ti = 1

2σi and SU(n) Gell-Mann [138] matrices Ti = 1
2λi

are conventionally normalized by fixing a = 1/2:

tr(TiTj) =
1
2
δij . (4.31)

The projector relation (4.18) expresses the adjoint rep projection operators in
terms of the generators:

(PA)ab ,
c
d =

1
a
(Ti)ab (Ti)cd =

1
a

. (4.32)

Clearly, the adjoint subspace is always included in the sum (4.28) (there must
exist some allowed infinitesimal generators Db

a, or otherwise there is no group to
describe), but how do we determine the corresponding projection operator?

The adjoint projection operator is singled out by the requirement that the
group transformations do not affect the invariant quantities. (Remember, the
group is defined as the totality of all transformations that leave the invariants
invariant.) For every invariant tensor q, the infinitesimal transformations G = 1+
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invariance condition
iD must satisfy the invariance condition (3.27). Parametrizing D as a projection
of an arbitrary hermitian matrix H ∈ V ⊗V̄ into the adjoint space, D = PAH ∈
V ⊗V̄ ,

Da
b =

1
a
(Ti)ab εi , εi =

1
a

tr(TiH) , (4.33)

we obtain the invariance condition, which the generators must satisfy: they an-
nihilate invariant tensors:

Tiq = 0 . (4.34)

To state the invariance condition for an arbitrary invariant tensor, we need
to define the generators in the tensor reps. By substituting G = 1+ iε ·T +O(ε2)
into (3.15) and keeping only the terms linear in ε, we find that the generators of
infinitesimal transformations for tensor reps act by touching one index at a time:

(Ti)
a1a2...ap

b1...bq
,
dq ...d1
cp...c2c1 = (Ti)a1

c1 δa2
c2 . . . δ

ap
cp δd1

b1
. . . δ

dq

bq

+δa1
c1 (Ti)a2

c2 . . . δ
ap
cp δd1

b1
. . . δ

dq

bq
+ . . . + δa1

c1 δa2
c2 . . . (Ti)

ap
cp δd1

b1
. . . δ

dq

bq

− δa1
c1 δa2

c2 . . . δ
ap
cp (Ti)d1

b1
. . . δ

dq

bq
− . . . − δa1

c1 δa2
c2 . . . δ

ap
cp δd1

b1
. . . (Ti)

dq

bq
. (4.35)

This forest of indices vanishes in the birdtrack notation, enabling us to visualize
the formula for the generators of infinitesimal transformations for any tensor
representation:
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�� , (4.36)

with a relative minus sign between lines flowing in opposite directions. The reader
will recognize this as the Leibnitz rule.

Tensor reps of the generators decompose in the same way as the group reps
(3.60):

Ti =
∑

λ

CλT
(λ)
i Cλ
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λλ
.

The invariance conditions take a particularly suggestive form in the diagrammatic
notation. Equation (4.34) amounts to the insertion of a generator into all external
legs of the diagram corresponding to the invariant tensor q:

0 = + −
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+ − . (4.37)

The insertions on the lines going into the diagram carry a minus sign relative to
the insertions on the outgoing lines.

Clebsches are themselves invariant tensors. Multiplying both sides of (3.60)
with Cλ and using orthogonality (4.19), we obtain

CλG = GλCλ , (no sum on λ) . (4.38)

The Clebsch-Gordan matrix Cλ is a rectangular [dλ ×d] matrix, hence g ∈ G acts
on it with a [dλ × dλ] rep from the left, and a [d × d] rep from the right. (3.48)
is the statement of invariance for rectangular matrices, analogous to (3.30), the
statement of invariance for square matrices:

Cλ = G†
λCλG ,

Cλ = G†CλGλ . (4.39)

The invariance condition for the clebsches is a special case of (4.37), the
invariance condition for any invariant tensor:

0 = −T
(λ)
i Cλ + CλTi

0 = −
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. (4.40)

The orthogonality condition (4.19) now yields the generators in λ rep in terms of
the defining rep generators:
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. (4.41)

The reality of the adjoint rep. For hermitian generators, the adjoint rep is
real, and the upper and lower indices need not be distinguished; the “propaga-
tor” needs no arrow. For nonhermitian choices of generators, the adjoint rep is
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adjoint rep!reality
Cartan-Killing! form
Cartan!canonical basis
Lie algebra—(textbf
structure constant

complex (“gluon” lines carry arrows), but A and Ā are equivalent, as indices can
be raised and lowered by the Cartan-Killing form,

gij = tr(T †
i Tj) . (4.42)

The Cartan canonical basis D = εiHi + εαEα + ε∗αE−α is an example of a non-
hermitian choice. Here we shall always assume that Ti are chosen hermitian.

4.5 Lie algebra

As the simplest example of computation of the generators of infinitesimal trans-
formations acting on spaces other than the defining space, consider the adjoint
rep. Using (4.41) on the V ⊗ V̄ → A adjoint rep clebsches (i.e., generators Ti),
we obtain

= − (4.43)

(Ti)jk = (Ti)ca(Tk)bc(Tj)ab − (Ti)ca(Tj)bc(Tk)ab .

Our convention is always to assume that the generators Ti have been chosen
hermitian. That means that εi in the expansion (4.33) is real; A is a real vector
space, there is no distinction between upper and lower indices, and there is no
need for arrows on the adjoint rep lines (4.29). However, the arrow on the ad-
joint rep generator (4.43) is necessary to define correctly the overall sign. If we
interchange the two legs, the right-hand side changes sign:

���
���
���

���
���
��� = −

���
���
���

���
���
��� , (4.44)

(the generators for real reps are always antisymmetric). This arrow has no PC: restore here ref to old
sect. 9.A?absolute meaning; its direction is defined by (4.43). Actually, as the right-hand

side of (4.43) is antisymmetric under interchange of any two legs, it is convenient
to replace the arrow in the vertex by a more symmetric symbol, such as a dot:

��
��
��

��
��
�� = ≡

���
���
���
���

��
��
��
��

���
���
���
���

−
����
����
����

����
����
����

���
���
���
���

����
����
����

����
����
����

(Ti)jk ≡ −iCijk = − tr[Ti, Tj ]Tk , (4.45)

and replace the adjoint rep generators (Ti)jk by the fully antisymmetric struc-
ture constants iCijk. The factor i ensures their reality (in the case of hermitian
generators Ti), and we keep track of the overall signs by always reading indices
counterclockwise around a vertex:

− iCijk =

kj

i

(4.46)
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Lie algebra!commutator
commutator!Lie algebra
Jacobi relation—(textbf
birdtracks—)

= − ��
��
��
�� . (4.47)

As all other clebsches, the generators must satisfy the invariance conditions
(4.40):

0 = − + − .

Redrawing this a little and replacing the adjoint rep generators (4.45) by the
structure constants, we find that the generators obey the Lie algebra commutation
relation

i j

− =

TiTj − TjTi = iCijkTk . (4.48)

In other words, the Lie algebra is simply a statement that Ti, the generators
of invariance transformations, are themselves invariant tensors. The invariance
condition for structure constants Cijk is likewise

0 = + + .

Rewriting this with the dot-vertex (4.45), we obtain

− = . (4.49)

This is the Lie algebra commutator for the adjoint rep generators, known as the
Jacobi relation for the structure constants

CijmCmkl − CljmCmki = CimlCjkm . (4.50)

Hence, the Jacobi relation is also an invariance statement, this time the statement
that the structure constants are invariant tensors.
Sign convention for Cijk. A word of caution about using (4.48): vertex Cijk

is an oriented vertex. If the arrows are reversed (matrices Ti, Tj multiplied in
reverse order), the right-hand side acquires an overall minus sign.

4.6 Other forms of Lie algebra commutators

In our calculations we shall never need explicit generators; we shall instead use
the projection operators for the adjoint rep. For rep λ they have the form

(PA)ab ,
β
α = β

������ ���� ����

λb

a α
a, b = 1, 2, . . . , n

α, β = 1, . . . , dλ . (4.51)
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commutator!Lorentz

group
Lie algebra—)
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transformation—)
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The invariance condition (4.37) for a projection operator is
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= 0 . (4.52)

Contracting with (Ti)ab and defining [dλ × dλ] matrices (T a
b )

β
α ≡ (PA)ab ,

β
α, we

obtain

[T a
b , T c

d ] = (PA)ab ,
c
eT

e
d − T c

e (PA)ab ,
e
d
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λ
. (4.53)

This is a common way of stating the Lie algebra conditions for the generators in an
arbitrary rep λ. For example, for U(n) the adjoint projection operator is simply
a unit matrix (any hermitian matrix is a generator of unitary transformation; cf.
chapter 9), and the right-hand side of (4.53) is given by

U(n), SU(n) : [T a
b , T c

d ] = δc
bT

a
d − T c

b δa
d . (4.54)

For the orthogonal groups the generators of rotations are antisymmetric ma-
trices, and the adjoint projection operator antisymmetrizes generator indices:

SO(n) : [Tab, Tcd] =
1
2

{
gacTbd − gadTbc

−gbcTad + gbdTac

}
. (4.55)

Apart from the normalization convention, these are the familiar Lorentz group
commutation relations (we shall return to this in chapter 10).

4.7 Classification of Lie algebras by their primitive
invariants

There is a natural hierarchy to invariance groups, hinted at in sects. 2.1–3.6, that
can perhaps already be grasped at this stage. Suppose we have constructed the
invariance group G1, which preserves primitives (3.39). Adding a new primitive,
let us say a quartic invariant, means that we have imposed a new constraint; only
those transformations of G1 that also preserve the additional primitive constitute
G2, the invariance group of , , . Hence, G2 ⊆ G1 is a subgroup of G1.
Suppose now that you think that the primitiveness assumption is too strong, and
that some quartic invariant, let us say (3.37), cannot be reduced to a sum of tree
invariants (3.41), i.e., it is of form

= + (rest of (3.41)) ,

where is a new primitive, not included in the original list of primitives. By
the above argument only a subgroup G3 of transformations in G2 preserve the
additional invariant, G3 ⊆ G2. If G3 does not exist (the invariant relations are so
stringent that there remain no transformations that would leave them invariant),
the maximal set of primitives has been identified. PC: check for missing text?
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4.8 Irrelevancy of clebsches

As was emphasized in sect. 4.2, an explicit choice of clebsches is highly arbitrary;
it corresponds to a particular coordinatization of the dλ-dimensional subspace
Vλ. For computational purposes clebsches are largely irrelevant. Nothing that a
physicist wants to compute depends on an explicit coordinatization. For example,
in QCD the physically interesting objects are color singlets, and all color indices
are summed over: one needs only an expression for the projection operators
(4.32), not for the Cλ’s separately.

Again, a nice example is the Lie algebra generators Ti. Explicit matrices
are often constructed (Gell-Mann λi matrices, Cartan’s canonical weights); how-
ever, in any singlet they always appear summed over the adjoint rep indices, as
in (4.32). The summed combination of clebsches is just the adjoint rep projec-
tion operator, a very simple object compared with explicit Ti matrices (PA is
typically a combination of a few Kronecker deltas), and much simpler to use in
explicit evaluations. As we shall show by many examples, all rep dimensions,
casimirs, etc. are computable once the projection operators for the reps involved
are known. Explicit clebsches are superfluous from the computational point of
view; we use them chiefly to state general theorems without recourse to any
explicit realizations.

However, if one has to compute noninvariant quantities, such as subgroup
embeddings, explicit clebsches might be very useful. Gell-Mann [138] invented
λi matrices in order to embed SU(2) of isospin into SU(3) of the eightfold way.
Cartan’s canonical form for generators, summarized by Dynkin labels of a rep
(table 7.6) is a very powerful tool in the study of symmetry-breaking chains [315,
127]. The same can be achieved with decomposition by invariant matrices (a
nonvanishing expectation value for a direction in the defining space defines the
little group of transformations in the remaining directions), but the tensorial
technology in this context is underdeveloped compared to the canonical methods.
And, as Stedman [320] rightly points out, if you need to check your calculations
against the existing literature, keeping track of phase conventions is a necessity.

4.9 A brief history of birdtracks

Ich wollte nicht eine abstracte Logik in Formeln darstellen,
sondern einen Inhalt durch geschriebene Zeichen in
genauerer und übersichtlicherer Weise zum Ausdruck
bringen, als es durch Worte möglich ist.
Gottlob Frege

In this monograph, conventional subjects – symmetric group, Lie algebras
(and, to a lesser extent, continuous Lie groups) – are presented in a somewhat
unconventional way, in a flavor of diagrammatic notation that I refer to as “bird-
tracks.” Similar diagrammatic notations have been invented many times before,
and continue to be invented within new research areas. The earliest published
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Frege, F.L.G.
Brauer, R.
Penrose@Penrose, R.

example of diagrammatic notation as a language of computation, not a mere
mnemonic device, appears to be F.L.G. Frege’s 1879 Begriffsschrift [128], at its
time a revolution that laid the foundation of modern logic. The idiosyncratic sym-
bolism was not well received, ridiculed as “incorporating ideas from Japanese.”
Ruined by costs of typesetting, Frege died a bitter man, preoccupied by a deep
hatred of the French, of Catholics, and of Jews. PC: Cartier: find his

“Matemagics” - Electr. J
of Combinatorics (Strass-
bourg). Tribute to Euler
and Feynman. Also find his
March 2001 Bourbaki sem-
inar

According to Abdesselam and Chipalkatti [4], another precursor of diagram-
matic methods was the invariant theory discrete combinatorial structures intro-
duced by Cayley [50], Sylvester [324], and Clifford [61, 185], reintroduced in a
modern, diagrammatic notation by Olver and Shakiban [268, 269].

In his 1841 fundamental paper [169] on the determinants today known as “Ja-
cobians,” Jacobi initiated the theory of irreps of the symmetric group Sk. Schur
used the Sk irreps to develop the representation theory of GL(n; C) in his 1901
dissertation [309], and already by 1903 the Young tableaux [359, 341] (discussed
here in chapter 9) came into use as a powerful tool for reduction of both Sk and
GL(n; C) representations. In quantum theory the group of choice [345] is the
unitary group U(n), rather than the general linear group GL(n; C). Today this
theory forms the core of the representation theory of both discrete and continu-
ous groups, described in many excellent textbooks [242, 64, 351, 139, 26, 11, 319,
133, 134, 232]. Permutations and their compositions lend themselves naturally to
diagrammatic representation developed here in chapter 6. In his extension of the
GL(n; C) Schur theory to representations of SO(n), R. Brauer [31] introduced di-
agrammatic notation for δij in order to represent “Brauer algebra” permutations,
index contractions, and matrix multiplication diagrammatically, in the form de-
veloped here in chapter 10. His equation (39)

(send index 1 to 2, 3 to 4, keep 5, contract ingoing (3 · 4), outgoing (1 · 3)) is the
earliest published proto-birdtrack I know about. PC: 19/11/2004 Niall

MacKay: SO/Sp Brauer’s
algebra.

R. Penrose’s papers are the first (known to me) to cast the Young projection
operators into a diagrammatic form. In this monograph I use Penrose diagram-
matic notation for symmetrization operators [284], Levi-Civita tensors [286], and
“strand networks” [285]. For several specific, few-index tensor examples, dia-
grammatic Young projection operators were constructed by Canning [41], Man-
dula [231], and Stedman [321].

It is quite likely that since Sophus Lie’s days many have doodled birdtracks
in private without publishing them, partially out of a sense of gravitas and in no
insignificant part because preparing these doodles for publications is even today
a painful thing. I have seen unpublished 1960s course notes of J. G. Belinfante [6,
19], very much like the birdtracks drawn here in chapters 6–9, and there are surely
many other such doodles lost in the mists of time. But, citing Frege [129], “the
comfort of the typesetter is certainly not the summum bonum,” and now that the
typesetter is gone, it is perhaps time to move on.

The methods used here come down to us along two distinct lineages, one that
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can be traced to Wigner, and the other to Feynman.
Wigner’s 1930s theory, elegantly presented in his group theory monograph [348],

is still the best book on what physics is to be extracted from symmetries, be it
atomic, nuclear, statistical, many-body, or particle physics: all physical predic-
tions (“spectroscopic levels”) are expressed in terms of Wigner’s 3n-j coefficients,
which can be evaluated by means of recursive or combinatorial algorithms. As
explained here in chapter 5, decomposition (5.8) of tensor products into irre-
ducible reps implies that any invariant number characterizing a physical system
with a given symmetry corresponds to one or several “vacuum bubbles,” trivalent
graphs (a graph in which every vertex joins three links) with no external legs,
such as those listed in table 5.1.

Since the 1930s much of the group-theoretical work on atomic and nuclear
physics had focused on explicit construction of clebsches for the rotation group
SO(3) � SU(2). The first paper recasting Wigner’s theory in graphical form
appears to be a 1956 paper by I. B. Levinson [217], further developed in the
influental 1960 monograph by A. P. Yutsis (later A. Jucys), I. Levinson and
V. Vanagas [360], published in English in 1962 (see also refs. [110, 33]). APC: find Ord-Smith [270];

Levinson referes to him recent contribution to this tradition is the book by G. E. Stedman [321], which
covers a broad range of applications, including the methods introduced in the
1984 version of the present monograph [82]. The pedagogical work of computer
graphics pioneer J. F. Blinn [25], who was inspired by Stedman’s book, also
deserves mention.

The main drawback of such diagrammatic notations is lack of standardiza-
tion, especially in the case of clebsches. In addition, the diagrammatic notations
designed for atomic and nuclear spectroscopy are complicated by various phase
conventions.

R. P. Feynman went public with Feynman diagrams on my second birthday,
April 1, 1948, at the Pocono Conference. The idiosyncratic symbolism (Gle-
ick [142] describes it as “chicken-wire diagrams”) was not well received by Bohr,
Dirac, and Teller, leaving Feynman a despondent man [142, 310, 241]. The first
Feynman diagram appeared in print in Dyson’s article [107, 311] on the equiva-
lence of (at that time) the still unpublished Feynman theory and the theories of
Schwinger and Tomonaga.

If diagrammatic notation is to succeed, it need be not only precise, but also
beautiful. It is in this sense that this monograph belongs to the tradition of
R. P. Feynman, whose sketches of the very first “Feynman diagrams” in his fun-
damental 1948 Q.E.D. paper [120, 311] are beautiful to behold. Similarly, R. Pen-
rose’s [284, 285] way of drawing symmetrizers and antisymmetrizers, adopted here
in chapter 6, is imbued with a very Penrose aesthetics, and even though the print
is black and white, one senses that he had drawn them in color.

In developing the “birdtrack” notation in 1975 I was inspired by Feynman
diagrams and by the elegance of Penrose’s binors [284]. I liked G. ’t Hooft’s 1974
double-line notation for U(n) gluon group-theory weights [165], and have intro-
duced analogous notation for SU(n), SO(n) and Sp(n) in my 1976 paper [73]. In
an influential paper, M. Creutz [69] has applied such notation to the evaluation
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IHX relation
trivalent graph
AS relation
stu@STU relation
Mandelstam variables
birdtracks!named

of SU(n) lattice gauge integrals (described here in chapter 8). The challenge
was to develop diagrammatic notation for the exceptional Lie algebras, and I
succeeded [73], except for E8, which came later.

In the quantum groups literature, graphs composed of vertices (4.45) are
called trivalent. The Jacobi relation (4.49) in diagrammatic form was first pub-
lished [73] in 1976; though it seems surprising, I have not found it in the earlier
literature. This set of diagrams has since been given the moniker “IHX” by
D. Bar-Natan [14]. In his Ph.D. thesis Bar-Natan has also renamed the Lie al-
gebra commutator (4.48) the “STU relation,” by analogy to Mandelstam’s scat-
tering cross-channel variables (s, t, u), and the full antisymmetry of structure
constants (4.47) the “AS relation.”

So why call this “birdtracks” and not “Feynman diagrams”? The difference
is that here diagrams are not a mnemonic device, an aid in writing down an
integral that is to be evaluated by other techniques. In our applications, explicit
construction of clebsches would be superfluous, and we need no phase conventions.
Here “birdtracks” are everything – unlike Feynman diagrams, here all calculations
are carried out in terms of birdtracks, from start to finish. Left behind are
blackboards and pages of squiggles of the kind that made Bernice Durand exclaim:
“What are these birdtracks!?” and thus give them the name.
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Wigner-Eckart
theorem—)

Chapter 5

Recouplings

PC: chapter finished June
11 2002Clebsches discussed in sect. 4.2 project a tensor in V p ⊗ V̄ q onto a subspace λ.

In practice one usually reduces a tensor step by step, decomposing a 2-particle
state at each step. While there is some arbitrariness in the order in which these
reductions are carried out, the final result is invariant and highly elegant: any
group-theoretical invariant quantity can be expressed in terms of Wigner 3- and
6-j coefficients.

5.1 Couplings and recouplings

We denote the clebsches for μ ⊗ ν → λ by

��
��
��
��

��
��
��
��λ

���
���
���
���

μ

ν

, Pλ =
���
���
���

���
���
���λ

���
���
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���
���
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���
���
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���
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��
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��
��
��

��
��
��

μ

ν

. (5.1)

Here λ, μ, ν are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, if μ and ν are irreducible reps, the same clebsches can be used to
project μ ⊗ λ̄ → ν̄

Pν =
dν

dλ
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��
��
��
��
��
��

��
��
��
��

���
���
���
���

μ

ν

λ

, (5.2)

and ν ⊗ λ̄ → μ̄

Pμ =
dμ

dλ ��
��
��
��

��
��
��
��
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��
��
��

���
���
���

���
���
���
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��
��
��

λ

μ

ν . (5.3)

Here the normalization factors come from P 2 = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:

���
���
���
���

���
���
���
���

���
���
���
���

ν

λ

μ

≡ 1
√

aλ
��
��
��
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���
���
���
���

λ ���
���
���
���

ν

μ

. (5.4)
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Gell-Mann
lambda@$“lambda$
matrix

Cartan!roots
Dirac $“gamma$ matrix
completeness!relation

In this definition one has to keep track of the ordering of the lines around the
vertex. If in some context the birdtracks look better with two legs interchanged,
one can use Yutsis’s notation [360]:

��
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��
��

���
���
���
���

−
���
���
���
���

ν

μ
λ ≡

���
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��� ����
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μ

ν

λ
. (5.5)

While all sensible clebsches are normalized by the orthonormality relation
(4.19), in practice no two authors ever use the same normalization for 3-vertices
(in other guises known as 3-j coefficients, Gell-Mann λ matrices, Cartan roots,
Dirac γ matrices, etc). For this reason we shall usually not fix the normalization
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���
���
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ν

σλ = aλ ��
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��

λ σ
, aλ =
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��
��

λ

ν

μ

dλ
, (5.6)

leaving the reader the option of substituting his or her favorite choice (such as
a = 1

2 if the 3-vertex stands for Gell-Mann 1
2λi, etc).

To streamline the discussion, we shall drop the arrows and most of the rep
labels in the remainder of this chapter – they can always easily be reinstated.

The above three projection operators now take a more symmetric form:

Pλ =
1
aλ

λ
μ

ν

Pμ =
1
aμ

μ

λ

ν

Pν =
1
aν μ

ν
λ
. (5.7)

In terms of 3-vertices, the completeness relation (4.20) is

ν

μ

=
∑

λ

dλ
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��
��
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��
��
��

λ

ν

μ
λ

μ

ν
. (5.8)

Any tensor can be decomposed by successive applications of the completeness
relation:

=
∑

λ

1
aλ

λ

=
∑
λ,μ

1
aλ

1
aμ

μ
λ λ

=
∑
λ,μ,ν

1
aλ

1
aμ

1
aν

ν
λ
μ . (5.9)

Hence, if we know clebsches for λ ⊗ μ → ν, we can also construct clebsches for
λ⊗μ⊗ν⊗ . . . → ρ. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme

=
∑
λ,μ,ν

1
aλ

1
aμ

1
aν

ν

μ

λ
. (5.10)
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Clebsch-Gordan!series
recoupling relations
stuvariables@$s,t,u$

variables
Mandelstam variables
3j@3-$j$ coefficient
3j@3-$j$ symbol
phase convention
6j@6-$j$ coefficient
6j@6-$j$ symbol
Wigner!3nj@$3n$-$j$

symbol
3nj@“threenj“ symbol

Consider now a process in which a particle in the rep μ interacts with a
particle in the rep ν by exchanging a particle in the rep ω:

σ ω
ρ ν

μ
. (5.11)

The final particles are in reps ρ and σ. To evaluate the contribution of this
exchange to the spectroscopic levels of the μ-ν particles system, we insert the
Clebsch-Gordan series (5.8) twice, and eliminate one of the sums by the or-
thonormality relation (5.6):

σ ω
ρ ν

μ
=
∑
λ,λ′

dλ

λ
σ

ρ

dλ

μ
λ

ν

σ
ω

λλ
μ

νρ

σ μ

νρ
. (5.12)

By assumption λ, λ′ are irreps, so we have a recoupling relation between the
exchanges in “s” and “t channels”:

������

������

ω

σ μ

ρ ν

=
∑

λ

dλ

μ

λ

σ ω

ρ ν

λ
σ

ρ

μ
λ

ν

μ

ν

σ

ρ λ
. (5.13)

We shall refer to as 3-j coefficients and as 6-j coefficients, and commit
ourselves to no particular normalization convention.

In atomic physics it is customary to absorb into the 3-vertex and define
a 3-j symbol [242, 289, 348](

λ μ ν
α β γ

)
= (−1)ω

1√
λ

ν
μ μ

λ
ν

. (5.14)

Here α = 1, 2, . . . , dλ, etc, are indices, λ, μ, ν rep labels and ω the phase con-
vention. Fixing a phase convention is a waste of time, as the phases cancel in
summed-over quantities. All the ugly square roots, one remembers from quantum
mechanics, come from sticking

√
into 3-j symbols. Wigner [348] 6-j symbols

are related to our 6-j coefficients by{
λ μ ν
ω ρ σ

}
=

(−1)ω√
λ

ν
μ λ

σ
ρ ω

σ
μ

ω
ρ

ν

ρλ

ω
νμ

σ

. (5.15)

The name 3n-j symbol comes from atomic physics, where a recoupling involves
3n angular momenta j1, j2, . . . , j3n (see sect. 14.2).

Most of the textbook symmetries of and relations between 6-j symbols are
obvious from looking at the corresponding diagrams; others follow quickly from
completeness relations.
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52 CHAPTER 5. RECOUPLINGS

vacuum bubbles

Skeletons
Vertex

insertions
Self-energy
insertions

Total
number

1-j 1

3j 1

6-j 2

9-j 5

12-j 16

Table 5.1: Topologically distinct types of Wigner 3n-j coefficients, enumerated by
drawing all possible graphs, eliminating the topologically equivalent ones by hand.
Lines meeting in any 3-vertex correspond to any three irreducible representations
with a nonvanishing Clebsch-Gordan coefficient, so in general these graphs cannot
be reduced to simpler graphs by means of such as the Lie algebra (4.48) and Jacobi
identity (4.49).

If we know the necessary 6-j’s, we can compute the level splittings due to sin-
gle particle exchanges. In the next section we shall show that a far stronger claim
can be made: given the 3- and 6-j coefficients, we can compute all multiparticle
matrix elements.

5.2 Wigner 3n-j coefficients

An arbitrary higher-order contribution to a 2-particle scattering process will give
a complicated matrix element. The corresponding energy levels, crosssections,
etc, are expressed in terms of scalars obtained by contracting all tensor indices;
diagrammatically they look like “vacuum bubbles,” with 3n internal lines. The
topologically distinct vacuum bubbles in low orders are given in table 5.1.PC: recheck table 5.1:

M.Alvarez 3 Dec 2002 -
Dror Bar-Natan calculated
all chord diagrams at a
given order. There are 19
diagrams at order 12.

In group-theoretic literature, these diagrams are called 3n-j symbols, and are
studied in considerable detail. Fortunately, any 3n-j symbol that contains as a
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Wigner-Eckart
theorem—(textbfsubdiagram a loop with, let us say, seven vertices,
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,

PC: recheck: missing text?
can be expressed in terms of 6-j coefficients. Replace the dotted pair of vertices
by the cross-channel sum (5.13):
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Now the loop has six vertices. Repeating the replacement for the next pair of
vertices, we obtain a loop of length five:

=
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. (5.17)

Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of 6-j coefficients. In this way we have expressed the original
3n-j coefficients in terms of 3(n-1)-j coefficients and 6-j coefficients. Repeating
the process for the 3(n-1)-j coefficients, we eventually arrive at the result that

(3n−j) =
∑(

products of ����

��
��
��
��

���� ������

)
. (5.18)

5.3 Wigner-Eckart theorem

For concreteness, consider an arbitrary invariant tensor with four indices:

T =

ρ
ω

ν
μ

, (5.19)

where μ, ν, ρ and ω are rep labels, and indices and line arrows are suppressed.
Now insert repeatedly the completeness relation (5.8) to obtain

ρ
ω

ν
μ

=
∑
α

1
aα

α
������

��
��
��
��
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reduced matrix
elements—(textbf

Schur’s Lemma
Yutsis, A.˜P.
Levinson, I.˜B.
Vanagas, V.˜V.
vacuum bubbles

=
∑
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1
aαaβ
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ω
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ρ

. (5.20)

In the last line we have used the orthonormality of projection operators – as in
(5.13) or (5.23).

In this way any invariant tensor can be reduced to a sum over clebsches
(kinematics) weighted by reduced matrix elements:

〈T 〉α =
���� ������

α
. (5.21)

This theorem has many names, depending on how the indices are grouped. If T
is a vector, then only the 1-dimensional reps (singlets) contribute

Ta =
singlets∑

λ
���� μ

α

a

. (5.22)

If T is a matrix, and the reps α, μ are irreducible, the theorem is called Schur’s
Lemma (for an irreducible rep an invariant matrix is either zero, or proportional
to the unit matrix):

T
bμ
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λ μ =
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δλμ . (5.23)

If T is an “invariant tensor operator,” then the theorem is called the Wigner-
Eckart theorem [348, 108]:
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(assuming that μ appears only once in λ⊗μ Kronecker product). If T has many
indices, as in our original example (5.19), the theorem is ascribed to Yutsis,
Levinson, and Vanagas [360]. The content of all these theorems is that they
reduce spectroscopic calculations to evaluation of “vacuum bubbles” or “reduced
matrix elements” (5.21).

The rectangular matrices (Cλ)ασ from (3.27) do not look very much like the
clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart

P. Cvitanović: Group Theory, recup, last edited June 28, 2007 printed October 14, 2007



5.3. WIGNER-ECKART THEOREM 55

bra-ket formalism
Wigner-Eckart theorem
invariant!tensor operator
tensor!operator!invariant
reduced matrix

elements—)

theorem in its birdtrack version (5.24). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch for λ1 ⊗ λ2 → λ is written as

λ1

λ2

��
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��
��

��
��
��
��

��
��
��
��

λ
m

m1

m2

= 〈λ1λ2λm|λ1m1λ2m2〉 . (5.25)

Representing the [dλ × dλ] rep of a group element g diagrammatically by a black
triangle, PC: switch to (2.1) nota-

tion

Dλ
m,m′ , (g) = m’m , (5.26)

we can write the Clebsch-Gordan series (3.49) as
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〈λ1m1λ2m2|λ1λ2λ̃m̃〉Dλ̃
m̃m̃1

(g)〈λ1λ2λ̃m̃1|λ1m
′
1λ2m

′
2〉 .

An “invariant tensor operator” can be written as

〈λ2m2|T λ
m|λ1m1〉 = 2λ

���
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λ

λ m

1
1 . (5.27)

In the bra-ket formalism, the Wigner-Eckart theorem (5.24) is written as

〈λ2m2|T λ
m|λ1m1〉 = 〈λλ1λ2m2|λmλ1m1〉T (λ, λ1λ2) , (5.28)

where the reduced matrix element is given by

T (λ, λ1λ2) =
1

dλ2

∑
n1,n2,n

〈λnλ1n1|λλ1λ2n2〉〈λ2n2|T λ
n |λ1n1〉

=
1

dλ2

1λ
��
��
��

��
��
��
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��
��
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��
��
��
��

λ

λ2

. (5.29)

We do not find the bra-ket formalism convenient for the group-theoretic calcula-
tions that will be discussed here.
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56 CHAPTER 5. RECOUPLINGS
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S@$S˙p$ symmetric

group—(textbf
symmetric!group—(textbf
group!symmetric—(textbf
Kronecker delta
index permutation
plethysmChapter 6

Permutations

PC: chapter finished

The simplest example of invariant tensors is the products of Kronecker deltas.
On tensor spaces they represent index permutations. This is the way in which the
symmetric group Sp, the group of permutations of p objects, enters into the theory
of tensor reps. In this chapter, I introduce birdtracks notation for permutations,
symmetrizations and antisymmetrizations and collect a few results that will be
useful later on. These are the (anti)symmetrization expansion formulas (6.10) and
(6.19), Levi-Civita tensor relations (6.28) and (6.30), the characteristic equations
(6.50), and the invariance conditions (6.54) and (6.56). The theory of Young
tableaux (or plethysms) is developed in chapter 9.

6.1 Symmetrization

Operation of permuting tensor indices is a linear operation, and we can represent
it by a [d × d] matrix:

σβ
α = σ

a1a2...aq

b1...bp
,
dp...d1
cq...c2c1 . (6.1)

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

identity: 1ab,
cd = δd

aδc
b =

flip: σ(12)ab,
cd = δc

aδ
d
b = . (6.2)

For 3-index tensors, there are six permutations:

1a1a2a3 ,
b3b2b1 = δb1

a1
δb2
a2

δb3
a3

=

σ(12)a1a2a3
,b3b2b1 = δb2

a1
δb1
a2

δb3
a3

=

σ(23) = , σ(13) =

σ(123) = , σ(132) = . (6.3)
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symmetrization operator
projection operator Subscripts refer to the standard permutation cycles notation. For the remainder

of this chapter we shall mostly omit the arrows on the Kronecker delta lines.
The symmetric sum of all permutations,

Sa1a2...ap ,
bp...b2b1 =

1
p!

{
δb1
a1

δb2
a2

. . . δ
bp
ap + δb1

a2
δb2
a1

. . . δ
bp
ap + . . .

}
S =

...

=
1
p!

{

...

+

...

+

...

+ . . .

}
, (6.4)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn
across p lines will always denote symmetrization of the lines crossed. A factor
of 1/p! has been introduced in order for S to satisfy the projection operator
normalization

S2 = S

... = ... . (6.5)

A subset of indices a1, a2, . . . aq, q < p can be symmetrized by symmetrization
matrix S12...q

(S12...q)a1a2...aq ...ap ,
bp...bq ...b2b1 =

1
q!

{
δb1
a1

δb2
a2

. . . δ
bq
aq + δb1

a2
δb2
a1

. . . δ
bq
aq + . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =
...

... ...

2
1

q . (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...
......

...

... =

... ...

... ... . (6.7)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

...

=

...

. (6.8)

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition (6.4) of the symmetrization operator as the sum of all p! per-

mutations is inconvenient for explicit calculations; a recursive definition is more
useful:

Sa1a2...ap ,
bp...b2b1 =

1
p

{
δb1
a1

Sa2...ap ,
bp...b2 +δb1

a2
Sa1a3...ap ,

bp...b2 + . . .
}

S =
1
p

(
1 + σ(21) + σ(321) + . . . + σ(p...321)

)
S23...p

...

=
1
p

{

...

+

...

+

...

+ . . .

}
, (6.9)
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antisymmetrization
operatorwhich involves only p terms. This equation says that if we start with the first

index, we end up either with the first index, or the second index and so on. The
remaining indices are fully symmetric. Multiplying by S23 . . . p from the left, we
obtain an even more compact recursion relation with two terms only:

...

=
1
p

(

...

+ (p − 1)

... ... ...

)
. (6.10)

As a simple application, consider computation of a contraction of a single pair of
indices:

p-2
-1p

...

1
=

1
p

{

... + (p − 1) ... ... ...

}
=

n + p − 1
p ...

Sapap−1...a1 ,
b1...bp−1ap =

n + p − 1
p

Sap−1...a1 ,
b1...bp−1 . (6.11)

For a contraction in (p − k) pairs of indices, we have

p

k

1

... ...
...

...

...

...
...

=
(n + p − 1)!k!
p!(n + k − 1)! k

1
... ... ...

. (6.12)

The trace of the symmetrization operator yields the number of independent com-
ponents of fully symmetric tensors:

dS = tr S = ... =
n + p − 1

p

...

=
(n + p − 1)!
p!(n − 1)!

. (6.13)

For example, for 2-index symmetric tensors,

dS = n(n + 1)/2 . (6.14)
DG: PC’s page

6.2 Antisymmetrization

The alternating sum of all permutations,

Aa1a2...ap ,
bp...b2b1 =

1
p!

{
δb1
a1

δb2
a2

. . . δ
bp
ap − δb1

a2
δb2
a1

. . . δ
bp
ap + . . .

}
A =

...

=
1
p!

{

...

−

...

+

...

− . . .

}
, (6.15)
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yields the antisymmetrization projection operator A. In birdtrack notation, an-
tisymmetrization of p lines will always be denoted by a black bar drawn across
the lines. As in the previous section

A2 = A

... = ...

...

=

...

(6.16)

and in addition

SA = 0

... = 0

...

=
...

= 0 . (6.17)

A transposition has eigenvalue −1 on the antisymmetric tensor space

σ(i,i+1)A = −A

...

= −

...

. (6.18)

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of −1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often
computationally convenient

...

=
1
p

{

...

−

...

+

...

− . . .

}
=

1
p

{

...

− (p − 1)

...... ...

}
. (6.19)

This is useful for computing contractions such as

p
p−2

−1

...

1

...

=
n − p + 1

p ...

Aaap−1...a1 ,
b1...bp−1a =

n − p + 1
p

Aap−1...a1 ,
b1...bp−1 . (6.20)

The number of independent components of fully antisymmetric tensors is given
by

dA = tr A = ... =
n − p + 1

p

n − p + 2
p − 1

. . .
n

1

=
{

n!
p!(n−p)! , n ≥ p

0 , n < p
. (6.21)
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Levi-Civita
tensor—(textbf

Penrose!Levi-Civita
tensor

For example, for 2-index antisymmetric tensors the number of independent com-
ponents is

dA =
n(n − 1)

2
. (6.22)

Tracing (p − k) pairs of indices yields

+1

...

...

k

...

... ...

p

k

1

... ...

=
k!(n − k)!
p!(n − p)! ...

k...

1

...

. (6.23)

The antisymmetrization tensor Aa1a2...,
bp...b2b1 has nonvanishing components, only

if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensor A has no nonvanishing components:

...

1

...

2

p

= 0 if p > n . (6.24)

This identity implies that for p > n, not all combinations of p Kronecker deltas
are linearly independent. A typical relation is the p = n + 1 case

0 =
+1n1 ...

...

2

=
...

−
...

+
...

− . . . . (6.25)

For example, for n = 2 we have

n = 2 : 0 =

c

f

ba

e d

− − + + − (6.26)

0 = δf
aδe

bδ
d
c − δf

aδe
cδ

d
b − δf

b δe
aδ

d
c + δf

b δe
cδ

d
a + δf

c δe
aδ

d
b − δf

c δe
bδ

d
a .

6.3 Levi-Civita tensor

An antisymmetric tensor, with n indices in defining dimension n, has only one
independent component (dn = 1 by (6.21)). The clebsches (4.17) are in this case
proportional to the Levi-Civita tensor:

(CA)1 ,an...a2a1 = Cεan...a2a1 =
1

a2

an

a

...

(CA)a1a2...an
,1 = Cεa1a2...an =

1
a2

an

a

...

, (6.27)

with ε12...n = ε12...n = 1. This diagrammatic notation for the Levi-Civita tensor
was introduced by Penrose [284]. The normalization factors C are physically
irrelevant. They adjust the phase and the overall normalization in order that
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the Levi-Civita tensors satisfy the projection operator (4.18) and orthonormality
(4.19) conditions:

1
N !

εb1b2...bnεa1a2...an = Ab1b2...bn ,an...a2a1

...... = ...

1
N !

εa1a2...anεa1a2...an = δ11 = 1 ,

...

= 1 . (6.28)

With our conventions,

C =
in(n−1)/2

√
n!

. (6.29)

The phase factor arises from the hermiticity condition (4.15) for clebsches (re-
member that indices are always read in the counterclockwise order around a
diagram),(

1
a2

an

a

...

)∗
=

1
a2

an

a

...

i−φεa1a2...an = i−φεan...a2a1 .

Transposing the indices

εa1a2...an = −εa2a1...an = . . . = (−1)n(n−1)/2εan...a2a1 ,

yields φ = n(n − 1)/2. The factor 1/
√

n! is needed for the projection operator
normalization (3.50).

Given n dimensions we cannot label more than n indices, so Levi-Civita ten-
sors satisfy

0 =

1+

...

...

...1 2 3 n

. (6.30)

For example, for

n = 2 : 0 = − +

0 = δd
aεbc − δd

b εac + δd
c εab . (6.31)

This is actually the same as the completeness relation (6.28), as can be seen by
contracting (6.31) with εcd and using

n = 2 : = =
1
2

εacε
bc = δb

a . (6.32)
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Levi-Civita tensor—)
This relation is one of a series of relations obtained by contracting indices in the
completeness relation (6.28) and substituting (6.23):

εan...ak+1bk...b1ε
an...ak+1ak ...a1 = k!(n − k)!Abk ...b1 ,

a1...ak

...

......

=
k!(n − k)!

n!

...

. (6.33)

Such identities are familiar from relativistic calculations (n = 4):

εabcdε
agfe = δgfe

bcd , εabcdε
abfe = 2δfe

cd

εabcdε
abce = 6δe

d , εabcdε
abcd = 24 , (6.34)

where the generalized Kronecker delta is defined by

1
p!

δ
b1b2...bp
a1a2...ap = Aa1a2...ap ,

bp...b2b1 . (6.35)

6.4 Determinants

Consider an [np×np] matrix Mα
β defined by a direct product of [n× n] matrices

M b
a

Mα
β = Ma1a2...ap ,

bp...b2b1 = M b1
a1

M b2
a2

. . . M
bp
ap

M =

... M =

...

, (6.36)

where

M b
a = ba . (6.37)

The trace of the antisymmetric projection of Mα
β is given by

trp AM = Aabc...d,
d′...c′b′a′

Ma
a′M b

b′ . . . M
d
d′

=
...

... . (6.38)

The subscript p on trp(. . .) distinguishes the traces on [np × np] matrices Mβ
α

from the [n × n] matrix trace tr M . To derive a recursive evaluation rule for
trp AM , use (6.19) to obtain

... =
1
p

{
... − (p − 1) ...

}
. (6.39)
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trace!birdtrack
determinant!birdtrack Iteration yields

...

... =
p−1

...

... −
...

... p−2
+ . . . ±

...

∓

P
M

...

.(6.40)

Contracting with M b
a, we obtain

...

... =

...

...

− ...

...

. . . − (−1)p ...

trp AM =
1
p

p∑
k=1

(−1)k−1 (trp−k AM) tr Mk . (6.41)

This formula enables us to compute recursively all trp AM as polynomials in
traces of powers of M :

tr0 AM = 1 , tr1 AM = = tr M (6.42)

=
1
2

(
−

)

tr2 AM =
1
2
{
(tr M)2 − tr M2

}
(6.43)

=
1
3

{
− +

}

tr3 AM =
1
3!
{
(tr M)3 − 3(tr M)(tr M2) + 2 tr M3

}
(6.44)

=
1
4

{
− + −

}

tr4 AM =
1
4!
{
(tr M)4 − 6(tr M)2 tr M2

+ 3(tr M2)2 + 8 tr M3 tr M − 6 tr M4
}

. (6.45)

For p = n (M b
a are [n×n] matrices) the antisymmetrized trace is the determinant

detM = trn AM = Aa1a2...an ,bn...b2b1 Ma1
b1

Ma2
b2

. . . Man
bn

. (6.46)
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characteristic equation
characteristic equation
symmetric!tensors
tensor!fully symmetric

The coefficients in the above expansions are simple combinatoric numbers. A
general term for (tr M �1)α1 · · · (tr M �s)αs , with α1 loops of length �1, α2 loops of
length �2 and so on, is divided by the number of ways in which this pattern may
be obtained:

�α1
1 �α2

2 . . . �αs
s α1!α2! . . . αs! . (6.47)

6.5 Characteristic equations

We have noted that the dimension of the antisymmetric tensor space is zero for
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms
of the antisymmetrization operator this is given by the identity

A = 0 if p > n . (6.48)

This trivial identity has an important consequence: it guarantees that any [n×n]
matrix satisfies a characteristic (or Hamilton-Cayley or secular) equation. Take
p = n + 1 and contract with M b

a n index pairs of A:

Aca1a2...an ,bn...b2b1d Ma1
b1

Ma2
b2

. . . Man
bn

= 0
dc

...
...

= 0 . (6.49)

We have already expanded this in (6.40). For p = n + 1 we obtain the character-
istic equation

0 =
n∑

k=0

(−1)k(trn−k AM)Mk , (6.50)

= Mn − (tr M)Mn−1 + (tr2 AM) Mn−2 − . . . + (−1)n (detM)1 .

6.6 Fully (anti)symmetric tensors

We shall denote a fully symmetric tensor by a small circle (white dot)

dabc...f =
dcba

...

...

. (6.51)

A symmetric tensor dabc...d = dbac...d = dacb...d = . . . satisfies

Sd = d

. ..

...
=

...

...
. (6.52)
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symmetric!tensors,
invariance

invariance
condition!symmetric
tensor

antisymmetric tensor
tensor!fully

antisymmetric
invariance condi-

tion!antisymmetric
tensor

permutations—)
S@$S˙p$ symmetric

group—)
symmetric!group—)
group!symmetric—)
vanishing tensors
tensor!vanishing

If this tensor is also an invariant tensor, the invariance condition (4.37) can be
written as

0 = + + = + +

= p (p = number of indices) . (6.53)

Hence, the invariance condition for symmetric tensors is

0 =
...

. ..
. (6.54)

The fully antisymmetric tensors with odd numbers of legs will be denoted by
black dots

fabc...d =
dcba

...

...

, (6.55)

with the invariance condition stated compactly as

0 =
...

...

. (6.56)

If the number of legs is even, an antisymmetric tensor is anticyclic,

fabc...d = −fbc...da , (6.57)

and the birdtrack notation must distinguish the first leg. A black dot is inade-
quate for the purpose. A bar, as for the Levi-Civita tensor (6.27), or a semicircle
for the symplectic invariant introduced below in (12.3), and fully skew-symmetric
invariant tensors investigated in (15.27)

fab...c = ... , fab...c = ... (6.58)

or a similar notation fixes the problem.

6.7 Identically vanishing tensors

Noting that a given group-theoretic weight vanishes identically is often an impor-
tant step in a birdtrack calculation. Some examples arePC: thank Adele for elim-

inating the wrong identity
refeq6.63a

≡ 0 , ≡ 0 , (6.59)

≡ 0 , ≡ 0 . (6.60)
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In graph theory [271, 296] the left graph in (6.59) is known as the Kuratowsky
graph, and the right graph in (6.60) as the Peterson graph. PC: recheck vanishing of

the Peterson graph

≡ 0 , ≡ 0 , ≡ 0 , (6.61)

≡ 0 , ≡ 0 , (6.62)

≡ 0 , ≡ 0 . (6.63)

The above identities hold for any antisymmetric 3-index tensor; in particular,
they hold for the Lie algebra structure constants iCijk. They are proven by
mapping a diagram into itself by index transpositions. For example, interchange
of the top and bottom vertices in (6.59) maps the diagram into itself, but with
the (−1)5 factor.

From the Lie algebra (4.48) it also follows that for any irreducible rep we have

��
��
��
��

��
��
��
��

��
��
��
��

= 0 , ���
���
���
���

������

���
���
���
���

��������
= 0 . (6.64)
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casimir—(textbf
Cartan-Killing!

classification

Chapter 7

Casimir operators

The construction of invariance groups, developed elsewhere in this monograph,
is self-contained, and none of the material covered in this chapter is necessary
for understanding the remainder of the monograph. We have argued in sect. 5.2
that all relevant group-theoretic numbers are given by vacuum bubbles (reduced
matrix elements, 3n-j coefficients, etc), and we have described the algorithms for
their evaluation. That is all that is really needed in applications.

However, one often wants to cross-check one’s calculation against the existing
literature. In this chapter we discuss why and how one introduces casimirs (or
Dynkin indices), we construct independent Casimir operators for the classical
groups and finally we compile values of a few frequently used casimirs.

Our approach emphasizes the role of primitive invariants in constructing reps
of Lie groups. Given a list of primitives, we present a systematic algorithm for
constructing invariant matrices Mi and the associated projection operators (3.48).

In the canonical, Cartan-Killing approach one faces a somewhat different
problem. Instead of the primitives, one is given the generators Ti explicitly and
no other invariants. Hence, the invariant matrices Mi can be constructed only
from contractions of generators; typical examples are matrices

M2 =
��
��
��
��

μ
, M4 =

σ

���
���
���
���

��
��
��
�� μ , . . . , (7.1)

where σ, μ could be any reps, reducible or irreducible. Such invariant matrices
are called Casimir operators.

What is a minimal set of Casimir operators, sufficient to reduce any rep to its
irreducible subspaces? Such sets can be useful, as the corresponding r Casimir
operators uniquely label each irreducible rep by their eigenvalues λ1, λ2, . . . λr.

The invariance condition for any invariant matrix (3.31) is

0 = [Ti,M ] =

��
��
��
��

��
��
��
��

μ
−

��
��
��
��

��
��
��
��

μ

69
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so all Casimir operators commute PC: missing arrows i

M2M4 =
μ

=
μ

= M4M2, etc ,

and, according to sect. 3.6, can be used to simultaneously decompose the rep μ.
If M1,M2 . . . have been used in the construction of projection operators (3.48),
any matrix polynomial f(M1,M2 . . .) takes value f(λ1, λ2, . . .) on the irreducible
subspace projected by Pi, so polynomials in Mi induce no further decomposi-
tions. Hence, it is sufficient to determine the finite number of Mi’s that form
a polynomial basis for all Casimir operators (7.1). Furthermore, as we show in
the next section, it is sufficient to restrict the consideration to the symmetrized
casimirs. This observation enables us to explicitly construct, in sect. 7.2, a set of
independent casimirs for each classical group.

Exceptional groups pose a more difficult challenge, partially met here in a
piecemeal fashion in chapters on each of the exceptional groups. For a definitive,
systematic calculation of all casimirs for all simple Lie groups, consult van Rit-
bergen, Schellekens, and Vermaseren [297].

7.1 Casimirs and Lie algebra

There is no general agreement on a unique definition of a Casimir operator. We
could choose to call the trace of a product of k generators

tr(TiTj . . . Tk) =
��
��
��

��
��
��

i

.
j

k

.
.

.

, (7.2)

a kth order casimir. With such definition,

tr(TjTi . . . Tk) =
��
��
��
��

j

i k

.
.

. .

would also be a casimir, independent of the first one. However, all traces of Ti’s
that differ by a permutation of indices are related by Lie algebra. For example,

.

��
��
��
��

. .
=

.

��
��
��
��

. .
−

��
��
��
��

.

���
���
���
���

. .
. (7.3)

The last term involves a (k-1)th order casimir and is antisymmetric in the i, j
indices. Only the fully symmetrized traces

hij...k ≡ 1
p!

∑
perm

tr(TiTj . . . Tk) =
��
��
��
��

...

... (7.4)
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casimir!symmetrized
characteristic equationare not affected by the Lie algebra relations. Hence from now on, we shall use the

term “casimir” to denote symmetrized traces (ref. [252] follows the same usage,
for example). Any unsymmetrized trace tr(TiTj . . . Tk) can be expressed in terms
of the symmetrized traces. For example, using the symmetric group identity (see
fig. 9.1)

= +
������������
������������
������������
������������ +

4
3

�������
�������
�������
������� +

4
3

��������
��������
��������
��������

, (7.5)

the Jacobi identity (4.49) and the dijk definition (9.87), we can express the trace
of four generators in any rep of any semisimple Lie group in terms of the quartic
and cubic casimirs:

��
��
��
��

=

���
���
���
���

+
1
2

+
1
2

+
1
2

+
1
6

+
1
6

. (7.6)

In this way, an arbitrary kth order trace can be written as a sum over tree contrac-
tions of casimirs. The symmetrized casimirs (7.4) are conveniently manipulated
as monomial coefficients:

tr Xk = hij...m xixj . . . xm. (7.7)

For a rep λ,X is a [dλ × dλ] matrix X = xiTi, where xi is an arbitrary N -
dimensional vector. We shall also use a birdtrack notation (6.37):

Xa
b = ba =

∑
i

xi ��
��
��

��
��
��

ba

i

. (7.8)

The symmetrization (7.4) is automatic

tr Xk = ... =
∑
ij···k

��
��
��
��

j ki ...

... xixj . . . xk =
∑
ij···k

i

��
��
��
��

kj ...

... xixj . . . xk . (7.9)

7.2 Independent casimirs

Not all tr Xk are independent. For an n-dimensional rep a typical relation relating
various tr Xk is the characteristic equation (6.50):

Xn = (tr X)Xn−1 − (tr2 AX)Xn−2 + . . . ± (det X). (7.10)

Scalar coefficients trk AX are polynomials in tr Xm, computed in sect. 6.4. The
characteristic equation enables us to express any Xp, p ≥ n in terms of the matrix
powers Xk, k < n and the scalar coefficients tr Xk, k ≤ n. Therefore, if a group
has an n-dimensional rep, it has at most n independent casimirs,

��
��
��
��

,

��
��
��
��

,

��
��
��
��

,

���
���
���
���

, . . . ...

��
��
��
��

...1 2 n
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son@$SO(n)$!casimirs
skew-symmetric

invariant
son@$SO(n)$!casimirs
Levi-Civita tensor

corresponding to tr X, tr X2, tr X3, . . . tr Xn.
For a simple Lie group, the number of independent casimirs is called the

rank of the group and is always smaller than n, the dimension of the lowest-
dimensional rep. For example, for all simple groups trTi = 0, the first casimir
is always identically zero. For this reason, the rank of SU(n) is n − 1, and the
independent casimirs are

SU(n) :
��
��
��
��

,

��
��
��
��

,

���
���
���
���

, . . . , ...

��
��
��
��

...1 2 n

. (7.11)

The defining reps of SO(n), Sp(n), G2, F4, E7 and E8 groups have an in-
vertible bilinear invariant gab, either symmetric or skew-symmetric. Inserting
δc
a = gabg

bc any place in a trace of k generators, and moving the tensor gab

through the generators by means of the invariance condition (10.5), we can re-
verse the defining rep arrow:

...

��
��
��
��

����
����
����

����
����
���� =

��
��
��
��

...
���
���
���

���
���
��� = − ���

���
���

���
���
���

��������

...
= . . . = (−1)k

...

��
��
��
��

���
���
���

���
���
���

. (7.12)

Hence for the above groups, tr Xk = 0 for k odd, and all their casimirs are of
even order.

The odd and the even-dimensional orthogonal groups differ in the orders of
independent casimirs. For n = 2r + 1, there are r independent casimirs

SO(2r + 1) :
��
��
��

��
��
��

,

���
���
���

���
���
���

, . . . ,

r

��
��
��

��
��
��

1 ...2

...

2

. (7.13)

For n = 2r, a symmetric invariant can be formed by contracting r defining
reps with a Levi-Civita tensor (the adjoint projection operator (10.13) is anti-
symmetric):

Ir(x) = ... . (7.14)

tr X2r is not independent, as by (6.28), it is contained in the expansion of Ir(x)2

Ir(x)2 = ...... = ... ...

�
r21 2

��
��
��
��

...

+ . . . . (7.15)

Hence, the r independent casimirs for even-dimensional orthogonal groups are

SO(2r) :
��
��
��
��

,

���
���
���
���

, . . . ,

��
��
��
��

1 2

...

... r-2)(2

,
���
���
���
���

��
��
��
��

�����������������������
�����������������������
�����������������������
�����������������������

2 r...1

��
��
��

��
��
��

...
. (7.16)
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spn@$Sp(n)$!casimirs
Betti numberAr 2, 3, . . . , r + 1 ∼ SU(r + 1)

Br 2, 4, 6, . . . , 2r ∼ SO(2r + 1)
Cr 2, 4, 6, . . . , 2r ∼ Sp(2r)
Dr 2, 4, . . . , 2r − 2, r ∼ SO(2r)
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

Table 7.1: Betti numbers for the simple Lie groups.

For Sp(2r) there are no special relations, and the r independent casimirs are
tr X2k, 0 < l ≤ r;

Sp(2r) :
��
��
��
��

,

���
���
���
���

, . . . ,

r

��
��
��
��

1 ...2

...

2

. (7.17)

PC: find refeq 4.29, refeq
4.32 refsect 8.GThe characteristic equation (7.10), by means of which we count the independent

casimirs, applies to the lowest-dimensional rep of the group, and one might worry
that other reps might be characterized by further independent casimirs. The
answer is no; all casimirs can be expressed in terms of the defining rep. For
SU(n), Sp(n) and SO(n) tensor reps this is obvious from the explicit form of the
generators in higher reps (see sect. 9.4 and related results for Sp(n) and SO(n));
they are tensor products of the defining rep generators and Kronecker deltas, and
a higher rep casimir always reduces to sums of the defining rep casimirs, times
polynomials in n (see examples of sect. 9.7).

For the exceptional groups, cubic and higher defining rep invariants enter, and
the situation is not so trivial. We shall show below, by explicit computation, that
tr X3 = 0 for E6 and tr X4 = c(tr X2)2 for all exceptional groups. We shall also
prove the reduction to the 2nd- and 6th-order casimirs for G2 in sect. 16.4 and
partially prove the reduction for other exceptional groups in sect. 18.8. The orders
of all independent casimirs are known [30, 291, 135, 54] as the Betti numbers,
listed here in table 7.1. There are too many papers on computation of casimirs
to even attempt a survey here; we recommend ref. [297].

7.3 Adjoint rep casimirs

For simple Lie algebras the Cartan-Killing bilinear form (4.42) is proportional to
δij , so by the argument of (7.12) all adjoint rep casimirs are even. In addition,
the Jacobi identity (4.49) relates a loop to a symmetrized trace together with a
set of tree contractions of lower casimirs, linearly indepenent under applications
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Cartan-Killing! form
Wigner!$6j$ coefficient of the Jacobi identity. For example, we have from (7.6)

���
���
���
���

=

��
��
��
��

+
1
6

(
+

)
. (7.18)

The numbers of linearly independent tree contractions are discussed in ref. [73].PC: which section?

7.4 Casimir operators

Most physicists would not refer to trXk as a casimir. Casimir’s [49] quadratic
operator and its generalizations [291] are [dμ × dμ] matrices:

(Ip)ba =
��
��
��

��
��
��

���
���
���
���

λ

...

...a b
μ

21 p

= [trλ(Tk . . . TiTj)] (TiTj . . . Tk)ba. (7.19)

We have shown in sect. 5.2 that all invariants are reducible to 6j coefficients.
Ip’s are particularly easy to express in terms of 6j’s. Define

Mα
b , μ

β = ���
���
���
���

���
���
���
���a

μ
b

βα λ

α, β = 1, . . . , dλ , a, b = 1, 2, . . . , dμ . (7.20)

Inserting the complete Clebsch-Gordan series (5.8) for λ ⊗ μ, we obtain

M =
∑

ρ

���
���
���
���

���
���
���
���

����
����
����

����
����
������

��
��
��

��
��
��
��

���
���
���

���
���
��� ��

��
��
��

λ

μ

ρ λ

μ

ρ

μ

λ
=
∑

ρ

ρ

λ
μ μ

λ

dρ

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��
��

μ μ

ρ λλ
. (7.21)

The eigenvalues of M are Wigner’s 6j coefficients (5.15). It is customary to
express these 6j’s in terms of quadratic Casimir operators by using the invariance
condition (4.41):

���
���
���
���

ρ
=

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

ρ

μ

λ − 2
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

ρ

μ

λ

+
��
��
��

��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

μ
λ ρ

C2(ρ)
��
��
��
��

ρ
= C2(λ)

��
��
��
��

ρ − 2
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

ρ

μ

λ + C2(μ)
��
��
��
��

ρ
. (7.22)

This is an ancient formula familiar from quantum mechanics textbooks: if the
total angular momentum is J = L + S, then L · S = 1

2(J2 − L2 − S2). In the
present case we trace both sides to obtain

1
dρ ���

���
���
���

���
���
���
��� ���

���
���
���

���
���
���
���

���
���
���
���

λ

μμ

λ

ρ

= −1
2
{C2(ρ) − C2(λ) − C2(μ)} . (7.23)
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Dynkin index—(textbf
The pth order casimir is thus [259]

(Ip)ba = (Mp)αb
aα

=
irreduc.∑

ρ

(
C2(ρ) − C2(λ) − C2(μ)

2

)p

��
��
��
��

��
��
��
��

����
����
����
����

���
���
���

���
���
���

λ

μ μ
ρ

.

If μ is an irreducible rep, (5.23) yields

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
���

λ

μ μ
ρ

=
1
dμ

��
��
��
��

λ

��
��
��
��

��
��
��
��

ρ ��
��
��
��

μ =
dρ

dμ
��
��
��
��

μ
,

and the μ rep eigenvalue of Ip is given by∑
ρ

(
C2(ρ) − C2(λ) − C2(μ)

2

)p

dρ . (7.24)

Here the sum goes over all ρ ⊂ λ ⊗ μ, where ρ, λ and μ are irreducible reps.
Another definition of the generalized Casimir operator, in the spirit of (7.4),

uses the fully symmetrized trace:

��
��
��
��

��
��
��
��

μ

...

λ

...
= h(λ)ij...k(TiTj . . . Tk)ba . (7.25)

PC: recheck h(λ) correct
We shall return to this definition in the next section.

7.5 Dynkin indices

As we have seen so far, there are many ways of defining casimirs; in practice it
is usually quicker to directly evaluate a given birdtrack diagram than to relate
it to somebody’s “standard” casimirs. Still, it is good to have an established
convention, if for no other reason than to be able to cross-check one’s calculation
against the tabulations available in the literature.

Usually a rep is specified by its dimension. If the group has several inequiv-
alent reps with the same dimensions, further numbers are needed to uniquely
determine the rep. Specifying the Dynkin index [105], PC: Note that ref. [297]

convention �vanR = 3�
for table 20.3, etc, always
yields integer indices.

�λ =

���
���
���
���

��
��
��
�� =

trλ(TiTi)
tr(CiCi)

, (7.26)

usually (but not always) does the job. A Dynkin index is easy to evaluate by
birdtrack methods. By the Lie algebra (4.48), the defining rep Dynkin index is
related to a 6j coefficient:

�−1 =
��
��
��
��

���
���
���
���

=
2

a2N

{
��
��
��
��

− ��
��
��
��
}

=
2N
n

− 2
N

1
a2

���
���
���
���

���
���
���
���

�������������� . (7.27)
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Dynkin index!quadratic
The 6j coefficient ���

���
���
���

����
����
����
���� = tr(TiTjTiTj) is evaluated by the usual birdtrack tricks.

For SU(n), for example

���
���
���
���

= ������������
������������
������������
��������������

��
��
��

���
���
���
���− 1

n

���
���
���
���

���
���
���
���

= −n2 − 1
n

. (7.28)

PC: recheck - are indices in
table 7.5? The Dynkin index of a rep ρ in the Clebsch-Gordan series for λ⊗μ is related

to a 6j coefficient by (7.23):

�ρ/dρ = �λ/dλ + �μ/dμ + 2
�

N

1
dρ

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

λ

μμ

λ

ρ

. (7.29)

We shall usually evaluate Dynkin indices by this relation. Another convenient
formula for evaluation of Dynkin indices for semisimple groups is

�λ =
trλ X2

trA X2
, (7.30)

with X defined in sect. 6.7. An application of this formula is given in sect. 9.7.
The form of the Dynkin index is motivated by a few simple considerations.

First, we want an invariant number, so we trace all indices. Second, we want
a pure, normalization independent number, so we take a ratio. tr(CiCi) is the
natural normalization scale, as all groups have the adjoint rep. Furthermore,
unlike the Casimir operators (7.19), which have single eigenvalues Ip(λ) only
for irreducible reps, the Dynkin index is a pure number for both reducible and
irreducible reps. [Exercise: compute the Dynkin index for U(n).]

The above criteria lead to the Dynkin index as the unique group-theoretic
scalar corresponding to the quadratic Casimir operator. The choice of group-
theoretic scalars corresponding to higher casimirs is rather more arbitrary. Con-
sider the reductions of I4 for the adjoint reps, tabulated in table 7.2. (The SU(n)
was evaluated as an introductory example, sect. 2.2. The remaining examples
are evaluated by inserting the appropriate adjoint projection operators, derived
below.)PC: Marcos Marino

(2001): a misprint ta-
ble 7.2 SU(N) quartic
casimirs: last entry miss-
ing, the results are shifted,
so most of do not match
with the diagram... I
checked it with the table
in the Nordita version, p.
154.

Quartic casimirs contain quadratic bits, and in general, expansions of h(λ)’s
in terms of the defining rep will contain lower-order casimirs. To construct the
“pure” pth order casimirs, we introduce

=
��
��
��
��

, =
��
��
��
��

=
��
��
��
��

+ A
���
���
���
���

���
���
���
���

(7.31)

=
���
���
���
���

+ B
��
��
��
��

���
���
���
���
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SU(n):
��
��
��
��

���
���
���
���

����������

=
{

��
��
��
��

+ ��
��
��
��

}
+ 2

{
+ +

}
SO(n): = (n − 8) ��

��
��
��

+
��
��
��
��

��
��
��
��

+ ���
���
���
���

��
��
��
�� + + +

Sp(n): = (n + 8) ��
��
��
��

+
��
��
��
��

��
��
��
��

+ ���
���
���
���

��
��
��
�� + + +

SO(3): = 1
4

{
+

}

SU(n): = 2n
���
���
���

���
���
���

+ 6

SO(n): = (n − 8)
���
���
���
���

+ 3

Sp(n): = (n + 8)
���
���
���
���

+ 3

Table 7.2: (Top) Expansions of the adjoint rep quartic casimirs in terms of the
defining rep, and (bottom) reduction of adjoint quartic casimirs to the defining
rep quartic casimirs, for the classical simple Lie algebras. The normalization
(7.38) is set to a = 1.
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casimir!orthogonality
orthogonality!casimir
Dynkin index!sum rules
Dynkin index!sum rules
Dynkin index—)

=
��
��
��
��

+ C
���
���
���
���

��
��
��
��

+ D
��
��
��
��

��
��
��
��

���
���
���
���

, etc ,

and fix the constants A, B, C, . . . by requiring that these casimirs are orthogonal:

... = 0 ,
... = 0 , . . . . (7.32)

Now we can define the generalized or orthogonal Dynkin indices [263, 297] by

D(0)(μ) = ��
��
��
��

= dμ , D(2)(μ) = ���
���
���
���

D(3)(μ) = ��
��
��
��

, . . . , D(p)(μ) = ��
��
��
��

...
. ..

2
3

1 p
, (7.33)

where the thick line stands for μ rep. Here we have chosen normalization tr(CiCi) =
1.

The generalized Dynkin indices are not particularly convenient or natural
from the computational point of view (see ref. [297] for discussion of indices in
“orthogonal basis”) but they do have some nice properties. For example (as we
shall show later on), the exceptional groups tr X4 = C(tr X2)2 are singled out by
D(4) = 0.

If μ is a Kronecker product of two reps, μ = λ ⊗ ρ, the generalized Dynkin
indices satisfy

��
��
��
��

. ..
μ

=
λ p

��
��
��
��

��
��
��
��

. .. + .
p

��
��
��
��

��
��
��
��

. . ,

D(p)(μ) = D(p)(λ)dρ + dλD(p)(ρ) > 0 , (7.34)

as the cross terms vanish by the orthonormality conditions (7.32). Substituting
the completeness relation (5.7), λ⊗ ρ =

∑
σ, we obtain a family of sum rules for

the generalized Dynkin indices:∑
σ

.

σ
��
��
��
��

.. =
∑
σ

D(p)(σ) = D(p)(λ)dρ + dλD(p)(ρ). (7.35)

For p = 2 this is a λ ⊗ ρ =
∑

σ sum rule for Dynkin indices (7.28)

�λdρ + dλ�ρ =
∑

σ

�σ , (7.36)

useful in checking Clebsch-Gordan decompositions.

7.6 Quadratic, cubic casimirs

As the low-order Casimir operators appear so often in physics, it is useful to list
them and their relations.
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Dynkin index!quadratic
Dynkin index!cubicGiven two generators Ti, Tj in [n×n] rep λ, there are only two ways to form

a loop:

��
��
��
��

,
���
���
���
��� .

If the λ rep is irreducible, we define CF casimir as

���
���
���
��� = CF ��

��
��
��

(TiTi)ba = CF δb
a. (7.37)

If the adjoint rep is irreducible, we define

��
��
��
��

= a

tr TiTj = a δij . (7.38)

Usually we take λ to be the defining rep and fix the overall normalization by
taking a = 1. For the adjoint rep (dimension N), we use notation

i j
= Cik�Cjk� = CA

ji
. (7.39)

Existence of the quadratic Casimir operator CA is a necessary and sufficient
condition that the Lie algebra is semisimple [10, 105, 277]. For compact groups
CA > 0. CF , a, CA, and �, the Dynkin index (7.28), are related by tracing the
above expressions:

��
��
��

��
��
��

= nCF = Na = NCA�. (7.40)

While the Dynkin index is normalization independent, one of CF , a or CA has to
be fixed by a convention. The cubic invariants formed from Ti’s and Cijk’s are
(all but one) reducible to the quadratic Casimir operators:

��
��
��
�� =

(
aN

n
− CA

2

)
��
��
��
�� (7.41)

=
CA

2 ��
��
��
�� (7.42)

=
CA

2
. (7.43)

This follows from the Lie algebra (4.48)

− = .
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casimir!quartic—(textbf
quartic casimir—(textbf
grand unified theories
lattice gauge theories
weak coupling

expansions

The one exception is the symmetrized third-order casimir

1
2
dijk = ≡ 1

2a

{
���
���
���
��� + ���

���
���
���

}
. (7.44)

By (7.12) this vanishes for all groups whose defining rep is not complex. That
leaves behind only SU(n), n ≥ 3 and E6. As we shall show in sect. 18.6, dijk = 0
for E6, so only SU(n) groups have nonvanishing cubic casimirs.

7.7 Quartic casimirs

There is no unique definition of a quartic casimir. Any group-theoretic weight
that contains a trace of four generators

���
���
���
���

(7.45)

can be called a quartic casimir. For example, a 4-loop contribution to the QCD
β function

(7.46)

contains two quartic casimirs. This weight cannot be expressed as a function
of quadratic casimirs and has to be computed separately for each rep and each
group. For example, such quartic casimirs need to be evaluated for the purpose of
classification of grand unified theories [259], weak coupling expansions in lattice
gauge theories [80] and the classification of reps of simple Lie algebras [238].

Not every birdtrack diagram that contains a trace of four generators is a
genuine quartic casimir. For example,

��
��
��
��

(7.47)

is reducible by (7.42) to
1
4

��
��
��
��

(7.48)

and equals 1
4aC2

A for a simple Lie algebra. However, if all loops contain four
vertices or more, Lie algebra cannot be used to reduce the diagram. For example,

��
��
��
��

��
��
��
��

= ��
��
��
��

��
��
��
��

− ��������
��
��
��

��
��
��
��

��������������

. (7.49)

The second diagram on the right-hand side is reducible, but the first one is not.
Hence, at least one quartic casimir from a family of quartic casimirs related
by Lie algebra has to be evaluated directly. For the classical groups, this is a
straightforward application of the birdtrack reduction algorithms. For example,
for SU(n) we worked this out in sect. 2.2.

The results for the defining and adjoint reps of all simple Lie groups are
listed in table 7.3. In table 7.4 we have used the results of table 7.3 to compute
the quartic Dynkin indices (7.33). These computations were carried out by the
methods that will be developed in the remainder of this monograph.
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quartic casimir!relations
1
N

���
���
���
���

��
��
��
��

= 1
�4(F )

SU(n): (n2−4)(n2−9)
6(n2+1)

2n

SO(n): (n+1)(n2−4)(n−3)
24(n2−n+4)

n − 8

Sp(n): (n−1)(n2−4)(n+3)
24(n2+n+4)

n + 8

Normalization:

��
��
��
��

=

Table 7.4: Quartic Dynkin indices (7.33) for the defining and the adjoint reps
of classical groups. For the exceptional groups the quartic Dynkin indices vanish
identically.

7.8 Sundry relations between quartic casimirs

In evaluations of group theory weights, the following reduction of a 2-adjoint,
2-defining indices quartic casimir is often very convenient:

= A + B , (7.50)

where the constants A and B are listed in table 7.5.
For the exceptional groups, the calculation of quartic casimirs is very simple.

As mentioned above, the exceptional groups have no genuine quartic casimirs, as

tr X4 = b(tr X2)2

= b . (7.51)

PC: F4(26) in table 7.5

The constant is fixed by contracting with :

b =
3

N(N + 2)
1
a2

���
���
���
���

=
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N(N + 2)

(
N

n
− 1

6
CA

a

)
.

PC: check identity on p.
157 of the manuscript Hence, for the exceptional groups

1
N

��
��
��
��

��
��
��
��

=
3

N + 2

(
1
N

���
���
���
���

)2

=
3a4

N + 2

(
N

n
− CA

6a

)2

, (7.52)
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N 1
a

1
a

SU(n) n2 − 1 2n − 1
n −a2

SO(n) n(n−1)
2 (n − 2) 1

2 −a2

2 +a

Sp(n) n(n+1)
2 (n + 2) 1

2 −a2

2 −a

G2(7) 14 4 0 −a2

3 +a
3

F4(26) 52 3 1
2 −a2

12 +a
3

E6(27) 78 4 8
9 −a2

9 +a

E7(56) 133 3 7
8 −a2

24 +5a
6

Table 7.5: The dimension N of the adjoint rep, the quadratic casimir of the
adjoint rep 1/�, the vertex casimir Cv and the quartic casimir (7.50) for the
defining rep of all simple Lie algebras.

1
N

= C4
A

25
12(N + 2)

, (7.53)

1
N

= C4
A

N + 27
12(N + 2)

. (7.54)

Here the third relation follows from the second by the Lie algebra.
To facilitate such computations, we list a selection of relations between various

quartic casimirs (using normalization ��
��
��
�� = a ) for irreducible reps

���
���
���
���

��
��
��
��

=
1
2

{
��
��
��
��

��
��
��
��

+

��
��
��
��

��
��
��
�� }

− NC2
A

12
a2 (7.55)

=

���
���
���

���
���
���

��
��
��
��

− CA

2

��
��
��
��

��
��
��
��

− NC2
A

12
a2 . (7.56)
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casimir!quartic—)
quartic casimir—)
casimir—)

Ar
31 2 . . . −1n n SU(n + 1)

Br
31 2 . . . ������

n−1 n SO(2n + 1)

Cr ���� ����������

31 2 . . . n
����

−1 n Sp(2n)

Dr
31 2 . . .

−1

n

n
n

−2 SO(2n)

G2 ������

1 2

F4 ������ ����

41 2 3

E6

6

1 2 3 4 5

E7
61 2 3 4 5

7

E8
1 2 3 4 5 6 7

8

Table 7.6: Dynkin diagrams for the simple Lie groups.

The cubic casimir ���
���
���
���

������ is nonvanishing only for SU(n), n ≥ 3.

����

����
������ ��

��
��
��

��������
������

����

=
���
���
���
���

���
���
���
���

����������
��
��
��
��

��
��
��
��

���������� − NC4
A

12
(7.57)

a = CA

���
���
���
���

− 6
��
��
��
��

���
���
���
���

(7.58)

1
a2N

��
��
��
��

=
1
3a

(2CF + CV ) =
N

n
− CA

6a
(7.59)

1
N

=
5
6
C2

A (7.60)

1
a3N

��
��
��
��

=
1
3
(C2

F + CF CV + C2
V ) . (7.61)
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Dynkin label
Dynkin diagram
Coxeter, H.˜S.˜M.
Cartan-Killing!

classification

7.9 Dynkin labels

“Why are they called Dynkin diagrams?”
H. S. M. Coxeter [67]

It is standard to identify a rep of a simple group of rank r by its Dynkin la-
bels, a set of r integers (a1a2 . . . ar) assigned to the simple roots of the group
by the Dynkin diagrams. The Dynkin diagrams (table 7.6) are the most concise
summary of the Cartan-Killing construction of semisimple Lie algebras. We list
them here only to facilitate the identification of the reps and do not attempt
to derive or explain them. In this monograph, we emphasize the tensorial tech-
niques for constructing irreps. Dynkin’s canonical construction is described in
refs. [315, 127]. However, in order to help the reader connect the two approaches,
we will state the correspondence between the tensor reps (identified by the Young
tableaux) and the canonical reps (identified by the Dynkin labels) for each group
separately, in the appropriate chapters. ⇓PRELIMINARY

PC: Cicuta suggestionRemark on the usefulness of the gauge invariant sets described in ref. [79],
(also ref. [40, 58]) their relevance in perturbative QCD, and the usefulness of
diagrammatic methods to this problem.

Color evaluations [297, 332]. ⇑PRELIMINARY
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group!integral—(textbf

Chapter 8

Group integrals

In this chapter we discuss evaluation of group integrals of form∫
dg Ga

bGc
d . . . Ge

fGg
h , (8.1)

where Ga
b is a [n×n] defining matrix rep of g ∈ G, G† is the matrix rep of the

action of g on the conjugate vector space, which we write as in (3.12),

Ga
b = (G†)ba ,

and the integration is over the entire range of g. As always, we assume that G is
a compact Lie group, and Ga

b is unitary. Such integrals are of import for certain
quantum field theory calculations, and the chapter should probably be skipped
by a reader not interested in such applications. The integral (8.1) is defined by
two requirements:
1. Normalization:∫

dg = 1 . (8.2)

1. 2. The action of g ∈ G is to rotate a vector xa into x′
a = Ga

bxb:

Surface traced out by action of G
for all possible group elements

G

x
x’

The averaging smears x in all directions, hence the second integration rule,∫
dg Ga

b = 0 , G is a nontrivial rep of g , (8.3)

simply states that the average of a vector is zero.
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singlet
A rep is trivial if G = 1 for all group elements g. In this case no averaging is

taking place, and the first integration rule (8.2) applies.
What happens if we average a pair of vectors x, y? There is no reason why a

pair should average to zero; for example, we know that |x|2 =
∑

a xax
∗
a = xax

a

is invariant, so it cannot have a vanishing average. Therefore, in general,∫
dg Ga

bGc
d �= 0 . (8.4)

8.1 Group integrals for arbitrary reps

To get a feeling of what the right-hand side of (8.4) looks like, let us work out an
SU(n) example.

Let Ga
b be the defining [n×n] matrix rep of SU(n). The defining rep is

nontrivial, so it averages to zero by (8.3). The first nonvanishing average involves
G†, the matrix rep of the action of g on the conjugate vector space. As we shall
soon have to face a lot of indices, we immediately resort to birdtracks. In the
birdtracks notation of sect. 4.1,

Ga
b =

���
���
���
���

��
��
��
��a b , Ga

b =
��
��
��
��

��
��
��
��a b . (8.5)

For G the arrows and the triangle point the same way, while for G† they point
the opposite way. Unitarity G†G = 1 is given by

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
�� . (8.6)

In this notation, the GG† integral to be evaluated is∫
dg

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

c

d

b

a
. (8.7)

As in the SU(n) example of sect. 2.2, the V ⊗ V tensors decompose into the
singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������������ + ������������

δd
aδb

c = 1
nδb

aδ
d
c + 1

a (Ti)
b
a (Ti)

d
c .

(8.8)

We multiply (8.7) with the above decomposition of the identity. The unitarity
relation (8.7) eliminates G’s from the singlet:

��
��
��
��

��
��
��

��
��
��

=
1
n

���
���
���
���

���
���
���
��� + �������������� . (8.9)

The generators Ti are invariant (see (4.48)):

(Ti) a
b = Ga

a′Gb
b′Gii′ (Ti′) a′

b′ , (8.10)

where Gij is the adjoint [N×N ] matrix rep of g ∈ G. Multiplying by (G−1)ij , we
obtain

= . (8.11)
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irrep
rep!irreducible
Clebsch-Gordan!series

Hence, the pair GG† in the defining rep can be traded in for a single G in the
adjoint rep,

=
1
n

+ . (8.12)

The adjoint rep Gij is nontrivial, so it gets averaged to zero by (8.3). Only the
singlet survives:∫

dg Ga
dGb

c =
1
d
δd
c δb

a∫
dg =

1
d

. (8.13)

Now let G be any [d×d] irrep of a compact semisimple Lie group. Irreducibility
means that any [d×d] invariant tensor Aa

b is proportional to δa
b (otherwise one

could use A to construct projection operators of sect. 3.5 and decompose the
d-dimensional rep). As the only bilinear invariant is δa

b , the Clebsch-Gordan

=
1
d

+
nonsinglets∑

λ

λ (8.14)

series contains one and only one singlet. Only the singlet survives the group
averaging, and (8.13) is true for any [d×d] irreducible rep (with n → d). If we
take G(μ)

α
β and G(λ)

d
c in inequivalent reps λ, μ (there is no matrix K such that

G(λ) = KG(μ)K−1 for all g ∈ G), then there is no way of forming a singlet, and∫
dg G(λ)

a
dG(μ)

β
α = 0 if λ �= μ . (8.15)

What happens if G is a reducible rep? In the compact index notation of sect. 3.2,
the group integral (8.1) that we want to evaluate is given by∫

dg Gα
β . (8.16)

A reducible rep can be expanded in a Clebsch-Gordan series (3.60)∫
dg G =

∑
λ

C†
λ

∫
dg GλCλ . (8.17)

By the second integration rule (8.3), all nonsinglet reps average to zero, and one
is left with a sum over singlet projection operators:∫

dg G =
∑

singlets

C†
λCλ =

∑
singlets

Pλ . (8.18)

Group integration amounts to projecting out all singlets in a given Kronecker
product. We now flesh out the logic that led to (8.18) with a few details. For
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character—(textbf
rep!character concreteness, consider the Clebsch-Gordan series (5.8) for μ × ν =

∑
λ. Each

clebsch

(Cλ)ac
i =

��
��
��
��

��
��
��
�� λ

���
���
���
���

a

c
i (8.19)

is an invariant tensor (see (4.40)): PC: find the old eq 4

Cac
i = Ga

a′
Gc

c′Gi
i′Ca′c′

i′

λ

ν

μ
=

μ λ

ν
. (8.20)

Multiplying with G(λ) from right, we obtain the rule for the “propagation” of g
through the “vertex” C:

λμ

ν
=

μ λ

ν

Cac
i′Gi′

i = Ga
a′

Gc
c′Ca′c′

i . (8.21)

In this way, G(μ)G(ν) can be written as a Clebsch-Gordan series, each term with
a single matrix G(λ) (see (5.8)):∫

dg

μ

ν =
∫

dg
∑

λ

dλ

λ
ν

μ ν

μ
λ

=
∑

λ

(Cλ)ab
i(Cλ)jcd

∫
dg G(λ)

i
j . (8.22)

Clebsches are invariant tensors, so they are untouched by group integration. In-
tegral over G(μ)G(ν) reduces to clebsches times integrals:DG: PC should recheck ∫

dg G(λ)
i
j =

{
1 for λ singlet
0 for λ nonsinglet . (8.23)

Nontrivial reps average to zero, yielding (8.18). We have gone into considerable
detail in deriving (8.22) in order to motivate the sum-over-the-singlets projection
operators rule (8.18). Clebsches were used in the above derivations for purely
pedagogical reasons; all that is actually needed are the singlet projection opera-
tors.

8.2 Characters

Physics calculations (such as lattice gauge theories) often involve group-invariant
quantities formed by contracting G with invariant tensors. Such invariants are of
the form tr(hG) = hb

aGa
b, where h stands for any invariant tensor. The trace of

an irreducible [d×d] matrix rep λ of g is called the character of the rep:

χλ(g) = tr G(λ) = G(λ)
a
a . (8.24)
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character!orthonormality
character—)
group!integral, $SU(n)$

The character of the conjugate rep is

χλ(g) = tr G(λ)† = G(λ)a
a = χλ(g)∗ . (8.25)

Contracting (8.14) with two arbitrary invariant [d×d] tensors hd
a and (f †)bc, we

obtain the character orthonormality relation:∫
dg χλ(hg)χμ(gf) = δμ

λ

1
dλ

χλ(hf †) (8.26)

∫
dg

λ

μ

h

f

=
1
dλ λ

f

h (
λ, μ irreducible
reps

)
.

The character orthonormality tells us that if two group-invariant quantities share
a GG† pair, the group averaging sews them into a single group-invariant quantity.
The replacement of Ga

b by the character χλ(h†g) does not mean that any of the
tensor index structure is lost; Ga

b can be recovered by differentiating

Ga
b =

d

dhb
a
χλ(h†g) . (8.27)

The birdtracks and the characters are two equivalent notations for evaluating
group integrals.

8.3 Examples of group integrals

We will illustrate (8.18) by two examples: SU(n) integrals over GG and GGG†G†.
A product of two G’s is drawn as

Ga
bGc

d =
a b

dc
. (8.28)

G’s are acting on ⊗V 2 tensor space, which is decomposable by (9.4) into the
symmetric and the antisymmetric subspace

δb
aδ

d
c = (Ps)ac ,db + (PA)ac ,db

= ���
���
���
���

��
��
��
��

���
���
���
���

S��
��
��

��
��
��

���
���
���
���

+ ��
��
��
��

��
��
��
��

���
���
���
���

A��
��
��

��
��
��

���
���
���
���

, (8.29)

(Ps)ac ,db =
1
2

(
δb
aδ

d
c + δd

aδb
c

)
��
��
��
��

��
��
��
��

���
���
���
���

S��
��
��

��
��
��

���
���
���
���

=
1
2

{
+

}
(8.30)

(PA)ac ,db =
1
2

(
δb
aδ

d
c + δd

aδb
c

)
��
��
��
��

��
��
��
��

���
���
���
���

A��
��
��

��
��
��

���
���
���
���

=
1
2

{
−

}
ds =

n(n + 1)
2

, dA =
n(n − 1)

2
. (8.31)
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The transposition of indices b and d is explained in sect. 4.1; it ensures a simple
correspondence between tensors and birdtracks.

For SU(2) the antisymmetric subspace has dimension dA = 1. We shall return
to this case in sect. 15.1. For n ≥ 3, both subspaces are nonsinglets, and by the
second integration rule,

SU(n) :
∫

dg Ga
bGc

d = 0 , n > 2 . (8.32)

As the second example, consider the group integral over GGG†G†. This rep
acts on V 2 ⊗ V

2 tensor space. There are various ways of constructing the singlet
projectors; we shall give two.

We can treat the V 2 ⊗ V
2 space as a Kronecker product of spaces ⊗V 2 and

⊗V
2. We first reduce the particle and antiparticle spaces separately by (8.29):

= + + + . (8.33)

The only invariant tensors that can project singlets out of this space (for n ≥ 3)
are index contraction with no intermediate lines:

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������

���
���
���

����
����
����
����

���
���
���
��� . (8.34)

Contracted with the last two reps in (8.33), they yield zero. Only the first two
reps yield singlets

a
gb

c
d

h

e
f ⇒ 2

n(n + 1)
+

2
n(n − 1) �������

�������
�������
�������

��������
��������
��������
�������� . (8.35)

The projector normalization factors are the dimensions of the associated reps
(3.24). The GGG†G† group integral written out in tensor notation is∫

dg Ga
hGb

gGc
fGd

e =
1

2n(n + 1)

(
δa
dδb

c + δa
c δb

d

)(
δe
hδf

g + δe
gδ

f
h

)
+

1
2n(n − 1)

(
δa
dδb

c − δa
c δb

d

)(
δe
hδf

g − δe
gδ

f
h

)
.(8.36)

We have obtained this result by first reducing ⊗V 2 and ⊗V
2. What happens if

we reduce V 2 ⊗ V
2 as (V ⊗ V )2 ? We first decompose the two V ⊗ V tensor

subspaces into singlets and adjoint reps (see sect. 2.2):

=
1
n2

+ +
1
n

+
1
n

. (8.37)

The two cross terms with one intermediate adjoint line cannot be reduced further.
The 2-index adjoint intermediate state contains only one singlet in the Clebsch-
Gordan series (15.25), so that the final result [69] isPC: track down old eq 8.25,

is it refeqsuen.25?
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group!integral—)
=

1
n2

+
1

n2 − 1
. (8.38)

By substituting adjoint rep projection operators (9.54), on can check that this is
the same combination of Kronecker deltas as (8.36).

To summarize, the projection operators constructed in this monograph are all
that is needed for evaluation of group integrals; the group integral for an arbitrary
rep is given by the sum over all singlets (8.18) contained in the rep.
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un@$U(n)$—(textbf
2-index

tensor!un@$U(n)$
tensor!2-index, $U(n)$
un@$U(n)$!2-index

tensor

Chapter 9

Unitary groups

P. Cvitanović, H. Elvang, and A. D. Kennedy

AJ: Not sure what PC
means by “less space” in ta-
ble 9.5

PC: AJ - we need (old) ta-
bles 8.4, 8.5 and 8.6

U(n) is the group of all transformations that leave invariant the norm qq = δa
b qbqa

of a complex vector q. For U(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps of U(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In sects. 9.1–9.2
we show how to do this for 2- and 3-index tensors by constructing the appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection
operators directly from the Young tableaux. In sect. 9.3 we review the Young
tableaux, and in sect. 9.4 we show how to construct Young projection operators
for tensors with any number of indices. As examples, 3- and 4-index tensors
are decomposed in sect. 9.5. We use the projection operators to evaluate 3n-j
coefficients and characters of U(n) in sects. 9.6–9.9, and we derive new sum rules
for U(n) 3-j and 6-j symbols in sect. 9.7. In sect. 9.8 we consider the consequences
of the Levi-Civita tensor being an extra invariant for SU(n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In sects. 9.10–9.12 the mixed SU(n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter 3. SU(2), SU(3), SU(4), and SU(n) are discussed from the “invariance
group” perspective in chapter 15. PC: preface with ECK arti-

cle

9.1 Two-index tensors

Consider 2-index tensors q(1) ⊗ q(2) ∈ ⊗V 2. According to (6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip (6.2),

σ = .
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characteristic
equation!un@$U(n)$
2-index tensor

antisymmetrization
operator

symmetrization operator
Dynkin

index!un@$U(n)$
2-index tensor

3-index
tensor!un@$U(n)$

tensor!3-index, $U(n)$
un@$U(n)$!3-index

tensor

The flip satisfies

σ2 = = 1 ,

(σ + 1)(σ − 1) = 0 . (9.1)

The eigenvalues are λ1 = 1, λ2 = −1, and the corresponding projection operators
(3.48) are

P1 =
σ − (−1)1
1 − (−1)

=
1
2
(1 + σ) =

1
2

{
+

}
, (9.2)

P2 =
σ − 1
−1 − 1

=
1
2
(1 − σ) =

1
2

{
−

}
. (9.3)

We recognize the symmetrization, antisymmetrization operators (6.4), (6.15);
P1 = S, P2 = A, with subspace dimensions d1 = n(n + 1)/2, d2 = n(n −
1)/2. In other words, under general linear transformations the symmetric and
the antisymmetric parts of a tensor xab transform separately:

x = Sx + Ax ,

xab =
1
2
(xab + xba) +

1
2
(xab − xba)

= + . (9.4)

The Dynkin indices for the two reps follow by (7.29) from 6j′s:

=
1
2
(0) +

1
2

=
N

2

�1 =
2�
n

· d1 +
2�
N

· N

2
= �(n + 2) . (9.5)

Substituting the defining rep Dynkin index �−1 = CA = 2n, computed in sect. 2.2,
we obtain the two Dynkin indices

�1 =
n + 2
2n

, �2 =
n − 2
2n

. (9.6)

9.2 Three-index tensors

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric.
The results of this section are summarized in fig. 9.1 and table 9.1. We mix the
third index into the symmetric 2-index subspace using the invariant matrix

Q = S12σ(23)S12 =
���
���
���
���

��
��
��
��

��
��
��
��

. (9.7)
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characteristic
equation!un@$U(n)$
3-index tensor

Here projection operators S12 ensure the restriction to the 2-index symmetric
subspace, and the transposition σ(23) mixes in the third index. To find the char-
acteristic equation for Q, we compute Q2:

Q2 = S12σ(23)S12σ(23)S12 =
1
2
{
S12 + S12σ(23)S12

}
=

1
2
S12 +

1
2
Q

= =
1
2

{
+

}
.

Hence, Q satisfies

(Q − 1)(Q + 1/2)S12 = 0 , (9.8)

and the corresponding projection operators (3.48) are

P1 =
Q + 1

21
1 + 1

2

S12 =
1
3
{
σ(23) + σ(123) + 1

}
S12 = S

=
1
3

{
+ +

}
= (9.9)

P2 =
Q− 1
−1

2 − 1
S12 =

4
3
S12A23S12 =

4
3

. (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspace (6.13) and a mixed symmetry subspace with dimensions

d1 = trP1 = n(n + 1)(n + 2)/3! (9.11)

d2 = trP2 =
4
3

= n(n2 − 1)/3 . (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the
invariant matrix

Q = A12σ(23)A12 = . (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry
3-index tensors are given in fig. 9.1. Symmetries of the subspace are indicated
by the corresponding Young tableaux, table 9.2. For example, we have just
constructed

21 ⊗ 3 = 1 32 ⊕ 2
3
1

= +
4
3

n2(n + 1)
2

=
n(n + 1)(n + 2)

3!
+

n(n2 − 1)
3

. (9.14)

The projection operators for tensors with up to 4 indices are shown in fig. 9.1,
and in fig. 9.2 the corresponding stepwise reduction of the irreps is given in terms
of Young standard tableaux (defined in sect. 9.3.1).
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!n
!4 (n−4 !)

(n2 )1− n (n 2)
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−

(n2 )1−n2
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(n2 )1− n (n+2)
8

3
2

1−

2

3
2

4

2

3
2

3
4

3
4

3

n (n+1)
2

n (n
2

)1−

3!
n+2n (

n

)(n+1 )

n (n2 )1−
3

( )n 1−n (n 2)
3!

−

dimension

3
4

3
2

(n+3 !)
!4 !( )n

AAS

S

S A

A

SSSA A

S

SA

A

S A

Figure 9.1: Projection operators for 2-, 3-, and 4-index tensors in U(n), SU(n),
n ≥ p = number of indices.
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n (n2 )1−
3
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−

3

1 3
4

3 2

1
2

31 2

31 4 1 32 2
2

2
2

4

21

1
2

3

2 1 3 41
2 2

1 2

1 3

!n
!4 (n−4 !)

(n2 )1− n (n+2)
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(n2 )1−n2

12

(n2 )1−

2

n (n 2)
8

−

(n+3 !)
!4 !( )n 1−

3

1

1 2

3

4

4
1
3

4

1
3 4

1

4
3

4

n1

S A SSA AS SA

A

S

S
A

S

S

A

A

A

Figure 9.2: Young tableaux for the irreps of the symmetric group for 2-, 3-,
and 4-index tensors. Rows correspond to symmetrizations, columns to antisym-
metrizations. The reduction procedure is not unique, as it depends on the order
in which the indices are combined; this order is indicated by labels 1, 2, 3 , ..., p
in the boxes of Young tableaux.
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Young tableau—(textbf
Young tableau!definition
Young tableau!standard
standard tableau
Young tableau!transpose

9.3 Young tableaux

We have seen in the examples of sects. 9.1–9.2 that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations.
For tensors with more than three indices this method is cumbersome, and it
is much simpler to construct the projection operators directly from the Young
tableaux. In this section we review the Young tableaux and some aspects of
symmetric group representations that will be important for our construction of
the projection operators in sect. 9.4.

9.3.1 Definitions

Partition k identical boxes into D subsets, and let λm, m = 1, 2, . . . ,D, be the
number of boxes in the subsets ordered so that λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 1. Then
the partition λ = [λ1, λ2, . . . , λD] fulfills

∑D
m=1 λm = k. The diagram obtained

by drawing the D rows of boxes on top of each other, left aligned, starting with
λ1 at the top, is called a Young diagram Y .

Examples: The ordered partitions for k = 4 are [4], [3, 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1].
The corresponding Young diagrams are

.

Inserting a number from the set {1, . . . , n} into every box of a Young diagram
Yλ in such a way that numbers increase when reading a column from top to
bottom, and numbers do not decrease when reading a row from left to right,
yields a Young tableau Ya. The subscript a labels different tableaux derived from
a given Young diagram, i.e., different admissible ways of inserting the numbers
into the boxes.

A standard tableau is a k-box Young tableau constructed by inserting the
numbers 1, . . . , k according to the above rules, but using each number exactly
once. For example, the 4-box Young diagram with partition λ = [2, 1, 1] yields
three distinct standard tableaux:

1

4

2
3 ,

1
2
4

3
,

1

3

4
2 . (9.15)

An alternative labeling of a Young diagram are Dynkin labels, the list of
numbers bm of columns with m boxes: (b1b2 . . .). Having k boxes we must have∑k

m=1 mbm = k. For example, the partition [4, 2, 1] and the labels (21100 · · ·)
give rise to the same Young diagram, and so do the partition [2, 2] and the labels
(020 · · ·).

We define the transpose diagram Yt as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpose of [3, 1] is [2, 1, 1],

1 42
3

t
=

1
2
4

3
,
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Dynkin label
or, in terms of Dynkin labels, the transpose of (210 . . .) is (1010 . . .).

The Young tableaux are useful for labeling irreps of various groups. We shall
use the following facts (see for instance ref. [155]):

1. The k-box Young diagrams label all irreps of the symmetric group Sk.

2. The standard tableaux of k-box Young diagrams with no more than n rows
label the irreps of GL(n), in particular they label the irreps of U(n).

3. The standard tableaux of k-box Young diagrams with no more than n − 1
rows label the irreps of SL(n), in particular they label the irreps of SU(n).

In this section, we consider the Young tableaux for reps of Sk and U(n), while
the case of SU(n) is postponed to sect. 9.8.

9.3.2 Symmetric group Sk

The irreps of the symmetric group Sk are labeled by the k-box Young diagrams.
For a given Young diagram, the basis vectors of the corresponding irrep can
be labeled by the standard tableaux of Y; consequently the dimension ΔY of
the irrep is the number of standard tableaux that can be constructed from the
Young diagram Y. The example (9.15) shows that the irrep λ = [2, 1, 1] of S4 is
3-dimensional.

As an alternative to counting standard tableaux, the dimension ΔY of the
irrep of Sk corresponding to the Young diagram Y can be computed easily as

ΔY =
k!
|Y| , (9.16)

where the number |Y| is computed using a “hook” rule: Enter into each box
of the Young diagram the number of boxes below and to the right of the box,
including the box itself. Then |Y| is the product of the numbers in all the boxes.
For instance,

Y = −→ |Y| =
6 15 3

34
2 1

1 = 6! 3 . (9.17)

The hook rule (9.16) was first proven by Frame, de B. Robinson, and Thrall
[124]. Various proofs can be found in the literature [298, 172, 134, 143, 21]; see
also Sagan [305] and references therein.

We now discuss the regular representation of the symmetric group. The ele-
ments σ ∈ Sk of the symmetric group Sk form a basis of a k!-dimensional vector
space V of elements PC: is sσ σ right?

s =
∑
σ∈Sk

sσ σ ∈ V , (9.18)

where sσ are the components of a vector s in the given basis. If s ∈ V has
components (sσ) and τ ∈ Sk, then τs is an element in V with components
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2-index tensor!Young
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tensor

(τs)σ = sτ−1σ. This action of the group elements on the vector space V defines an
k!-dimensional matrix representation of the group Sk, the regular representation.

The regular representation is reducible, and each irrep λ appears Δλ times in
the reduction; Δλ is the dimension of the subspace Vλ corresponding to the irrep
λ. This gives the well-known relation between the order of the symmetric group
|Sk| = k! (the dimension of the regular representation) and the dimensions of the
irreps,

|Sk| =
∑

all irreps λ

Δ2
λ .

Using (9.16) and the fact that the Young diagrams label the irreps of Sk, we have

1 = k!
∑
(k)

1
|Y |2 , (9.19)

where the sum is over all Young diagrams with k boxes. We shall use this relation
to determine the normalization of Young projection operators in appendix B.3.

The reduction of the regular representation of Sk gives a completeness rela-
tion,

1 =
∑
(k)

PY ,

in terms of projection operators

PY =
∑

Ya∈Y

PYa .

The sum is over all standard tableaux derived from the Young diagram Y. Each
PYa projects onto a corresponding invariant subspace VYa : for each Y there
are ΔY such projection operators (corresponding to the ΔY possible standard
tableaux of the diagram), and each of these project onto one of the ΔY invariant
subspaces VY of the reduction of the regular representation. It follows that the
projection operators are orthogonal and that they constitute a complete set.

9.3.3 Unitary group U(n)

The irreps of U(n) are labeled by the k-box Young standard tableaux with no
more than n rows. A k-index tensor is represented by a Young diagram with
k boxes — one typically thinks of this as a k-particle state. For U(n), a 1-
index tensor has n-components, so there are n 1-particle states available, and
this corresponds to the n-dimensional fundamental rep labeled by a 1-box Young
diagram. There are n2 2-particle states for U(n), and as we have seen in sect. 9.1
these split into two irreps: the symmetric and the antisymmetric. Using Young
diagrams, we write the reduction of the 2-particle system as

⊗ = ⊕ . (9.20)
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tableau
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Young tableau—)
Young projection
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Except for the fully symmetric and the fully antisymmetric irreps, the irreps of
the k-index tensors of U(n) have mixed symmetry. Boxes in a row correspond to
indices that are symmetric under interchanges (symmetric multiparticle states),
and boxes in a column correspond to indices antisymmetric under interchanges
(antisymmetric multiparticle states). Since there are only n labels for the parti-
cles, no more than n particles can be antisymmetrized, and hence only standard
tableaux with up to n rows correspond to irreps of U(n).

The number of standard tableaux ΔY derived from a Young diagram Y is
given in (9.16). In terms of irreducible tensors, the Young diagram determines
the symmetries of the indices, and the ΔY distinct standard tableaux correspond
to the independent ways of combining the indices under these symmetries. This
is illustrated in fig. 9.2.

For a given U(n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tableaux Ya obtained by inserting
the numbers 1, 2, . . . , n into Y in the manner described in sect. 9.3.1. Thus the
dimension of an irrep of U(n) equals the number of such Young tableaux, and we
note that all irreps with the same Young diagram have the same dimension. For
U(2), the k = 2 Young tableaux of the symmetric and antisymmetric irreps are

11 , 21 , 22 , and 1
2

,

so the symmetric state of U(2) is 3-dimensional and the antisymmetric state is
1-dimensional, in agreement with the formulas (6.4) and (6.15) for the dimensions
of the symmetry operators. For U(3), the counting of Young tableaux shows that
the symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle
irrep is 3-dimensional, again in agreement with (6.4) and (6.15). In sect. 9.4.3 we
state and prove a dimension formula for a general irrep of U(n).

9.4 Young projection operators

Given an irrep of U(n) labeled by a k-box standard tableaux Y, we construct the
corresponding Young projection operator PY in birdtrack notation by identifying
each box in the diagram with a directed line. The operator PY is a block of
symmetrizers to the left of a block of antisymmetrizers, all imposed on the k
lines. The blocks of symmetry operators are dictated by the Young diagram,
whereas the attachment of lines to these operators is specified by the particular
standard tableau.

The Kronecker delta is invariant under unitary transformations: for U ∈
U(n), we have (U †)aa′

δb′
a′U b′

b = δb
a. Consequently, any combination of Kronecker

deltas, such as a symmetrizer, is invariant under unitary transformations. The
symmetry operators constitute a complete set, so any U(n) invariant tensor built
from Kronecker deltas can be expressed in terms of symmetrizers and antisym-
metrizers. In particular, the invariance of the Kronecker delta under U(n) trans-
formations implies that the same symmetry group operators that project the
irreps of Sk also yield the irreps of U(n).
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The simplest examples of Young projection operators are those associated
with the Young tableaux consisting of either one row or one column. The cor-
responding Young projection operators are simply the symmetrizers or the an-
tisymmetrizers respectively. As projection operators for Sk, the symmetrizer
projects onto the 1-dimensional subspace corresponding to the fully symmetric
representation, and the antisymmetrizer projects onto the fully antisymmetric
representation (the alternating representation).

A Young projection operator for a mixed symmetry Young tableau will here be
constructed by first antisymmetrizing subsets of indices, and then symmetrizing
other subsets of indices; the Young tableau determines which subsets, as will be
explained shortly. Schematically,

PYa = αY , (9.21)

where the white (black) blob symbolizes a set of (anti)symmetrizers. The normal-
ization constant αY (defined below) ensures that the operators are idempotent,
PYaPYb

= δabPYa .
This particular form of projection operators is not unique: in sect. 9.2 we built

3-index tensor Young projection operators that were symmetric under transposi-
tion. The Young projection operators constructed in this section are particularly
convenient for explicit U(n) computations, and another virtue is that we can
write down the projectors explicitly from the standard tableaux, without having
to solve a characteristic equation. For multiparticle irreps, the Young projection
operators of this section will generally be different from the ones constructed from
characteristic equations (see sects. 9.1–9.2); however, the operators are equiva-
lent, since the difference amounts to a choice of basis.

9.4.1 Construction of projection operators

Let Ya be a k-box standard tableau. Arrange a set of symmetrizers corresponding
to the rows in Ya, and to the right of this arrange a set of antisymmetrizers
corresponding to the columns in Ya. For a Young diagram Y with s rows and
t columns we label the rows S1, S2, . . . , Ss and to the columns A1, A2, . . . , At.
Each symmetry operator in PY is associated to a row/column in Y, hence we
label a symmetry operator after the corresponding row/column, for example,

......

1 2 3 4 5

6 7 8 9

10 11

S1

S2

S3

AA AAA1 2 3 4 5

= αY

5A

2S

S 3

A 4

S
A

1

2

A

A

3

1

. (9.22)

Let the lines numbered 1 to k enter the symmetrizers as described by the num-
bers in the boxes in the standard tableau and connect the set of symmetrizers
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operator!normalization
Young projection

operator!properties

to the set of antisymmetrizers in a nonvanishing way, avoiding multiple inter-
mediate lines prohibited by (6.17). Finally, arrange the lines coming out of the
antisymmetrizers such that if the lines all passed straight through the symmetry
operators, they would exit in the same order as they entered. This ensures that
upon expansion of all the symmetry operators, the identity appears exactly once.

We denote by |Si| or |Ai| the length of a row or column, respectively, that is the
number of boxes it contains. Thus |Ai| also denotes the number of lines entering
the antisymmetrizer Ai. In the above example we have |S1| = 5, |A2| = 3, etc.

The normalization αY is given by

αY =

(∏s
i=1 |Si|!

)(∏t
j=1 |Aj|!

)
|Y| , (9.23)

where |Y| is related through (9.16) to ΔY, the dimension of irrep Y of Sk, and
is a hook rule Sk combinatoric number. The normalization depends only on the
shape of the Young diagram, not the particular tableau.

Example: The Young diagram tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length two, and two of length
one. There are three distinct k-standard arrangements, each corresponding to a
projection operator

4
1 2 3 = αY (9.24)

3
1 42 = αY (9.25)

2
1 3 4 = αY , (9.26)

where the normalization constant is αY = 3/2 by (9.23). More examples of Young
projection operators are given in sect. 9.5.

9.4.2 Properties

We prove in appendix B that the above construction yields well defined projection
operators. In particular, the internal connection between the symmetrizers and
antisymmetrizers is unique up to an overall sign (proof in appendix B.1). We fix
the overall sign by requiring that when all symmetry operators are expanded, the
identity appears with a positive coefficient. Note that by construction (the lines
exit in the same order as they enter) the identity appears exactly once in the full
expansion of any of the Young projection operators.

We list here the most important properties of the Young projection operators:

1. The Young projection operators are orthogonal : If Y and Z are two distinct
standard tableaux, then PYPZ = 0 = PZPY.
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2. With the normalization (9.23), the Young projection operators are indeed
projection operators, i.e., they are idempotent: P2

Y = PY.

3. For a given k the Young projection operators constitute a complete set
such that 1 =

∑
PY, where the sum is over all standard tableaux Y with

k boxes.

The proofs of these properties are given in appendix B.

9.4.3 Dimensions of U(n) irreps

The dimension dY of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operator, dY = trPY. Expanding
the symmetry operators yields a weighted sum of closed-loop diagrams. Each loop
is worth n, and since the identity appears precisely once in the expansion, the
dimension dY of a irrep with a k-box Young tableau Y is a degree k polynomial
in n.

Example: We compute we dimension of the U(n) irrep 2
3
1 :

dY = 1
3

2 =
4
3

=
4
3

(
1
2!

)2 {
+

− −
}

=
1
3
(n3 + n2 − n2 − n) =

n(n2 − 1)
3

. (9.27)

In practice, this is unnecessarily laborious. The dimension of a U(n) irrep Y
is given by

dY =
fY(n)
|Y | . (9.28)

Here fY(n) is a polynomial in n obtained from the Young diagram Y by multi-
plying the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains an n.

2. The numbers in a row increase by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, if k is the number of boxes in Y, fY(n) is a polynomial in n of degree k.
The dimension formula (9.28) is well known (see for instance ref. [139]).
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Example: In the above example with the irrep 2
3
1 , we have

dY =
fY(n)
|Y | =

n(n2 − 1)
3

in agreement with the diagrammatic trace calculation (9.27).

Example: With Y = [4,2,1], we have

fY(n) =
n

n-1

n+1 n+2 n+3

n

n-2

= n2(n2 − 1)(n2 − 4)(n + 3),

|Y| =
14 2

1
3
6

1 = 144, (9.29)

hence,

dY =
n2(n2 − 1)(n2 − 4)(n + 3)

144
. (9.30)

Using dY = trPY, the dimension formula (9.28) can be proven diagrammat-
ically by induction on the number of boxes in the irrep Y. The proof is given in
appendix B.4.

The polynomial fY(n) has an intuitive interpretation in terms of strand color-
ings of the diagram for trPY. Draw the trace of the Young projection operator.
Each line is a strand, a closed line, which we draw as passing straight through
all of the symmetry operators. For a k-box Young diagram, there are k strands.
Given the following set of rules, we count the number of ways to color the k
strands using n colors. The top strand (corresponding to the leftmost box in the
first row of Y) may be colored in n ways. Color the rest of the strands according
to the following rules

1. If a path, which could be colored in m ways, enters an antisymmetrizer, the
lines below it can be colored in m − 1, m − 2, . . . ways.

2. If a path, which could be colored in m ways, enters a symmetrizer, the lines
below it can be colored in m + 1, m + 2, . . . ways.

Using this coloring algorithm, the number of ways to color the strands of the
diagram is fY(n).
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Example: For Y =
6

7
1 2

8
4 5

3
, the strand diagram is

n+2
n

n+1

n+3

n-1

n-2

n

n+1

(9.31)

Each strand is labeled by the number of admissible colorings. Multiplying these
numbers and including the factor 1/|Y|, we find

dY = (n − 2) (n − 1)n2 (n + 1)2 (n + 2) (n + 3)�
6 4 3 1

1

124

=
n (n + 1) (n + 3)!

26 32 (n − 3)!
,

in agreement with (9.28).

9.5 Reduction of tensor products

We now work out several explicit examples of decomposition of direct products of
Young diagrams/tableaux in order to motivate the general rules for decomposition
of direct products stated below, in sect. 9.5.1. We have already treated the
decomposition of the 2-index tensor into the symmetric and the antisymmetric
tensors, but we shall reconsider the 3-index tensor, since the projection operators
are different from those derived from the characteristic equations in sect. 9.2.

The 3-index tensor reduces to

1 ⊗ 2 ⊗ 3 =
(

21 ⊕ 1
2

)
⊗ 3

= 1 32 ⊕ 2
3
1 ⊕ 1

2
3 ⊕

1
2
3

. (9.32)

The corresponding dimensions and Young projection operators are given in ta-
ble 9.1. For simplicity, we neglect the arrows on the lines where this leads to no
confusion.

The Young projection operators are orthogonal by inspection. We check com-
pleteness by a computation. In the sum of the fully symmetric and the fully
antisymmetric tensors, all the odd permutations cancel, and we are left with

+ =
1
3

{
+ +

}
.
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product reduction

Ya PYa dYa

1 32
n(n+1)(n+2)

6

2
3
1

1
2

3

4
3

4
3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n(n2−1)

3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

Table 9.1: Reduction of 3-index tensor. The last row shows the direct sum of
the Young tableaux, the sum of the dimensions of the irreps adding up to n3,
and the sum of the projection operators adding up to the identity as verification
of completeness (3.51).

Expanding the two tensors of mixed symmetry, we obtain

4
3

{
+

}
=

2
3

− 1
3

− 1
3

.

Adding the two equations we get

+
4
3

+
4
3

+ = , (9.33)

verifying the completeness relation.
For 4-index tensors the decomposition is performed as in the 3-index case,

resulting in table 9.2.
Acting with any permutation on the fully symmetric or antisymmetric pro-

jection operators gives ±1 times the projection operator (see (6.8) and (6.18)).
For projection operators of mixed symmetry the action of a permutation is not
as simple, because the permutations will mix the spaces corresponding to the
distinct tableaux. Here we shall need only the action of a permutation within a
3n-j symbol, and, as we shall show below, in this case the result will again be
simple, a factor ±1 or 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of direct products such as (9.20) in
terms of Young diagrams:
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Ya PYa dYa

2 3 41
n(n+1)(n+2)(n+3)

24

1
4

2 3

1 42
3

1 4
2

3

3
2

3
2

3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(n−1)n(n+1)(n+2)
8

2
4

1
3

1 3
42

4
3

4
3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
n2(n2−1)

12

1

4

2
3

1
2
4

3

1

3

4
2

3
2

3
2

3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(n−2)(n−1)n(n+1)
8

4

1

3
2 n(n−1)(n−2)(n−3)

24

1 ⊗ 2 ⊗ 3 ⊗ 4 n4

Table 9.2: Reduction of 4-index tensors. Note the symmetry under n ↔ −n.

P. Cvitanović: Group Theory, unitary, last edited July 3, 2007 printed October 14, 2007



9.6. U(N) RECOUPLING RELATIONS 111

recoupling
relations!un@$U(n)$

un@$U(n)$!recoupling
relations

Draw the two diagrams next to each other and place in each box of the second
diagram an ai, i = 1, . . . , k, such that the boxes in the first row all have a1 in
them, second row boxes have a2 in them, etc. The boxes of the second diagram
are now added to the first diagram to create new diagrams in accordance to the
following rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the two initial diagrams.

3. For U(n) no diagram has more than n rows.

4. Making a journey through the diagram starting with the top row and en-
tering each row from the right, at any point the number of ai’s encountered
in any of the attached boxes must not exceed the number of previously
encountered ai−1’s.

5. The numbers must not increase when reading across a row from left to
right.

6. The numbers must decrease when reading a column from top to bottom.

Rules 4 – 6 ensure that states that were previously symmetrized are not anti-
symmetrized in the product, and vice versa. Also, the rules prevent counting the
same state twice.

For example, consider the direct product of the partitions [3] and [2, 1]. For
U(n) with n ≥ 3 we have

⊗ a 1 a 1

a 2
=

a 2

a 1a 1 ⊕
a 2a 1

a 1 ⊕ a 1

a 2

a 1

⊕ a 1

a 2

a 1 ,

while for n = 2 we have

⊗ a 1 a 1

a 2
=

a 2

a 1a 1 ⊕
a 2a 1

a 1 .

As a check that a decomposition is correct, one can compute the dimensions for
the product of irreps on the LHS and the sums of the irreps on the RHS to see
that they match. Methods for calculating the dimension of a U(n) irreps are
discussed in sect. 9.4.3.

9.6 U(n) recoupling relations

For U(n) (as opposed to SU(n); see sect. 9.8) we have no antiparticles, so in re-
coupling relations the total particle number is conserved. Consider as an example
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the step-by-step reduction of a 5-particle state in terms of the Young projection
operators:

=
∑
X,Z

X

Z =
∑

W,X,Z

X

Z

X

Z
W

=
∑

W,X,Y,Z
W

X

Z
W

Y

X

Z .

More generally, we can visualize any sequence of U(n) pairwise Clebsch-Gordan
reductions as a flow with lines joining into thicker and thicker projection opera-
tors, always ending in a maximal PY that spans across all lines. In the clebsches
notation of sect. 5.1, this can be redrawn more compactly as

=
∑
X,Z

Z

X

=
∑

W,X,Z
W

Z Z

X

=
∑

W,X,Y,Z

X X

Z
W

Y

W
Z .

The trace of each term in the final sum of the 5-particle state is a 12-j symbol
of the form

X

W

Z

X

W

Z

Y

. (9.34)

In the trace (9.34) we can use the idempotency of the projection operators to
double the maximal Young projection operator PY, and sandwich by it all smaller
projection operators:

WW
YY

X

Z . (9.35)

From uniqueness of the connection between the symmetry operators (see ap-
pendix B.1), we have for any permutation σ ∈ Sk:

... ...Y Yσk = mσ ...... Yk , (9.36)

where mσ = 0,±1. Expressions such as (9.35) can be evaluated by expanding
the projection operators PW, PX, PZ and determining the value of mσ of (9.36)
for each permutation σ of the expansion. The result is

WW
YY

X

Z = M(Y;W,X,Z) Y , (9.37)

where the factor M(Y;W,X,Z) does not depend on n and is determined by a
purely symmetric group calculation. Examples follow.
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3nj@“threenj, $U(n)$
3j@3-$j$

symbol!sun@$SU(n)$—(textbf
sun@$SU(n)$!3-$j$
Young tableau!3-$j$
Young projection

operator!3-$j$

9.7 U(n) 3n-j symbols

In this section, we construct U(n) 3-j and 6-j symbols using the Young projection
operators, and we give explicit examples of their evaluation. Sum rules for 3-j’s
and 6-j’s are derived in sect. 9.7.3.

9.7.1 3-j symbols

Let X, Y, and Z be irreps of U(n). In terms of the Young projection operators
PX, PY, and PZ, a U(n) 3-vertex (5.4) is obtained by tying together the three
Young projection operators,

X

Z

Y =

...
...

k

k

k

X

Z

Y Y

Z

X

. (9.38)

Since there are no antiparticles, the construction requires kX + kZ = kY.
A 3-j coefficient constructed from the vertex (9.38) is then

Y

X

Z

=
......

... ...

X

Z

Y . (9.39)

As an example, take

X = 1
3

2 , Y = 2
5 6

1 4
3

, and Z = 5
6
4 .

Then

Y

X

Z

=
4
3
· 2 · 4

3
= M · dY , (9.40)

where M = 1 here. Below we derive that dY (the dimension of the irrep Y) is
indeed the value of this 3-j symbol.

In principle the value of a 3-j symbol (9.39) can be computed by expanding
out all symmetry operators, but that is not recommended as the number of
terms in such expansions grows combinatorially with the total number of boxes
in the Young diagram Y. One can do a little better by carefully selecting certain
symmetry operators to expand. Then one simplifies the resulting diagrams using
rules such as (6.7), (6.8), (6.17), and (6.18) before expanding more symmetry
operators. However, a much simpler method exploits (9.36) and leads to the
answer – in the case of (9.40) it is dY = (n2 − 1)n2(n + 1)(n + 2)/144 – much
faster.
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The idea for evaluating a 3-j symbol (9.39) using (9.36) is to expand the pro-
jections PX and PZ and determine the value of mσ in (9.36) for each permutation
σ of the expansion. As an example, consider the 3-j symbol (9.40). With PY as
in (9.40) we find

σ

σ ⊗ 1

mσ⊗1 1 0 1 −1

1 ⊗ σ

m1⊗σ 1 −1 0 −1
so

PU = = 1
4

{
− + −

}
PX = PU ⊗ 1 = 1

4

{
− + −

}
M(PY;PX) = 1

4{ 1 − 0 + 1 − (−1) }

PZ = 1 ⊗ PU = 1
4

{
− + −

}
M(PY;PZ) = 1

4{ 1 − (−1) + 0 − (−1) };
and hence

... ...
............

...

Y

Z

X
Y =

(
3
4

)2

αXαZ ...... Yk = ...... Yk ,

and the value of the 3-j is dY as claimed in (9.40). That the eigenvalue happens
to be 1 is an accident – in tabulations of 3-j symbols [113] it takes a range of
values.HE: bad ref

The relation (9.36) implies that the value of any U(n) 3-j symbol (9.39) is
M(Y;X,Z)dY , where dY is the dimension of the maximal irrep Y. Again we
remark that M(Y;X,Z) is independent of n.

9.7.2 6-j symbols

A general U(n) 6-j symbol has form

U

Y

Z

X

V

W

=
U

V

Z

W

X

Y

... ...
...

...

...

...

......

...

...

. (9.41)
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Using the relation (9.36) we immediately see that

U

Y

Z

X

V

W

= M dY , (9.42)

where M is a pure symmetric group SkY
number, independent of U(n); it is

surprising that the only vestige of U(n) is the fact that the value of a 6-j symbol
is proportional to the dimension dY of its largest projection operator.

Example: Consider the 6-j constructed from the Young tableaux

U = 2

4

3 , V = 1 , W = 2 ,

X = 3

4
, Y =

1

2

3

4

, Z = 1

2
.

Using the idempotency we can double the projection PY and sandwich the other
operators, as in (9.35). Several terms cancel in the expansion of the sandwiched
operator, and we are left with

=
1
24

{
− − −

mσ : +1 0 −1 0

+ − − +

}
0 −1 0 +1

.

We have listed the symmetry factors mσ of (9.36) for each of the permutations σ
sandwiched between the projection operators PY. We find that in this example
the symmetric group factor M of (9.42) is

M =
4
24

αU αV αW αX αZ =
1
3

,

so the value of the 6-j is

U

Y

Z

X

V

W

=
1
3
dY =

n (n2 − 1) (n − 2)
4!

.

The method generalizes to evaluations of any 3n-j symbol of U(n) .
Challenge: We have seen that there is a coloring algorithm for the dimensional-
ity of the Young projection operators. Open question: Find a coloring algorithm
for the 3-j’s and 6-j’s of SU(n).
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sum rule!sun@$SU(n)$
3-$j$, 6-$j$ 9.7.3 Sum rules

Let Y be a standard tableau with kY boxes, and let Λ be the set of all standard
tableaux with one or more boxes (this excludes the trivial k = 0 representation).
Then the 3-j symbols obey the sum rule∑

X,Z∈Λ

Y

X

Z

= (kY − 1)dY. (9.43)

The sum is finite, because the 3-j is nonvanishing only if the number of boxes in
X and Z add up to kY, and this happens only for a finite number of tableaux.

To prove the 3-j sum rule (9.43), recall that the Young projection operators
constitute a complete set,

∑
X∈Λk

PX = 1, where 1 is the [k× k] unit matrix and
Λk the set of all standard tableaux of Young diagrams with k boxes. Hence:

∑
X,Z∈Λ

Y

X

Z

=
kY−1∑
kX=1

∑
X∈ΛkX

Z∈ΛkY−kX

......

... ...

X

Z

Y

=
kY−1∑
kX=1

... ...

... ...

Y

=
kY−1∑
kX=1

dY = (kY − 1)dY .

The sum rule offers a useful cross-check on tabulations of 3-j values.
There is a similar sum rule for the 6-j symbols:∑

X,Z,U,V,W∈Λ

U

Y

Z

X

V

W

=
1
2
(kY − 1)(kY − 2) dY . (9.44)

Referring to the 6-j (9.41), let kU be the number of boxes in the Young diagram
U, kX be the number of boxes in X, etc.

Let kY be given. From (9.41) we see that kX takes values between 1 and
kY − 2, and kZ takes values between 2 and kY − 1, subject to the constraint
kX + kZ = kY. We now sum over all tableaux U, V, and W keeping kY, kX, and
kZ fixed. Note that kV can take values 1, . . . , kZ −1. Using completeness, we find

∑
U,V,W∈Λ

U

Y

Z

X

V

W

=
kZ−1∑
kV=1

∑
V∈ΛkV

∑
W∈ΛkZ−kV

∑
U∈ΛkY−kV

U

Y

Z

X

V

W

=
kZ−1∑
kV=1 ......

... ...

X

Z

Y
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sun@$SU(n)$!adjoint rep
adjoint rep!sun@$SU(n)$
Levi-Civita tensor
Young tableau!conjugate

= (kZ − 1) Y

Z

X

.

Now sum over all tableaux X and Z to find

∑
X,Z,U,V,W∈Λ

U

Y

Z

X

V

W

=
kY−1∑
kZ=2

(kZ − 1)
∑

Z∈ΛkZ

∑
X∈ΛkY−kZ

Y

Z

X

=
1
2
(kY − 1)(kY − 2) dY ,

verifying the sum rule (9.44) for 6-j symbols.

9.8 SU(n) and the adjoint rep

The SU(n) group elements satisfy det G = 1, so SU(n) has an additional in-
variant, the Levi-Civita tensor εa1a2...an = Ga1

a′
1Ga2

a′
2 · · ·Gan

a′
nεa′

1a′
2...a′

n
. The

diagrammatic notation for the Levi-Civita tensors was introduced in (6.27).
While the irreps of U(n) are labeled by the standard tableaux with no more

than n rows (see sect. 9.3), the standard tableaux with a maximum of n− 1 rows
label the irreps of SU(n). The reason is that in SU(n), a column of length n can
be removed from any diagram by contraction with the Levi-Civita tensor (6.27).
For example, for SU(4)

→ . (9.45)

Standard tableaux that differ only by columns of length n correspond to equiva-
lent irreps. Hence, for the standard tableaux labeling irreps of SU(n), the highest
column is of height n − 1, which is also the rank of SU(n). A rep of SU(n), or
An−1 in the Cartan classification (table 7.6) is characterized by n − 1 Dynkin
labels b1b2 . . . bn−1. The corresponding Young diagram (defined in sect. 9.3.1) is
then given by (b1b2 . . . bn−100 . . .), or (b1b2 . . . bn−1) for short. PC: recheck that a’s and b’s

are used consistentlyFor SU(n) a column with k boxes (antisymmetrization of k covariant indices)
can be converted by contraction with the Levi-Civita tensor into a column of
(n − k) boxes (corresponding to (n − k) contravariant indices). This operation
associates with each diagram a conjugate diagram. Thus the conjugate of a SU(n)
Young diagram Y is constructed from the missing pieces needed to complete the
rectangle of n rows,

SU(5) : . (9.46)

To find the conjugate diagram, add squares below the diagram of Y such that
the resulting figure is a rectangle with height n and width of the top row in Y.
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Dynkin
label!sun@$SU(n)$

sun@$SU(n)$!Dynkin
label

Remove the squares corresponding to Y and rotate the rest by 180 degrees. The
result is the conjugate diagram of Y. For example, for SU(6) the irrep (20110)
has (01102) as its conjugate rep:

SU(6) : rotat
e

. (9.47)

In general, the SU(n) reps (b1b2 . . . bn−1) and (bn−1 . . . b2b1) are conjugate. For
example, (10 . . . 0) stands for the defining rep, and its conjugate is (00 . . . 01),
i.e., a column of n − 1 boxes.

The Levi-Civita tensor converts an antisymmetrized collection of n−1 “in”-
indices into 1 “out”-index, or, in other words, it converts an (n−1)-particle state
into a single antiparticle state. We use ¯ to denote the single antiparticle state;
it is the conjugate of the fundamental representation single particle state.
For example, for SU(3) we have

(10) = = 3 (20) = = 6

(01) = = 3 (02) = = 6

(11) = = 8 (21) = = 15 .

(9.48)

The product of the fundamental rep and the conjugate rep ¯ of SU(n)
decomposes into a singlet and the adjoint representation:

⊗ ¯ = ⊗

...

⎫⎬⎭n−1 = 1 ⊕

...

⎫⎬⎭n−1

n · n = n · n = 1 + (n2 − 1) .

Note that the conjugate of the diagram for the adjoint is again the adjoint.
Using the construction of sect. 9.4, the birdtrack Young projection operator

for the adjoint representation A can be written

PA =
2(n − 1)

n ... ... .

Using PA and the definition (9.38) of the 3-vertex, SU(n) group theory weights
involving quarks, antiquarks, and gluons can be calculated by expansion of the
symmetry operators or by application of the recoupling relation. For this reason,
we prefer to keep the conjugate reps conjugate, rather than replacing them by
columns of (n − 1) defining reps, as this will give us SU(n) expressions valid for
any n.
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negative dimen-
sions!sun@$SU(n)$
3-$j$

3j@3-$j$ negative
dimensions,
SUn@$SU(n)$

Levi-Civita tensor

9.9 An application of the negative dimensionality
theorem

An SU(n) invariant scalar is a fully contracted object (vacuum bubble) consisting
of Kronecker deltas and Levi-Civita symbols. Since there are no external legs,
the Levi-Civitas appear only in pairs, making it possible to combine them into
antisymmetrizers. In the birdtrack notation, an SU(n) invariant scalar is there-
fore a vacuum bubble graph built only from symmetrizers and antisymmetrizers.

The negative dimensionality theorem for SU(n) states that for any SU(n)
invariant scalar exchanging symmetrizers and antisymmetrizers is equivalent to
replacing n by −n:

SU(n) = SU(−n) , (9.49)

where the bar on SU indicates transposition, i.e., exchange of symmetrizations
and antisymmetrizations. The theorem also applies to U(n) invariant scalars,
since the only difference between U(n) and SU(n) is the invariance of the Levi-
Civita tensor in SU(n). The proof of this theorem is given in chapter 13.

We can apply the negative dimensionality theorem to computations of the
dimensions of the U(n) irreps, dY = trPY. Taking the transpose of a Young
diagram interchanges rows and columns, and it is therefore equivalent to inter-
changing the symmetrizers and antisymmetrizers in trPY. The dimension of the
irrep corresponding to the transpose Young diagram Yt can then be related to
the dimension of the irrep labeled by Y as dYt(n) = dY(−n) by the negative
dimensionality theorem.

Example: [3, 1] is the transpose of [2, 1, 1],

(
1
4

2 3
)t

=
1

4

2
3 .

Note the n → −n duality in the dimension formulas for these and other tableaux
(table 9.2).

Now for standard tableaux X, Y, and Z, compare the diagram of the 3-j
constructed from X, Y, and Z to that constructed from Xt, Zt, and Yt. The
diagrams are related by a reflection in a vertical line, reversal of all the arrows
on the lines, and interchange of symmetrizers and antisymmetrizers. The first
two operations do not change the value of the diagram, and by the negative
dimensionality theorem the values of two 3-j’s are related by n ↔ −n (and
possibly an overall sign; this sign is fixed by requiring that the highest power
of n comes with a positive coefficient). In tabulations, it suffices to calculate
approximately half of all 3-j’s. Furthermore, the 3-j sum rule (9.43) provides a
cross-check.
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3j@3-$j$
symbol!sun@$SU(n)$—)

tensor!adjoint $“times$
defining, $SU(n)$

The two 6-j symbols

Z

X

V

Y

W
Ut

t

t t

t

t

V

U

Z

W
X

Y

(9.50)

are related by a reflection in a vertical line, reversal of all the arrows on the
lines, and interchange of symmetrizers and antisymmetrizers – this can be seen
by writing out the 6-j symbols in terms of the Young projection operators as in
(9.41). By the negative dimensionality theorem, the values of the two 6-j symbols
are therefore related by n ↔ −n.

9.10 SU(n) mixed two-index tensors

We now return to the construction of projection operators from characteristic
equations. Consider mixed tensors q(1) ⊗ q(2) ∈ V ⊗ V . The Kronecker delta
invariants are the same as in sect. 9.1, but now they are drawn differently (we
are looking at a “cross channel”):

identity: 1 = 1b c
a,d = δc

aδ
b
d = ,

trace: T = T b c
a,d = δb

aδ
c
d = . (9.51)

The T matrix satisfies a trivial characteristic equation

T2 = = nT , (9.52)

i.e., T(T − n1) = 0, with roots λ1 = 0, λ2 = n. The corresponding projection
operators (3.48) are

P1 =
1
n
T =

1
n

, (9.53)

P2 = 1 − 1
n
T = − 1

n
= , (9.54)

with dimensions d1 = trP1 = 1, d2 = trP2 = n2 − 1. P2 is the projection
operator for the adjoint rep of SU(n). In this way, the invariant matrix T has
resolved the space of tensors xa

b ∈ V ⊗ V into a singlet and a traceless part,

P1x =
1
n

xc
cδ

b
a , P2x = xb

a −
(

1
n

xc
c

)
δb
a . (9.55)

Both projection operators leave δa
b invariant, so the generators of the unitary

transformations are given by their sum

U(n) :
1
a

= , (9.56)

and the dimension of the U(n) adjoint rep is N = trPA = δa
aδb

b = n2. If we
extend the list of primitive invariants from the Kronecker delta to the Kronecker
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Levi-Civita tensor
adjoint rep!sun@$SU(n)$
sun@$SU(n)$!adjoint rep

delta and the Levi-Civita tensor (6.27), the singlet subspace does not satisfy the
invariance condition (6.56)

... �= 0 .

For the traceless subspace (9.54), the invariance condition is

... − 1
n

... = 0 .

This is the same relation as (6.25), as can be shown by expanding the antisym-
metrization operator using (6.19), so the invariance condition is satisfied. The
adjoint rep is given by

SU(n) :
1
a

= − 1
n

1
a

(Ti)
a
b (Ti)

d
c = δa

c δd
b − 1

n
δa
b δd

c . (9.57)

The special unitary group SU(n) is, by definition, the invariance group of the
Levi-Civita tensor (hence “special”) and the Kronecker delta (hence “unitary”),
and its dimension is N = n2 − 1. The defining rep Dynkin index follows from
(7.27) and (7.28)

�−1 = 2n (9.58)

(This was evaluated in the example of sect. 2.2.) The Dynkin index for the singlet
rep (9.55) vanishes identically, as it does for any singlet rep.

9.11 SU(n) mixed defining ⊗ adjoint tensors

In this and the following section we generalize the reduction by invariant matrices
to spaces other than the defining rep. Such techniques will be very useful later
on, in our construction of the exceptional Lie groups. We consider the defining
⊗ adjoint tensor space as a projection from V ⊗ V ⊗ V space: PC: remove dots from

f a8.E0.b, a8.E1, a8.E2
a8.E3

= . (9.59)

The following two invariant matrices acting on V 2 ⊗ V space contract or inter-
change defining rep indices:

R = (9.60)

Q = = . (9.61)
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R projects onto the defining space and satisfies the characteristic equation

R2 = =
n2 − 1

n
R . (9.62)

The corresponding projection operators (3.48) are

P1 =
n

n2 − 1
,

P4 = − n

n2 − 1
. (9.63)

Q takes a single eigenvalue on the P1 subspace

QR = = − 1
n
R . (9.64)

Q2 is computed by inserting the adjoint rep projection operator (9.57):

Q2 = = − 1
n

. (9.65)

The projection on the P4 subspace yields the characteristic equation

P4(Q2 − 1) = 0 , (9.66)

with the associated projection operators

P2 =
1
2
P4(1 + Q) (9.67)

=
1
2

{
− n

n2 − 1

}{
+

}
=

1
2

{
+ − 1

n + 1

}
,

P3 =
1
2
P4(1 − Q)

=
1
2

{
− − 1

n − 1

}
. (9.68)

The dimensions of the two subspaces are computed by taking traces of their
projection operators:

d2 = trP2 = 2P =
1
2

⎧⎪⎨⎪⎩ + − 1
n + 1

⎫⎪⎬⎪⎭
=

1
2

(nN + N − N/(n + 1)) =
1
2
(n − 1)n(n + 2) (9.69)

and similarly for d3. This is tabulated in table 9.3.
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A ⊗ q = V1 ⊕ V2 ⊕ V3

Dynkin labels: (10 . . . 01) ⊗ (10 . . .) = (10 . . .) ⊕ (200 . . . 01) ⊕ (010 . . . 01)

..

. ⊗ = + ... +
..
.

Dimensions: (n2 − 1)n = n + n(n−1)(n+2)
2 + n(n+1)(n−2)

2

Indices: n + n2−1
2n = 1

2n + (n+2)(3n−1)
4n + (n−2)(3n+1)

4n

SU(3) example:

Dimensions: 8 · 3 = 3 + 15 + 6
Indices: 13/3 = 1/6 + 10/3 + 5/6

SU(4) example:

Dimensions: 15 · 4 = 4 + 36 + 20
Indices: 47/8 = 1/8 + 33/8 + 13/8

Projection operators:

P1 = n
n2−1

P2 = 1
2

{
+ − 1

n+1

}
P2 = 1

2

{
− − 1

n−1

}

Table 9.3: SU(n) V ⊗ A Clebsch-Gordan series.

PUP copyeditor version 8.7, September 27, 2007, printed October 14, 2007P. Cvitanović, Group Theory, unitary, last edited July 3, 2007
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algebra!of invariants
invariant!algebra
2-index

tensor!sun@$SU(n)$
adjoint

adjoint rep!2-index
sun@$SU(n)$

9.11.1 Algebra of invariants

Mostly for illustration purposes, let us now perform the same calculation by
utilizing the algebra of invariants method outlined in sect. 3.4. A possible basis
set, picked from the V ⊗A → V ⊗A linearly independent tree invariants, consists
of

(e,R,Q) =
(

, ,

)
. (9.70)

The multiplication table (3.42) has been worked out in (9.62), (9.64), and (9.65).
For example, the (tα)βγ matrix rep for Qt is

∑
γ∈T

(Q)βγtγ = Q

⎛⎝ e
R
Q

⎞⎠ =

⎛⎝ 0 0 1
0 −1/n 0
1 −1/n 0

⎞⎠⎛⎝ e
R
Q

⎞⎠ (9.71)

and similarly for R. In this way, we obtain the [3×3] matrix rep of the algebra
of invariants

{e,R,Q} =

⎧⎨⎩
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ ,

⎛⎝ 0 1 0
0 n − 1

n 0
0 −1/n 0

⎞⎠ ,

⎛⎝ 0 0 1
0 −1/n 0
1 −1/n 0

⎞⎠⎫⎬⎭ .(9.72)

From (9.62) we already know that the eigenvalues of R are {0, 0, n − 1/n}. The
last eigenvalue yields the projection operator P1 = (n−1/n)−1, but the projection
operator P4 yields a 2-dimensional degenerate rep. Q has three distinct eigen-
values {−1/n, 1,−1} and is thus more interesting; the corresponding projection
operators fully decompose the V ⊗ A space. The − 1/n eigenspace projection
operator is again P1, but P4 is split into two subspaces, verifying (9.68) and
(9.67):

P2 =
(Q + 1)(Q + 1

n1)
(1 + 1)(1 + 1/n)

=
1
2

(
1 + Q − 1

n + 1
R
)

P3 =
(Q − 1)(Q + 1

n1)
(−1 − 1)(−1 + 1/n)

=
1
2

(
1− Q − 1

n − 1
R
)

. (9.73)

We see that the matrix rep of the algebra of invariants is an alternative tool for
implementing the full reduction, perhaps easier to implement as a computation
than an out and out birdtracks evaluation.

To summarize, the invariant matrix R projects out the 1-particle subspace
P1. The particle exchange matrix Q splits the remainder into the irreducible
V ⊗ A subspaces P2 and P3.

9.12 SU(n) two-index adjoint tensors
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Consider the Kronecker product of two adjoint reps. We want to reduce the space
of tensors xij ∈ A⊗A, with i = 1, 2, . . . N . The first decomposition is the obvious
decomposition (9.4) into the symmetric and antisymmetric subspaces,

1 = S + A

= + .
(9.74)

The symmetric part can be split into the trace and the traceless part, as in (9.54):

S =
1
N

T + PS

=
1
N

+
{

− 1
N

}
. (9.75)

Further decomposition can be effected by studying invariant matrices in the V 2⊗
V

2 space. We can visualize the relation between A⊗A and V 2⊗V
2 by the identity

= . (9.76)

This suggests the introduction of two invariant matrices:

Q = (9.77)

R = = . (9.78)

R can be decomposed by (9.54) into a singlet and the adjoint rep

R = + 1
n

= R′ + 1
nT .

(9.79)

The singlet has already been taken into account in the trace-traceless tensor
decomposition (9.75). The R′ projection on the antisymmetric subspace is

AR′A = . (9.80)

By the Lie algebra (4.48),

(AR′A)2 =
1
16

=
n

8
=

n

2
AR′A , (9.81)

and the associated projection operators,

(P5)ij,kl =
1
2n

CijmCmlk =
1
2n

Pa = − 1
2n

, (9.82)
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dijk@$d˙ijk$
tensor—(textbf split the antisymmetric subspace into the adjoint rep and a remainder. On the

symmetric subspace (9.75), R′ acts as PSR′PS . As R′T = 0, this is the same as
SR′S. Consider

(SR′S)2 = .

We compute

=
1
2

{
+

}
=

1
2

{
− 1

n
+ − 1

n

}

=
1
2n

{
n2 − 4

}
. (9.83)

Hence, SR′S satisfies the characteristic equation(
SR′S − n2 − 4

2n

)
SR′S = 0 . (9.84)

The associated projection operators split up the traceless symmetric subspace
(9.75) into the adjoint rep and a remainder:

P2 =
2n

n2 − 4
SR′S =

2n
n2 − 4

, (9.85)

P2′ = PS − P2 . (9.86)

The Clebsch-Gordan coefficients for P2 are known as the Gell-Mann dijk ten-
sors [138]:

j
k

i
=

1
2

=
1
2
dijk . (9.87)

For SU(3), P2 is the projection operator (8 ⊗ 8) symmetric → 8. In terms of
dijk’s, we have

(P2)ij,k� =
n

2(n2 − 4)
dijmdmk� =

n

2(n2 − 4)
, (9.88)

with the normalization

dijkdkj� = =
2(n2 − 4)

n
δi� . (9.89)

Next we turn to the decomposition of the symmetric subspace induced by matrix
Q (9.77). Q commutes with S:

QS = =
1
2

{
+

}
= SQ = SQS . (9.90)
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On the 1-dimensional subspace in (9.75), it takes eigenvalue −1/n

TQ = = − 1
n
T ; (9.91)

so Q also commutes with the projection operator PS from (9.75),

QPS = Q
(
S − 1

n2 − 1
T

)
= PSQ . (9.92)

Q2 is easily evaluated by inserting the adjoint rep projection operators (9.54)

Q2 =

= − 1
n

(
+

)
+

1
n2

. (9.93)

Projecting on the traceless symmetric subspace gives

PS

(
Q2 − 1 +

n2 − 4
n2

P2

)
= 0 . (9.94)

On the P2 subspace Q gives

=
1
2

{
+

}

=
1
2

{
− 1

n

+ − 1
n

}

= − 2
n

. (9.95)

Hence, Q has a single eigenvalue,

QP2 = − 2
n
P2 , (9.96)

and does not decompose the P2 subspace; this is as it should be, as P2 is the
adjoint rep and is thus irreducible. On P2′ subspace (9.93) yields a characteristic
equation

P2′(Q2 − 1) = 0 ,
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with the associated projection operators

P3 =
1
2
P2′(1 − Q) (9.97)

=
1
2

{
− − 1

2(n − 2)
− 1

n(n − 1)

}
,

P4 =
1
2
P2′(1 + Q) =

1
2
(PS − P1)(1 + Q)

=
1
2

(
PS − P1 + SQ − 1

n2 − 1
TQ +

2
n
P1

)
=

1
2

(
S + SQ − n − 2

n
P1 −

1
n(n + 1)

T
)

(9.98)

=
1
2

{
+ − 1

2(n + 2)
− 1

n(n + 1)

}
.

The dimensions are tabulated in table 9.4. This completes the reduction of the⇓INTERNAL

⇑INTERNAL symmetric subspace in (9.74). As in (9.90), Q commutes with A

QA = AQ = AQA . (9.99)

On the antisymmetric subspace, the Q2 equation (9.93) becomes

0 = A
(
Q2 − 1 +

2
n
R
)

, A = A(Q2 − 1 − PA) . (9.100)

The adjoint rep (9.82) should be irreducible. Indeed, it follows from the Lie
algebra, that Q has zero eigenvalue for any simple group:

P5Q =
1

CA
= 0 . (9.101)

On the remaining antisymmetric subspace Pa (9.100) yields the characteristic
equation

Pa(Q2 − 1) = 0 , (9.102)

with corresponding projection operators

P6 =
1
2
Pa(1 + Q) =

1
2
A(1 + Q − PA)

=
1
2

{
+ − 1

CA

}
, (9.103)

P7 =
1
2
Pa(1 −Q)

=
1
2

{
− − 1

CA

}
. (9.104)
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dijk@$d˙ijk$ tensor—)
casimir!sun@$SU(n)$
sun@$SU(n)$!casimirs

AJ: create table 8.5 from manuscript

Table 9.4: Summary of the reduction of a Kronecker product of two SU(n) adjoint
reps. The flip matrix F induces decomposition into symmetric and antisymmetric
subspaces (9.74). The trace matrix T projects out the singlet rep (9.75). R′

from (9.78) projects the adjoint reps in both the symmetric and antisymmetric
subspaces. Finally, the interchange matrix Q from (9.77) decomposes the P2′

and Pa subspaces.

To compute the dimensions of these reps we need

trAQ = =
1
2

⎧⎪⎨⎪⎩ −

⎫⎪⎬⎪⎭ = 0 , (9.105)

so both reps have the same dimension

d6 = d7 =
1
2
(trA− trPA) =

1
2

{
(n2 − 1)(n2 − 2)

2
− n2 − 1

}
=

(n2 − 1)(n2 − 4)
4

. (9.106)

Indeed, the two reps are conjugate reps. The identity

= − , (9.107)

obtained by interchanging the two left adjoint rep legs, implies that the projection
operators (9.103) and (9.104) are related by the reversal of the loop arrow. This
is the birdtrack notation for complex conjugation (see sect. 4.1).

This decomposition of two SU(n) adjoint reps is summarized in table 9.4 and ⇓INTERNAL

table 9.5. ⇑INTERNAL

9.13 Casimirs for the fully symmetric reps of SU(n)

In this section we carry out a few explicit birdtrack casimir evaluations.
Consider the fully symmetric Kronecker product of p particle reps. Its Dynkin

label (defined on page 118) is (p, 0, 0 . . . 0), and the corresponding Young tableau
is a row of p boxes: . .. P . The projection operator is given by (6.4)

PS = S = 2

p...

1
,

and the generator (4.41) in the symmetric rep is

T i = p ... ...... . (9.108)

PUP copyeditor version 8.7, September 27, 2007, printed October 14, 2007P. Cvitanović, Group Theory, unitary, last edited July 3, 2007
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To compute the casimirs, we introduce matrices:

X = xiT
i = p .........

Xb
a = xi(T i)ba = a b . (9.109)

We next compute the powers of X:

X2 = p

{

...... ... + (p − 1)

...... ...

}
X3 = p

{

... + 3(p − 1)

... + (p − 1)(p − 2)

...

}

X4 = p

⎧⎪⎪⎨⎪⎪⎩

... + 4(p − 1)

... + 3(p − 1)

...

+6(p − 1)(p − 2)

...

+ (p − 1)(p − 2)(p − 3)

...

⎫⎪⎪⎬⎪⎪⎭
... (9.110)

The tr Xk are then

tr X0 = ds

(
n + p − 1

p

)
(see (6.13)) (9.111)

tr X = 0 (semisimplicity) (9.112)

tr X2 = ds
p(p + n)
n(n + 1)

tr x2 (9.113)

tr X3 =
ds

n
p

(
1 + 3

p − 1
n + 1

+ 2
(p − 1)(p − 2)
(n + 1)(n + 2)

)
tr x3

=
(n + p)!(n + 2p)
(n + 2)!(p − 1)!

tr x3 = ds
p(n + p)(n + 2p)
n(n + 1)(n + 2)

tr x3 (9.114)

tr X4 = d
p

n

{(
1 + 7

p − 1
n + 1

+ 12
p − 1
n + 1

p − 2
n + 2

+ 6
p − 1
n + 1

p − 2
n + 2

p − 3
n + 3

)
tr x4

+
p − 1
n + 1

(
3 + 6

p − 2
n + 2

+ 3
p − 2
n + 2

p − 3
n + 3

)(
tr x2

)2}
. (9.115)

The quadratic Dynkin index is given by the ratio of trX2 and trA X2 for the
adjoint rep (7.30):

�2 =
tr X2

trA X2
=

dsp(p + n)
2n2(n + 1)

. (9.116)

To take a random example from the Patera-Sankoff tables [277], the SU(6) rep
dimension and Dynkin index

rep dim �2

(0,0,0,0,0,14) 11628 6460 (9.117)

check with the above expressions.
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adjoint rep!sun@$SU(n)$
sun@$SU(n)$!adjoint rep
un@$U(n)$—)
Levi-Civita tensor
Penrose!Young

projection operators

9.14 SU(n), U(n) equivalence in adjoint rep

The following simple observation speeds up evaluation of pure adjoint rep group-
theoretic weights (3n-j)’s for SU(n): The adjoint rep weights for U(n) and SU(n)
are identical. This means that we can use the U(n) adjoint projection operator

U(n) : ������������ = (9.118)

instead of the traceless SU(n) projection operator (9.54), and halve the number
of terms in the expansion of each adjoint line.
Proof: Any internal adjoint line connects two Cijk’s:

= −

= − + .

The trace part of (9.54) cancels on each line; hence, it does not contribute to the
pure adjoint rep diagrams. As an example, we reevaluate the adjoint quadratic
casimir for SU(n):

CAN =
���
���
���
���

���
���
���
���

= 2
��
��
��
��

= 2
{

− 2
}

.

Now substitute the U(n) adjoint projection operator (9.118): PC: I like AJ’s beauti-
fied a8.84.l, a8.84.m Mickey
Mouse, we keep it

CAN = 2
{

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

− 2
����
����
����
����

������ ����

}
= 2n(n2 − 1) ,

in agreement with the first exercise of sect. 2.2.

9.15 Sources

Sects. 9.3–9.9 of this chapter are based on Elvang et al. [114]. The introduction to
the Young tableaux folows ref. [114], which, in turn, is based on Lichtenberg [218]
and Hamermesh [155]. The rules for reduction of direct products follow Lichten-
berg [218], stated here as in ref. [113]. The construction of the Young projection
operators directly from the Young tableaux is described in van der Waerden [337],
who ascribes the idea to von Neumann.

R. Penrose’s papers are the first (known to the authors) to cast the Young
projection operators into a diagrammatic form. Here we use Penrose diagram-
matic notation for symmetrization operators [284], Levi-Civita tensors [286],
and “strand networks” [285]. For several specific, few-particle examples, dia-
grammatic Young projection operators were constructed by Canning [41], Man-
dula [231], and Stedman [321]. A diagrammatic construction of the U(n) Young
projection operators for any Young tableau was outlined in the unpublished
ref. [188], without proofs; the proofs of appendix B that the Young projection
operators so constructed are unique were given in ref. [113].
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Sym
m

etric
︷

︸︸
︷

A
ntisym

m
etric

︷
︸︸

︷
V

A
⊗

V
A

=
V

1
⊕

V
2

⊕
V

3
⊕

V
4

⊕
V

5
⊕

V
6

⊕
V

7

D
im

ensions
(n

2−
1)

2
=

1
+

(n
2−

1)
+

n
2
(n−

3
)(n

+
1
)

4
+

n
2
(n

+
3
)(n−

1
)

4
+

(n
2−

1)
+

(n
2−

1
)(n

2−
4
)

4
+

(n
2−

1
)(n

2−
4
)

4

D
ynkin

indices
2(n

2−
1)

=
0

+
1

+
n
(n−

3
)

2
+

n
(n

+
3
)

2
+

1
+

n
2−

4
2

+
n

2−
4

2

SU
(3)

exam
ple:

D
im

ensions
8
2

=
1

+
8

+
0

+
27

+
8

+
10

+
10

Indices
2
·8

=
0

+
1

+
0

+
9

+
1

+
52

+
52

SU
(4)

exam
ple:

(101)⊗
(101)

=
(000)

⊕
(101)

⊕
(020)

⊕
(202)

⊕
(101)

⊕
(012)

⊕
(210)

D
im

ensions
15

2
=

1
+

15
+

20
+

84
+

15
+

45
+

45

Indices
2·15

=
0

+
1

+
2

+
14

+
1

+
6

+
6

P
rojection

operators

P
1

=
1

n
2−

1

P
2

=
n

2
(n

2−
4
)

,
P

5
=

12
n

���
���
���
���

�� ���� ��

P
3

=
12 {

−
−

1
2
(n−

2
)

−
1

n
(n−

1
)

}
,

P
6

=
12 {

���
���
���
���
���
���

���
���
���
���
���
���

+
−

12
n

���
���
���
���

�� ���� ��

}

P
4

=
12 {

+
−

1
2
(n

+
2
)

−
1

n
(n

+
1
)

}
,

P
7

=
12 {

���
���
���
���
���
���

���
���
���
���
���
���

−
−

12
n

���
���
���
���

�� ���� ��

}

T
able

9.5:
S

U
(n),

n
≥

3
C

lebsch-G
ordan

series
for

A
⊗

A
.



son@$SO(n)$—(textbf

Chapter 10

Orthogonal groups

Orthogonal group SO(n) is the group of transformations that leaves invariant a
symmetric quadratic form (q, q) = gμνqμqν :

gμν = gνμ = μ ν μ, ν = 1, 2, . . . , n . (10.1)

If (q, q) is an invariant, so is its complex conjugate (q, q)∗ = gμνqμqν , and

gμν = gνμ = μ ν (10.2)

is also an invariant tensor. The matrix Aν
μ = gμσgσν must be proportional to

unity, as otherwise its characteristic equation would decompose the defining n-
dimensional rep. A convenient normalization is

gμσgσν = δν
μ

= . (10.3)

As the indices can be raised and lowered at will, nothing is gained by keeping the
arrows. Our convention will be to perform all contractions with metric tensors
with upper indices and omit the arrows and the open dots:

gμν ≡ μ ν . (10.4)

All other tensors will have lower indices. For example, Lie group generators (Ti)μν

from (4.32) will be replaced by PC: emphasize - this is
THE definition

(Ti)μ
ν = → (Ti)μν = .

PC: link to (4.37)
The invariance condition (4.37) for the metric tensor

+ = 0
(Ti)μ

σgσν + (Ti)ν
σgμσ = 0 (10.5)
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Minkowski group
$SO(1,3)$

so31@$SO(1,3)$
Minkowski group

2-index
tensor!son@$SO(n)$

becomes, in this convention, a statement that the SO(n) generators are antisym-
metric:

+ = 0
(Ti)μν = − (Ti)νμ . (10.6)

Our analysis of the reps of SO(n) will depend only on the existence of a symmet-
ric metric tensor and its invertability, and not on its eigenvalues. The resulting
Clebsch-Gordan series applies both to the compact SO(n) and noncompact or-
thogonal groups, such as the Minkowski group SO(1, 3). In this chapter, we
outline the construction of SO(n) tensor reps. Spinor reps will be taken up in
chapter 11.

10.1 Two-index tensors

In sect. 9.1 we have decomposed the SU(n) 2-index tensors into symmetric and
antisymmetric parts. For SO(n), the rule is to lower all indices on all tensors,
and the symmetric state projection operator (9.2) is replaced by

Sμν,ρσ = gρρ′gσσ′Sμν ,
ρ′σ′

=
1
2

(gμσgνρ + gμρgνσ)

λ1
μ

ν

σ

ρ
= .

From now on, we drop all arrows and gμν ’s and write (9.4) as

= +

gμσgνρ =
1
2
(gμσgνρ + gμρgνσ) +

1
2
(gμσgνρ − gμρgνσ) . (10.7)

The new invariant, specific to SO(n), is the index contraction:

Tμν,ρσ = gμνgρσ , T = . (10.8)

The characteristic equation for the trace invariant

T2 = = nT (10.9)

yields the trace and the traceless part projection operators (9.53), (9.54). As T
is symmetric, ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition of SO(n) 2-index tensors is
traceless symmetric:

(P2)μν,ρσ =
1
2

(gμσgνρ + gμρgνσ) − 1
n

gμνgρσ = − 1
n

, (10.10)
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Dynkin
index!son@$SO(n)$

tensor!mixed adjoint
$“otimes$ defining,
$SO(n)$

Young tableaux × = • + +

Dynkin labels (10 . . .) × (10 . . .) = (00 . . .) + (010 . . .) + (20 . . .)

Dimensions n2 = 1 + n(n−1)
2 + (n+2)(n−1)

2

Dynkin indices 2n 1
n−2 = 0 + 1 + n+2

n−2

Projectors = 1
n +

����
����
����
����
����
����

����
����
����
����
����
����

+
{

− 1
n

}

Table 10.1: SO(n) Clebsch-Gordan series for V ⊗V .

singlet: (P1)μν,ρσ =
1
n

gμνgρσ =
1
n

, (10.11)

antisymmetric: (P3)μν,ρσ =
1
2

(gμσgνρ − gμρgνσ) = . (10.12)

The adjoint rep (9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is the new adjoint rep,
we substitute them into the invariance condition (10.5). Only the antisymmetric
projection operator satisfies the invariance condition

+ = 0 ,

so the adjoint rep projection operator for SO(n) is

1
a

= . (10.13)

The dimension of SO(n) is given by the trace of the adjoint projection operator:

N = trPA = =
n(n − 1)

2
. (10.14)

Dimensions of the other reps and the Dynkin indices (see sect. 7.5) are listed in
table 10.1.

10.2 Mixed adjoint ⊗ defining rep tensors

The mixed adjoint-defining rep tensors are decomposed in the same way as for
SU(n). The intermediate defining rep state matrix R (9.60) satisfies the charac-
teristic equation

R2 = =
n − 1

2
R . (10.15)
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2-index
tensor!son@$SO(n)$
adjoint

The corresponding projection operators are

P1 =
2

n − 1
,

P2 = − 2
n − 1

. (10.16)

The eigenvalue of Q from (9.61) on the defining subspace can be computed by
inserting the adjoint projection operator (10.13):

QR = =
1
2
R . (10.17)

Q2 is also computed by inserting (10.13):

Q2 = =
1
2

{
−

}
=

1
2
(1 − Q) . (10.18)

The eigenvalues are {−1, 1
2}, and the associated projection operators (3.48) are

P2 = P4
2
3
(1 + Q) =

2
3

(
1 − 2

n − 1
R
)

(1 + Q) =
2
3

(
1 + Q − 3

n − 1
R
)

=
2
3

{
+ − 3

n − 1

}
, (10.19)

P3 = P4
1
3
(1 − 2Q) =

1
3

{
− 2

}
. (10.20)

This decomposition is summarized in table 10.2. The same decomposition can be
obtained by viewing the SO(n) defining-adjoint tensors as ⊗ products, and
starting with the SU(n) decomposition along the lines of sect. 9.2.PC: reinstate, evalu-

ate Dynkin indices in
table 10.2?
PC: reorder birdtracks in
table 10.2, or refer to text
equations, so it fits horizon-
tally?

10.3 Two-index adjoint tensors

The reduction of the 2-index adjoint rep tensors proceeds as for SU(n). The
annihilation matrix R (9.78) induces decomposition of (10.11) through (10.12)
into three tensor spaces

R = (10.21)

=
1
n

+
{

− 1
n

}
+ .

On the antisymmetric subspace, the last term projects out the adjoint rep:

=
1

n − 2
+
{

− 1
n − 2

}
. (10.22)
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The last term in (10.21) does not affect the symmetric subspace

=
1
2

{
+

}
=

1
2

{
−

}
= 0 , (10.23)

because of the antisymmetry of the SO(n) generators (dijk = 0 for orthogonal
groups). The second term in (10.21),

RS = − 1
n

, (10.24)

projects out the intermediate symmetric 2-index tensors subspace. To normalize
it, we compute (RS)2:

(RS)2 = − 2
n

+
n − 1
2n

=
n − 2

4
RS . (10.25)

RS decomposes the symmetric 2-index adjoint subspace into

=
2

n(n − 1)
+

+
{

− − 2
n(n − 1)

}
P2 = =

4
n − 2

{
− 1

n

}
. (10.26)

Because of the antisymmetry of the SO(n) generators, the index interchange
matrix (9.77) is symmetric,

SQ = SQ∗ = Q

= = , (10.27)

so it cannot induce a decomposition of the antisymmetric subspace in (10.22).
Here Q∗ indicates the diagram for Q with the arrow reversed. On the singlet
subspace it has eigenvalue 1

2 :

QT = =
1
2
T . (10.28)

On the symmetric 2-index defining rep tensors subspace, its eigenvalue is also 1
2 ,

as the evaluation by the substitution of adjoint projection operators by (10.13)
yields

QR = =
1
2
SR . (10.29)
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3-index
tensor!SOn@$SO(n)$

tensor!3-index, $SO(n)$
Q2 is evaluated in the same manner:

Q2 = =
1
2

{
−

}
=

1
2
S(1 − Q) . (10.30)

Thus, Q satisfies the same characteristic equation as in (10.18). The correspond-
ing projection operators decompose the symmetric subspace (the third term in
(10.26)) into

P3 =
{

− − 2
n(n − 1)

}
2
3

{
+

}

=
2
3

{
+

}
− − 2

n(n − 1)
, (10.31)

P4 =
1
3

{
− 2

}
. (10.32)

This Clebsch-Gordan series is summarized in table 10.3. PC: reinstate, evalu-
ate Dynkin indices in
table 10.3?The reduction of 2-index adjoint tensors, outlined above, is patterned after

the reduction for SU(n). Another, fully equivalent approach, is to consider the
SO(n) 2-index adjoint tensors as ⊗ products and start from the decomposition
of sect. 9.5. This will be partially carried out in sect. 10.5.

10.4 Three-index tensors

In the reduction of the 2-index tensors in sect. 10.1, the new SO(n) invariant was
the index contraction (10.8). In general, for a multiindex tensor, the SU(n) →
SO(n) reduction is due to the additional index contraction invariants. Consider
the fully symmetric 3-index SU(n) state in table 9.1. The new SO(n) invariant
matrix on this space is

R = . (10.33)

This is a projection onto the defining rep. The normalization follows from

=
1
3

{
+ 2

}
=

n + 2
3

. (10.34)

The rep of SU(n) thus splits into

=
3

n + 2
+
{

− 3
n + 2

}
. (10.35)
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gravity tensors
tensor!gravity
Riemann-Christoffel

tensor
Penrose!Young

projection operators

On the mixed symmetry subspace in table 9.1, one can try various index con-
traction matrices Ri. However, their projections P2RiP2 are all proportional
to

. (10.36)

The normalization is fixed by

=
3
8
(n − 1) , (10.37)

and the mixed symmetry rep of SU(n) in (9.12) splits as PC: evaluate Dynkin in-
dices in table 10.4
PC: compute and restore
Dynkin indices in ta-
ble 10.4, decrease vertical
spacing

4
3

=
8

3(n − 1)
(10.38)

+
4
3

{
− 2

n − 1

}
.

The other mixed symmetry rep in table 9.1 splits in analogous fashion. The fully
antisymmetric space is not affected by contractions, as

= 0 (10.39)

by the symmetry of gμν . Besides, as is the adjoint rep, we have already per-
formed the ⊗ decomposition in the preceding section. The full Clebsch-Gordan
series for the SO(n) 3-index tensors is given in table 10.4.

10.5 Gravity tensors

In a different application of birdtracks, we now change the language and construct
the “irreducible rank-four gravity curvature tensors.” The birdtrack notation for
Young projection operators had originally been invented by Penrose [284] in this
context. The Riemann-Christoffel curvature tensor has the following symme-
tries [339]:

Rαβγδ = −Rβαγδ

Rαβγδ = Rγδαβ (10.40)
Rαβγδ + Rβγαβ + Rγαβδ = 0 .

Introducing birdtrack notation for the Riemann tensor

Rαβγδ =
β
γ

α

R

δ

, (10.41)
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we can state the above symmetries as

R = R , (10.42)

R = R , (10.43)

R + R + R = 0 . (10.44)

The first condition says that R lies in ⊗ subspace. We have decomposed
this subspace in table 9.2. The second condition says that R lies in ↔
interchange-symmetric subspace, which splits into and subspaces: PC: replace ref to the for-

mer sect 6.F

PC: by former (6.71)1
2

(
+

)
=

4
3

+ . (10.45)

PC: missing bar on the
crossterm in (10.45)The third condition says that R has no components in the space:

R + R + R = 3 R = 0 . (10.46)

Hence, the Riemann tensor is a pure tensor, whose symmetries are summa-
rized by the rep projection operator [284]:

(PR)αβγδ ,
δ′γ′β′α′

=
4
3 γ

δ

α
ββ

δ
γ

´α

´
´
´ (10.47)

(PRR)αβγδ = (PR)αβγδ ,
δ′γ′β′α′

Rα′β′γ′δ′ = Rαβγδ

4
3

R = R . (10.48)

This compact statement of the Riemann tensor symmetries yields immediately
the number of independent components of Rαβγδ , i.e., the dimension of the
reps in table 9.2: PC: old tables 6.4, 6.5

dR = trPR =
n2(n2 − 1)

12
. (10.49)

The Riemann tensor has the symmetries of the rep of SU(n). However,
gravity is also characterized by the symmetric tensor gαβ , that induces local
SO(n) invariance (more precisely SO(1, n−1), but compactness is not important
here). The extra invariants built from gαβ ’s decompose SU(n) reps into sums of
SO(n) reps.

The SU(n) subspace, corresponding to , is decomposed by the SO(n)
intermediate 2-index state contraction matrix

Q = . (10.50)
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curvature scalar
Ricci tensor The intermediate 2-index subspace splits into three irreducible reps by (10.11)-

(10.12):

Q =
1
n

+
{

− 1
n

}
+

= Q0 + QS + QA . (10.51)

The Riemann tensor is symmetric under the interchange of index pairs, so the
antisymmetric 2-index state does not contribute

PRQA = 0 . (10.52)

The normalization of the remaining two projectors is fixed by computation of
Q2

S,Q2
0:

P0 =
2

n(n − 1)
, (10.53)

PS =
4

n − 2

{
− 1

n

}
. (10.54)

This completes the SO(n) reduction of the SU(n) rep (10.48):

SU(n) → SO(n)

→ + + ◦
PR = PW + PS + P0

n2(n2−1)
12 = (n+2)(n+1)n(n−3)

12 + (n+2)(n−1)
2 + 1

(10.55)

Here the projector for the traceless tensor is given by PW = PR − PS − P0:

PW =
4
3

− 4
n − 2

+
2

(n − 1)(n − 2)
.(10.56)

The above three projectors project out the standard relativity tensors:

Curvature scalar:

R = − R = Rμ ν
νμ (10.57)

Traceless Ricci tensor:

Rμν − 1
n

gμνR = − R +
1
n

R (10.58)
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Weyl tensor
son@$SO(n)$!Dynkin

labels
Dynkin

label!son@$SO(n)$

Weyl tensor:

Cλμνκ = (PW R)λμνκ

= R − 4
n − 2

R +
2

(n − 1)(n − 2)
R

= Rλμνκ +
1

n − 2
(gμνRλκ − gλνRμκ − gμκRλν + gλκRμν)

− 1
(n − 1)(n − 2)

(gλκgμν − gλνgμκ)R . (10.59)

The numbers of independent components of these tensors are given by the dimen-
sions of corresponding subspaces in (10.55). The Ricci tensor contributes first in
three dimensions, and the Weyl tensor first in four, so we have

n = 2 : Rλμνκ = (P0R)λμνκ = 1
2 (gλνgμκ − gλκgμν)R

n = 3 : = gλνRμκ − gμνRλκ + gμκRλν − gλκRμν

−1
2(gλνgμκ − gλκgμν)R .

(10.60)

The last example of this section is an application of birdtracks to general rela-
tivity index manipulations. The object is to find the characteristic equation for
the Riemann tensor in four dimensions. We contract (6.24) with two Riemann
tensors:

0 =

R

R . (10.61)

Expanding with (6.19) we obtain the characteristic equation

0 = 2 RR − 4 RR − 4 RR

+ 2R R −
{

R2

2
− 2 RR +

1
2

RR

}
. (10.62)

For example, this identity has been used by Adler et al., eq. (E2) in ref. [5].

10.6 SO(n) Dynkin labels

In general, one has to distinguish between the odd- and the even-dimensional
orthogonal groups, as well as their spinor and nonspinor reps. In this chapter,
we study only the tensor reps; spinor reps will be taken up in chapter 11.

For SO(2r + 1) reps there are r Dynkin labels (a1a2 . . . ar−1Z). If Z is odd,
the rep is spinor; if Z is even, it is tensor. For the tensor reps, the corresponding
Young tableau in the Fischler notation [123] is given by

(a1a2 . . . ar−1Z) → (a1a2 . . . ar−1
Z

2
00 . . .) . (10.63)
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Levi-Civita tensor
son@$SO(n)$!dimensions
dimension!son@$SO(n)$
son@$SO(n)$—)

For example, for SO(7) rep (102) we have

(102) → (1010 . . .) = . (10.64)

For orthogonal groups, the Levi-Civita tensor can be used to convert a long
column of k boxes into a short column of (2r +1− k) boxes. The highest column
that cannot be shortened by this procedure has r boxes, where r is the rank of
SO(2r + 1).

For SO(2r) reps, the last two Dynkin labels are spinor roots
(a1a2 . . . ar−2Y Z). Tensor reps have Y + Z = even. However, as spinors are
complex, tensor reps can also be complex, conjugate reps being related by

(a1a2 . . . Y Z) = (a1a2 . . . ZY )∗ . (10.65)

For Z ≥ Y , Z + Y even, the corresponding Young tableau is given by

(a1a2 . . . ar−2Y Z) → (a1a2 . . . ar−2
Z − Y

2
00 . . .) . (10.66)

The Levi-Civita tensor can be used to convert long columns into short columns.
For columns of r boxes, the Levi-Civita tensor splits O(2r) reps into conjugate
pairs of SO(2r) reps.

We find the formula of King [193] and Murtaza and Rashid [255] the most
convenient among various expressions for the dimensions of SO(n) tensor reps
given in the literature. If the Young tableau λ is represented as in sect. 9.3, the
list of the row lengths [λ1, λ2, . . . λκ], then the dimension of the corresponding
SO(n) rep is given by

dλ =
dS

p!

k∏
i=1

(λi + n − k − i − 1)!
(n − 2i)!

k∏
j=1

(λi + λj + n − i − j) . (10.67)

Here p is the total number of boxes, and dS is the dimension of the symmetric
group rep computed in (9.16). For SO(2r) and κ = r, this rep is reducible andPC: used to be refeqYdi-

men, recheck vs old versons
of the book splits into a conjugate pair of reps. For example,

d =
1

1
3 1

· (n + 2)n(n − 2) =
n(n2 − 4)

3

d =
(n + 2)n(n − 1)(n − 3)

8
d =

(n + 2)(n + 1)n(n − 3)
12

, (10.68)

in agreement with (10.55). Even though the Dynkin labels distinguish SO(2r+1)
from SO(2r) reps, this distinction is significant only for the spinor reps. The
tensor reps of SO(n) have the same Young tableaux for the even and the odd n’s.
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Chapter 11

Spinors

P. Cvitanović and A. D. Kennedy

In chapter 10 we have discussed the tensor reps of orthogonal groups. However,
the spinor reps of SO(n) also play a fundamental role in physics, both as reps
of space-time symmetries (Pauli spin matrices, Dirac gamma matrices, fermions
in D-dimensional supergravities), and as reps of internal symmetries (SO(10)
grand unified theory, for example). In calculations of radiative corrections, the
QED spin traces can easily run up to traces of products of some twelve gamma
matrices [197], and efficient evaluation algorithms are of great practical impor-
tance. A most straightforward algorithm would evaluate such a trace in some
11!! = 11 · 9 · 7 · 5 · 3 � 10, 000 steps. Even computers shirk such tedium. A
good algorithm, such as the ones we shall describe here, will do the job in some
62 � 100 steps.

Spinors came to Cartan [43] as an unexpected fruit of his labors on the com-
plete classification of reps of the simple Lie groups. Dirac [96] rediscovered them
while looking for a linear version of the relativistic Klein-Gordon equation. He
introduced matrices γμ, which were required to satisfy

(p0γ0 + p1γ1 + . . .)2 = (p2
0 − p2

1 − p2
2 − . . .) . (11.1)

For n = 4 he constructed γ’s as [4 × 4] complex matrices. For SO(2r) and
SO(2r + 1) γ-matrices were constructed explicitly as [2r×2r] complex matrices
by Weyl and Brauer [347].

In the early days, such matrices were taken as a literal truth, and Klein and
Nishina [198] are reputed to have computed their celebrated Quantum Electro-
dynamics crosssection by multiplying γ-matrices by hand. Every morning, day
after day, they would multiply away explicit [4×4] γμ matrices and sum over μ’s.
In the afternoon, they would meet in the cafeteria of the Niels Bohr Institute to
compare their results.

Nevertheless, all information that is actually needed for spin traces evaluation
is contained in the Dirac algebraic condition (11.1), and today the Klein-Nishina
trace over Dirac γ’s is a textbook exercise, reducible by several applications of
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spinography—(textbf
the Clifford algebra condition on γ-matrices:

{γμ, γν} = γμγν + γνγμ = 2gμν 1 . (11.2)

Iterative application of this condition immediately yields a spin traces evaluation
algorithm in which the only residue of γ-matrices is the normalization factor tr 1.
However, this simple algorithm is inefficient in the sense that it requires a combi-
natorially large number of evaluation steps. The most efficient algorithm on the
market (for any SO(n)) appears to be the one given by Kennedy [187, 81]. In
Kennedy’s algorithm, one views the spin trace to be evaluated as a 3n-j coeffi-
cient. Fierz [121] identities are used to express this 3n-j coefficient in terms of 6-j
coefficients (see sect. 11.3). Gamma matrices are [2n/2×2n/2] in even dimensions,
[2(n−1)/2×2(n−1)/2] in odd dimensions, and at first sight it is not obvious that a
smooth analytic continuation in dimension should be possible for spin traces. The
reason why the Kennedy algorithm succeeds is that spinors are really not there
at all. Their only role is to restrict the SO(n) Clebsch-Gordan series to fully an-
tisymmetric reps. The corresponding 3-j and 6-j coefficients are relatively simple
combinatoric numbers, with analytic continuations in terms of gamma functions.
The case of four spacetime dimensions is special because of the reducibility of
SO(4) to SU(2) ⊗ SU(2). Farrar and Neri [116], who as of April 18, 1983, have
computed in excess of 58,149 Feynman diagrams, have used this structure to de-
velop a very efficient method for evaluating SO(4) spinor expressions. An older
technique, described here in sect. 11.8, is the Kahane [180] algorithm, which
implements diagrammatically the Chisholm [55] identities. REDUCE, an alge-
bra manipulation program written by Hearn [161], uses the Kahane algorithm.
Thörnblad [326] has used SO(4) ⊂ SO(5) embedding to speedup evaluation of
traces for massive fermions.PC: give refs to programs

available on the web This chapter is based on ref. [81].

11.1 Spinography

Kennedy [187] introduced diagrammatic notation for γ-matrices

(γμ)ab =
��
��
��
��a

μ

b

, a, b = 1, 2, . . . , 2n/2 or 2(n−1)/2

1ab =
���
���
���

���
���
���

a b , μ = 1, 2, . . . , n

tr1 = ��
��
��
��

. (11.3)

In this context, birdtracks go under the name “spinography.” For notational
simplicity, we take all γ-indices to be lower indices and omit arrows on the n-
dimensional rep lines. The n-dimensional rep is drawn by a solid directed line to
conform to the birdtrack notation of chapter 4. For QED and QCD spin traces,
one might prefer the conventional Feynman diagram notation,

(γμ)ab =
������

��
��
��
��a b

μ
,
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where the photons/gluons are in the n-dimensional rep of SO(3, 1), and electrons
are spinors. We eschew such notation here, as it would conflict with SO(n)
birdtracks of chapter 10. The Clifford algebra anticommutator condition (11.2) PC: place this:

155a158,159 - where
the thick line stands for
the SO(n) Kronecker delta
(10.4).

is given by

��
��
��
��

νμ

=

���
���
���
���

μ ν

. (11.4)

For antisymmetrized products of γ-matrices, this leads to the relation PC: birdTracklabel indices
on μ1 to μa on f a12.5.a,
f a12.5.b, f a12.5.c, as in
f a12.7.i

��������������
��������������
��������������
��������������

���
���
���
���

p1 2 3
...

...
=

��������������
��������������
��������������
��������������

��
��
��
��

...
1 2 p

...
+ (p − 1)

���������������
���������������
���������������
���������������

...
��
��
��
��

1 2 p
...

(11.5)

(we leave the proof as an exercise). Hence, any product of γ-matrices can be
expressed as a sum over antisymmetrized products of γ-matrices. For example,
substitute the Young projection operators from fig. 9.1 into the products of two
and three γ-matrices and use the Clifford algebra (11.4):

��
��
��
��

= ������������
������������
������������
������������

��
��
��
��

+
��
��
��
��

(11.6)

��
��
��
��

= �������
�������
�������
�������

��
��
��
��

+
��
��
��
��

= ������������
������������
������������
������������

��
��
��
��

+
{

���
���
���

���
���
���

−
���
���
���

���
���
���

+
��
��
��
��

}
, etc. (11.7)

Only the fully antisymmetrized products of γ’s are immune to reduction by (11.4).
Hence, the antisymmetric tensors

Γ(0) = 1 =
��
��
��

��
��
�� =

��
��
��

��
��
��

0

Γ(1)
μ = γμ =

��
��
��

��
��
��

μ

=
��
��
��

��
��
��

1

Γ(2)
μν = 1

2 [γμ, γν ] = �������������
�������������
�������������

�������������
�������������
�������������

��
��
��
��

νμ

=
��
��
��
��

2

Γ(3)
μνσ = γ[μγνγσ] = �������������

�������������
�������������
�������������

��
��
��
��

ν σμ

=
��
��
��
��

3

Γ(a)
μ1ν2...μa = γ[μ1

γμ2 . . . γμa] =
1

���
���
���
���

���������������
���������������
���������������
���������������

μ a
...

...

... μ

=
��
��
��
��

a

(11.8)

provide a complete basis for expanding products of γ-matrices. Applying the
anticommutator (11.4) to a string of γ’s, we can move the first γ all the way to
the right and obtain

���
���
���
���

= 2
��
��
��
��

−
��
��
��
��

= 2
��
��
��
��

− 2
��
��
��
��

+ (−1)2

��
��
��
��

= . . . (11.9)
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1
2

(
��
��
��

��
��
��

��
��
��

��
��
��

...

1 2 3 p

+ (−1)p

���
���
���
���

...
1 2 3 p )

=

���
���
���

���
���
���

... −
��
��
��

��
��
��

... + · · · + (−1)p

��
��
��

��
��
��

...

1
2
(γμ1γμ2 . . . γμp ± γμ2 . . . γμpγμ1) =

gμ1μ2γμ3 . . . γμp − gμ1μ3γμ2γμp + . . . (11.10)

This identity has three immediate consequences:

• Traces of odd numbers of γ’s vanish for n even.

• Traces of even numbers of γ’s can be evaluated recursively.

• The result does not depend on the direction of the spinor line.

According to (11.10), any γ-matrix product can be expressed as a sum of
terms involving gμν ’s and the antisymmetric basis tensors Γ(a), so in order to
prove (i) we need only to consider traces of Γ(a) for a odd. This may be done as
follows:

n

�������������
�������������
�������������

�������������
�������������
�������������

a...1

���
���
���
��� =

�������������
�������������
�������������
�������������

����
����
����
���� =

��������������
��������������
��������������
��������������

����
����
����

����
����
����

= 2a

��������������
��������������
��������������
��������������

������ −

�������������
�������������
�������������

�������������
�������������
�������������

������

= 2a

�������������
�������������
�������������

�������������
�������������
�������������

����
����
����
���� −

��������������
��������������
��������������
��������������

����
����
����

����
����
����

= (2a − n)

��������������
��������������
��������������

��������������
��������������
��������������

���
���
���
���

⇒ (n − a)

�������������
�������������
�������������

�������������
�������������
�������������

a...1

�������� = 0 . (11.11)

In the third step we have used (11.10) and the fact that a is odd. Hence, tr Γ(a)

vanishes for all odd a if n is even. If n is odd, tr Γ(n) does not vanish because by
(6.28),

������������������
������������������
������������������

������������������
������������������
������������������

��
��
��
��

n2
...

...

1 ...

= ������������������
������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������

��
��
��
��

...

...

. (11.12)

The n-dimensional analogue of the γ5,

εμν...σγμγν . . . γσ , (11.13)

commutes with all γ-matrices, and, by Schur’s lemma, it must be a multiple of
the unit matrix, so it cannot be traceless. This proves (i). (11.10) relates traces
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Schur’s Lemma
Fierz

coefficients—(textbf
spinor!orthogonality
orthogonality!spinor

of length p to traces of length p − 2, so (ii) gives

��
��
��
��

νμ = ��
��
��
��

νμ

tr γμγν = (tr 1) gμν , (11.14)

��
��
��
��

ν ρ

σμ

= ��
��
��
��

{
ρ

μ σ

ν

−
μ σ

ρν

+
μ σ

ρν

}
tr γμγνγργσ = tr1 {gμνgρσ − gμρgνσ + gμνgνρ} , (11.15)

���
���
���
���

= ��
��
��
��

{
− + −

+ − + −

+ − + −

+ − +
}

, etc

(11.16)

The result is always the (2p − 1)!! ways of pairing 2p indices with p Kronecker
deltas. It is evident that nothing depends on the direction of spinor lines, as
spinors are remembered only by an overall normalization factor tr1. The above
identities are in principle a solution of the spinor traces evaluation problem. In
practice they are intractable, as they yield a factorially growing number of terms
in intermediate steps of trace evaluation.

11.2 Fierzing around

The algorithm (11.16) is too cumbersome for evaluation of traces of more than
four or six γ-matrices. A more efficient algorithm is obtained by going to the Γ
basis (11.8). Evaluation of traces of two and three Γ’s is a simple combinatoric
exercise using the expansion (11.16). Any term in which a pair of gμν indices gets
antisymmetrized vanishes:

������������������
������������������
������������������
������������������

...
= 0 . (11.17)

That implies that Γ’s are orthogonal:

a b
��
��
��
��

= δab a! ��
��
��
��

a . (11.18)
PC: recheck if refs to
(11.16), (11.18) correctHere a! is the number of terms in the expansion (11.16) that survive antisym-

metrization (11.18). A trace of three Γ’s is obtained in the same fashion:

b

ac
��
��
��
��

=
a!b!c!
s!t!u!

�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

u

a

b

c

s

t
���
���
���
���

s =
1
2
(b + c − a) , t =

1
2
(c + a − b) , u =

1
2
(a + b − c) .
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As the Γ’s provide a complete basis, we can express a product of two Γ matrices
as a sum over Γ’s, with the extra indices carried by gμν ’s. From symmetry alone
we know that terms in this expansion are of the form

��
��
��
��

������������
������������
������������
������������

�������������
�������������
�������������
�������������

a b

=
∑
m

Cm

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

a b

c

. (11.19)

PC: i, j, m to a, b, c in
(11.19) The coefficients Cm can be computed by tracing both sides with Γc and using

the orthogonality relation (11.18):

��������
��������
��������
��������

��������
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��������
��������

�������
�������
�������
�������

�������
�������
�������
�������
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��

��
��
��

a b

=
∑

c

1
c! tr 1

l j

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

c

��������
��������
��������
��������
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��
��

��
��
��

���
���
���

���
���
���

. (11.20)

PC: i, j to a, b, in (11.20)
We do not have to consider traces of four or more Γ’s, as they can all be reduced
to three-Γ traces by the above relation.PC: why not ”4 or more”?

Let us now streamline the birdtracks. The orthogonality of Γ’s (11.18) enables
us to introduce projection operators

(Pa)cd,ef =
1

a! tr1
(
γ[μ1

γμ2 · · · γμa]

)
ab

(γμa . . . γμ2γμ1)cd

1
���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

ad

c

e

f
≡ 1

a! ����
����
����
����

a

����
����
����

����
����
����

����
����
����

����
����
����

. (11.21)

The factor of tr1 on the left-hand side is a convenient (but inessential) normal-
ization convention. It is analogous to the normalization factor a in (4.30):

��
��
��

��
��
��

ba = (tr1)δab
a

. (11.22)

With this normalization, each spinor loop will carry factor (tr1)−1, and the final
results will have no tr1 factors. a, b, . . . are rep labels, not indices, and the re-
peated index summation convention does not apply. Only the fully antisymmetric
SO(n) reps occur, so a single integer (corresponding to the number of boxes in
the single Young tableau column) is sufficient to characterize a rep.

For the trivial and the single γ-matrix reps, we shall omit the labels,

���
���
���

���
���
���

0

����
����
����
����

= ���
���
���

���
���
���

����
����
����
����

, ����
����
����
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����
����

1

����
����
����
����

= ����
����
����

����
����
����

����
����
����
����

, (11.23)

in keeping with the original definitions (11.3). The 3-Γ trace (11.19) defines a
3-vertex

��
��
��
��

c

a b

≡ 1
��
��
��
��

���
���
���
���

c

a b

(11.24)
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that is nonzero only if a + b + c is even, and if a, b, and c satisfy the triangle
inequalities |a − b| ≤ c ≤ |a + b|. We apologize for using a, b, c both for the
SO(n) antisymmetric representations labels, and for spinor indices in (11.3), but
the Latin alphabet has only so many letters. It is important to note that in this
definition the spinor loop runs anticlockwise, as this vertex can change sign under
interchange of two legs. For example, by (11.19),

������

2 2

2

= C ��������
��������
��������
��������
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�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
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= C(−1)3
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��������
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��������
��������

= (−1)3 ��
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��
��

2 2

2

. (11.25)

This vertex couples three adjoint representations (10.13) of SO(n), and the sign
rule is the usual rule (4.47) for the antisymmetry of Cijk constants. The general
sign rule follows from (11.19):

������

a b

c

= (−1)st+tu+us
��
��
��
��

ba

c

. (11.26)

The projection operators Pa (11.21) satisfy the completeness relation (5.8):

��
��
��

��
��
��

��
��
��

��
��
��

=
1
��
��
��

��
��
��

∑
a ��

��
��
��

��
��
��
��

a . (11.27)

This follows from the completeness of Γ’s, used in deriving (11.20). We have
already drawn the left-hand side of (11.20) in such a way that the completeness
relation (11.27) is evident:

��
��
��
��

������
������

a b

=
∑

c

1
tr1

��
��
��
��

��
��
��
��

a

c

b

.

PC: change l, j to a, b
In terms of the vertex (11.24) we get

��
��
��
��

a b

=
∑

c

��
��
��
��

���
���
���
���

a b

c
. (11.28)

In this way we can systematically replace a string of γ-matrices by trees of 3-
vertices.
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spinor!dimension sum
rule

sum rule!spinor
dimensions

Weyl, H.
Fierz identity

Before moving on, let us check the completeness of Pa. Pa projects spinor
⊗ antispinor → antisymmetric a-index tensor rep of SO(n). Its dimension was
computed in (6.21):

da = trPa =
1

tr1
a =

a

=
(

n

a

)
. (11.29)

da is automatically equal to zero for n < a; this guarantees the correctness
of treating (11.28) as an arbitrarily large sum, even though for a given n it
terminates at a = n. Tracing both sides of the completeness relation (11.27), we
obtain a dimension sum rule:

(tr 1)2 =
∑

a

da =
n∑

a=0

(
n

a

)
= (1 + 1)n = 2n . (11.30)

This confirms the results of Weyl and Brauer [347]: for even dimensions the
number of components is 2n, so Γ’s can be represented by complex [2n/2×2n/2]
matrices. For odd dimensions there are two inequivalent spinor reps represented
by [2(n−1)/2×2(n−1)/2] matrices (see sect. 11.7). This inessential complication has
no bearing on the evaluation algorithm we are about to describe.

11.2.1 Exemplary evaluations

What have we accomplished? Iterating the completeness relation (11.28) we
can make γ-matrices disappear altogether, and spin trace evaluation reduces to
combinatorics of 3-vertices defined by the right-hand side of (11.19). This can
be done, but is it any quicker than the simple algorithm (11.16)? The answer
is yes: high efficiency can be achieved by viewing a complicated spin trace as a
3n-j coefficient of sect. 5.2. To be concrete, take an eight γ-matrix trace as an
example:

tr(γμγνγαγβγνγμγβγα) =
���
���
���
���

. (11.31)

Such a 3n-j coefficient can be reduced by repeated application of the recoupling
relation (5.13)
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��
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a =
∑

b

����
����
����
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����

b

a

��
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�� 2

db

����
����
����

����
����
����

����
����
����
����

b . (11.32)

In the present context this relation is known as the Fierz identity [121]. It follows
from two applications of the completeness relation, as in (5.13). Now we can
redraw the 12-j coefficient from (11.31) and fierz onPC: recheck whether 2nd

line correct algebra
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Wigner-Eckart theorem

��
��
��
��

=
∑

b

⎛⎜⎝ ����
����
����

����
����
����

b

���
���
���
��� 2

db

⎞⎟⎠
2

���
���
���
���

���
���
���
���

b
���
���
���
���

=
∑

b

⎛⎜⎝ ����
����
����

����
����
����

b

���
���
���
���

db

⎞⎟⎠
2

�������� b . (11.33)

Another example is the reduction of a vertex diagram, a special case of the
Wigner-Eckart theorem (5.24):

��
��
��
��

a

b

=
∑

c

����
����
����

����
����
����

c

b

���
���
���
���

dc ��
��
��
��

��������

a

c
=

����
����
����

����
����
����

b

a

��
��
��
��

da ���
���
���
���

a . (11.34)

As the final example we reduce a trace of 10 matrices:

���
���
���
���

= ��
��
��
��

=
∑
b,c

����
����
����

����
����
����

b

����
����
����

����
����
����

c

���
���
���
��� 4

dbdc

���
���
���
���

��
��
��
��

��
��
��
��

cb

=
∑
b,c,d

����
����
����

����
����
����

b

����
����
����

����
����
����

c

���
���
���

���
���
��� 5

dbdc

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

b c
d

=
∑
b,c,d

����
����
����

����
����
����

b

����
����
����

����
����
����

c

���
���
���
���

dbdc
���� ������

����

��
��
��
��

b c

d

=
∑
b,c,d

(−1)d/2

dbdc
���
���
���
���

����
����
����

����
����
����

b

����
����
����

����
����
����

c ��
��
��
��

���
���
���
�������

����

b cd . (11.35)

In this way, any spin trace can be reduced to a sum over 6-j and 3-j coefficients. PC: Recheck d/2 exp.

Our next task is to evaluate these.

11.3 Fierz coefficients

The 3-j coefficient in (11.33) can be evaluated by substituting (11.19) and doing
“some” combinatorics

���
���
���
���

���
���
���
���

cba =
a!b!c!

(s!t!u!)2 u

s
�����������������������
�����������������������
�����������������������
�����������������������

s

t

t

u
=

1
s!t!u!

n!
(n − s − t − u)!

. (11.36)
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Fierz coefficients—)
s, t, u are defined in (11.19). Note that a + b + c = 2(s + t + u), and a + b + c is
even, otherwise the traces in the above formula vanish.

The 6-j coefficients in the Fierz identity (11.32) are not independent of the
above 3-j coefficients. Redrawing a 6-j coefficient slightly, we can apply the
completeness relation (11.28) to obtain

����
����
����

����
����
����

a

b

= ������

b

a
=

1
���
���
���
���

∑
c

����
����
����

����
����
����

����
����
����

����
����
����

c

b

a

.

Interchanging j and k by the sign rule (11.26), we express the 6-j coefficient as
a sum over 3-j coefficients:

����
����
����

����
����
����

a

c

= ��
��
��
��
∑

c

(−1)st+tu+us
������

���
���
���
���
ba c . (11.37)

Using relations t = a− u, s = b− u, a + t + u = a + b− u, we can replace [48] the
sum over c by the sum over u:PC: recheck

1
��
��
��
��

����
����
����

����
����
����

a

b

= (−1)ab

(
b

n

)∑
u

(−1)u
(

b

u

)(
n − b

a − u

)
. (11.38)

u ranges from 0 to a or b, whichever is smaller, and the 6-j’s for low values of a
are particularly simple

1
��
��
��
��

a

0

=
1
���
���
���
���

a

���
���
���

���
���
���

= da , (11.39)

1
��
��
��
��

a

1

= (−1)a(n − 2a)da , (11.40)

1
��
��
��
��

a

2

=
(n − 2a)2 − n

2
da . (11.41)

...

Kennedy [187] has tabulated Fierz coefficients [121, 282, 282] Fbc, b, c ≤ 6. They
are related to 6-j’s byPC: recheck

Fbc =
b!
c!

1
da ����

����
����

����
����
����

c

b = (−1)bc
b!
c!

b∑
a=0

(−1)u
(

a

u

)(
n − a

b − u

)
. (11.42)

AJ: Manuscript: “finish
(8.29) (8.33) evaluations”
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6j@$6$-$j$
coefficient!spinorial—(textbf

strand network
Penrose!strand network

11.4 6-j coefficients

To evaluate (11.35) we need 6-j coefficients for six antisymmetric tensor reps of
SO(n). Substitutions (11.24), (11.21), and (11.19) lead to a strand-network [284]
expression for a 6-j coefficient,

a1

a2
a3

a4

a6
a5

������

���� ����

���
���
���
���

=
∏6

i=1(aj !)∏12
j=1(sj!)

2

s4
s6

s8

s12 s9

s5 s3

s1

s

s

10

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

s7

s11

�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���
���
���
���
���

���
���
���
���
���

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

. (11.43)

Pick out a line in a strand, and follow its possible routes through the strand
network. Seven types of terms give nonvanishing contributions: four “mini tours”

, , , (11.44)

and three “grand tours”

, , . (11.45)

Let the numbers of lines in different tours be t1, t2, t3, t4, t5, t6 and t7. A nonva-
nishing contribution to the 6-j coefficient (11.43) corresponds to a partition of
twelve strands, s1, s2, . . . , s12 into seven tours t1, t2, . . . , t7 PC: use f a12.44 for the

book cover

M(t1) = 1t
5t

4t 3t

t2

t7 6t (11.46)

Comparing with (11.43), we see that each si is a sum of two ti’s: s1 = t2 + t7,
s2 = t1 + t7, etc. It is sufficient to specify one t1; this fixes all ti’s. Now one stares
at the above figure and writes down

M(t1) =
(

n

t

)
t!∏7

i=1 ti!

∏12
i=1 si!∏7
j=1 aj!

, t = t1 + t2 + . . . + t7 (11.47)

(a well-known theorem states that combinatorial factors are impossible to ex-
plain [164]). The (nt ) factor counts the number of ways of coloring t1 + t2+ . . .+ t7
lines with n different colors. The second factor counts the number of distinct par-
titions of t lines into seven strands t1, t2 . . . , t7. The last factor again comes from
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6j@$6$-$j$
coefficient!spinorial—) the projector operator normalizations and the number of ways of coloring each

strand and cancels against the corresponding factor in (11.43). Summing over
the allowed partitions (for example, taking 0 ≤ t1 ≤ s2), we finally obtain an
expression for the 6-j coefficients:

6 a5

a4

a1

a
a

3

2

a

=
∑

t

(
n

t

)
t!

t1!t2!t3!t4!t5!t6!t7!

t1 = −a1 + a2 + a3

2
+ t t5 =

a1 + a3 + a4 + a6

2
− t

t2 = −a1 + a5 + a6

2
+ t t6 =

a1 + a2 + a4 + a5

2
− t

t3 = −a2 + a4 + a6

2
+ t t7 =

a2 + a3 + a5 + a6

2
− t

t4 = −a3 + a4 + a5

2
+ t . (11.48)

The summation in (11.48) is over all values of t, such that all the ti are nonneg-
ative integers. The 3-j (11.36) is a special case of the 6-j (11.48). The 3-j’s and
6-j’s evaluated here, for all reps antisymmetric, should suffice in most applica-
tions.DG: 2 pages missing

The above examples show how Kennedy’s method produces the n-dimensional
spinor reductions needed for the dimensional regularization [163]. Its efficiency
pays off only for longer spin traces. Each γ-pair contraction produces one 6-j
symbol, and the completeness relation sums do not exceed the number of pair
contractions, so for 2p γ-matrices the evaluation does not exceed p2 steps. This
is far superior to the initial algorithm (11.16).

Finally, a comment directed at the reader wary of analytically continuing in
n while relying on completeness sums (de Wit and ’t Hooft [94, 306] anomalies).
Trouble could arise if, as we continued to low n, the k > n terms in the com-
pleteness sum (11.27) gave nonvanishing contributions. We have explicitly noted
that the dimension, 3-j and 6-j coefficients do vanish for any rep if k > n. The
only danger arises from the Fierz coefficients (11.32): a ratio of 6-j and d can be
finite for j > n. However, one is saved by the projection operator in the Fierz
identity (11.32). This projection operator will eventually end up in some 6-j or
3-j coefficient without d in the denominator (as in (11.33)), and the whole term
will vanish for k > j.

11.5 Exemplary evaluations, continued

Now that we have explicit formulas for all 3-j and 6-j coefficients, we can complete
the evaluation of examples commenced in sect. 11.2.1. The eight γ-matrix trace
(11.33) is given byPC: birdTracklines labeled

0,2 double

��
��
��
��

=

⎛⎜⎝ ����
����
����

����
����
����

0

���
���
���
���

d0

⎞⎟⎠
2

��
��
��
��

���
���
���
���0 +

⎛⎜⎝ ����
����
����

����
����
����

2

���
���
���
���

d2

⎞⎟⎠
2

��
��
��
��

���
���
���
���2
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= n + n(n − 1)(n − 4)2 , (11.49)

and the ten γ-matrix trace (11.35) by PC: birdTracklines labeled
0,2 double

���
���
���
���

=

⎛⎜⎝ ����
����
����

����
����
����

0

d0
��
��
��
��
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��
��
��
��
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��
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���
���
���
���0 0
0

+
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����
����

����
����
����

2
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���
���
���
���
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��
��
��

������

��
��
��
��

���
���
���
���2 0
2

−
����
����
����

����
����
����
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����
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����
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����
����

2

d0d2
��
��
��
�� 2

(
��
��
��
��

������

��
��
��
��

���
���
���
���2 2
0

+
��
��
��
��

������

��
��
��
��

���
���
���
���0 2
2

)
−

⎛⎜⎝ ����
����
����

����
����
����

2

d2
���
���
���
���

⎞⎟⎠
2

��
��
��
��

������

��
��
��
��

���
���
���
���2 2
2

= n3 + n(n − 1)(n − 4)2 − 2n2(n − 1)(n − 4)
−n(n − 1)(n − 2)(n − 4)2

= n3 − n(n − 1)(n − 4)(n2 − 5n + 12) . (11.50)

11.6 Invariance of γ-matrices

The above discussion of spinors did not follow the systematic approach of sect. 3.4
that we employ everywhere else in this monograph: start with a list of primitive
invariants, find the characteristic equations they satisfy, construct projection op-
erators, and identify the invariance group. In the present case, the primitive
invariants are gμν , δab and (γμ)ab. We could retroactively construct the charac-
teristic equation for Qab,cd = (γμ)ad(γμ)cb from the Fierz identity (11.32), but the
job is already done and the n eigenvalues are given by (11.38)–(11.41). The only
thing that we still need to do is check that SO(n), the invariance group of gμν ,
is also the invariance group of (γμ)ab.

The SO(n) Lie algebra is generated by the antisymmetric projection operator
(8.7), or Γ(2) in the γ-matrix notation (11.8). The invariance condition (4.37) for
γ-matrices is

���
���
���
���

−
��
��
��
��

������ −
���
���
���
���

= 0 . (11.51)

To check whether Γ(2) respects the invariance condition, we evaluate the first and
the term by means of the completeness relation (11.28):

��
��
��
��

2 = ��
��
��
��

��
��
��
��

2 + ��
��
��
��

��
��
��
��

2
3

��
��
��
��

2 = − ��
��
��
��

��
��
��
��

2 + ��
��
��
��

��
��
��
��

2
3 .

The minus sign comes from the sign rule (11.26). Subtracting, we obtain

��
��
��
��

2 − 2 ��
��
��
��

��
��
��
��

2 −
��
��
��
��

2 = 0 .
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handedness!spinorial—(textbf
spinor!handedness—(textbfThis already has the form of the invariance condition (11.51), modulo normal-

ization convention. To fix the normalization, we go back to definitions (11.8),
(11.24), (11.19):

��
��
��
��

�������
�������
�������
������� − 4

��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

−
���
���
���
���

��������
��������
��������
��������

��������
��������
��������
��������

= 0 . (11.52)

The invariance condition (11.51) now fixes the relative normalizations of genera-
tors in the n-dimensional and spinor rep. If we take (8.7) for the n-dimensional
rep

(Tμν)ρσ = ������ �������� =
����
����
���
���
���
���

����
����
���
���
���
���μ

ν ρ

σ
, (11.53)

then the normalization of the generators in the spinor rep is

(Tμν)ab =
1
4

��
��
��

��
��
��

������������
������������
������������
������������

b

μν

a

=
1
8
[γν , γμ] . (11.54)

The γ-matrix invariance condition (11.51) written out in the tensor notation is

[Tμν , γσ ] =
1
2
(gμσγν − gνσγμ) . (11.55)

If you prefer generators (Ti)ab indexed by the adjoint rep index i = 1, 2, . . . , N,
then you can use spinor rep generators defined as

(Ti)ab =
��
��
��

��
��
��

ba

=
1
4 ���

���
���

���
���
���

ba

. (11.56)

Now we can compute various casimirs for spinor reps. For example, the Dynkin
index (sect. 7.5) for the lowest-dimensional spinor rep is given by

� =
���
���
���
���

������

���� ����

=
tr1

8(n − 2)
=

2[ n
2
]−3

n − 2
. (11.57)

From the invariance of γμ follows invariance of all Γ(k). In particular, the invari-
ance condition for Γ(2) is the usual Lie algebra condition (4.48) with the structure
constants given by (11.25).

11.7 Handedness

Among the bases (11.8), Γ(n)
μ1μ2...μn plays a special role; it projects onto a 1-

dimensional space, and the antisymmetrization can be replaced by a pair of Levi-
Civita tensors (6.28):

Γ(n) =
��
��
��
��

��������������
��������������
��������������
��������������

1 ...2 n

...

...
=

���
���
���
���

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

...

...

1 2 n
...

. (11.58)
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handedness!spinorial—)
spinor!handedness—)
Kahane

algorithm—(textbf
spinor!Kahane

algorithm—(textbf

The corresponding clebsches are the generalized “γ5” matrices,

γ∗ ≡ 1√
n!

��
��
��
��

����������������
����������������
����������������
����������������

... = in(n−1)/2γ1γ2 . . . γn . (11.59)

The phase factor is, as explained in sect. 4.8, only a nuisance that cancels away
in physical calculations. γ∗ satisfies a trivial characteristic equation (use (6.28)
and (11.18) to evaluate this),

(γ∗)2 =
1
n!

����������������
����������������
����������������
����������������

��
��
��
��

����������������
����������������
����������������
����������������

...... =
1
n!

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���

���
���
���...... = 1 , (11.60)

which yields projection operators (4.18):

P+ =
1
2
(1 + γ∗) , P− =

1
2
(1 − γ∗) . (11.61)

The reducibility of Dirac spinors does not affect the correctness of the Kennedy
spin traces algorithm. However, this reduction of Dirac spinors is of physical in-
terest, so we briefly describe the irreducible spinor reps. Let us denote the two
projectors diagrammatically by

1 = P+ + P−

��
��
��

��
��
�� = + + . (11.62)

In even dimensions γμγ∗ = −γ∗γμ, while in odd dimensions γμγ∗ = γ∗γμ, so

n even:

⎧⎪⎪⎨⎪⎪⎩
γμP+ = P−γμ

+
=

, (11.63)

n odd:

⎧⎪⎪⎨⎪⎪⎩
γμP+ = P+γμ

+
=

+

. (11.64)

Hence, in the odd dimensions Dirac γμ matrices decompose into a pair of conju-
gate [2(n−1)/2×2(n−1)/2] reps:

n odd: γμ = P+γμP+ + P−γμP− , (11.65)

and the irreducible spinor reps are of dimension 2(n−1)/2.

11.8 Kahane algorithm

For the case of four dimensions, there is a fast algorithm for trace evaluation, due
to Kahane [180].

Consider a γ-matrix contraction,

γaγbγc . . . γdγa =
...

��
��
��
�� , (11.66)
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and use the completeness relation (11.27) and the “vertex” formula (11.34):

��
��
��
��

...
=

1
���
���
���
���

∑
b

��
��
��

��
��
��

���
���
���

���
���
���

b

...

=
1
���
���
���
���

∑
b

b

���
���
���
���

db
���
���
���
���

���
���
���

���
���
���

b

...

. (11.67)

For n = 4, this sum ranges over k = 0, 1, 2, 3, 4. A spinor trace is nonvanishing
only for even numbers of γ’s, (11.16), so we distinguish the even and the odd
cases when substituting the Fierz coefficients (11.40):
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... = − 2
���
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{
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}
, (11.68)
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}
. (11.69)

The sign of the second term in (11.68) can be reversed by transposing the three
γ’s (remember, the arrows on the spinor lines keep track of signs, cf. (11.24) and
(11.26)):

������������
������������
������������

������������
������������
������������

���
���
���

���
���
���

���
���
���

���
���
���

= −
�������������
�������������
�������������

�������������
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���

. (11.70)

But now the term in the brackets in (11.68) is just the completeness sum (11.27),
and the summation can be dropped:

��
��
��
��

odd

... = − 2

���
���
���
���

{
���
���
���

���
���
���

...

���
���
���
��� +

��
��
��
��

...

3
���
���
���
���

}
,

Rule 1: ...

��
��
��
��

= −2

...

��
��
��
��

γaγbγc . . . γdγa = −2 γd . . . γcγb

(11.71)

The same trick does not work for (11.69), because there the completeness sum

P. Cvitanović: Group Theory, spinor, last edited July 7, 2007 printed October 14, 2007



11.8. KAHANE ALGORITHM 163

spinor—)
Dirac $“gamma$

matrix—)
son@$SO(n)$!spinor

reps—)
spinography—)
Kahane algorithm—)
spinor!Kahane

algorithm—)

has tree terms:

���
���
���

���
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���

even

... =
1
��
��
��
��

{ ...

+

...

2
+

...

4

}
. (11.72)

However, as γ[aγb] = − γ[bγa]
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, (11.73)

the sum of γaγb . . . γd and its transpose γd . . . γbγa has a two-term completeness
sum:

��
��
��
��

even

... +

...

��
��
��
��

=
2
��
��
��
��

{
��
��
��
��

...

��
��
��
��

+
���
���
���
���

...

4
����
����
����
����

}
. (11.74)

Finally, we can change the sign of the second term in (11.69) by using {γ5, γa} = 0;

Rule 2:
���
���
���
���

even

... = 2
{

��
��
��
��

...
+

...

��
��
��

��
��
��

}
γeγaγb . . . γcγdγe = 2 {γdγaγb . . . γc + γc . . . γbγaγd} . (11.75)

This rule and rule (11.71) enable us to remove γ-contractions (“internal photon
lines”) one by one, at most doubling the number of terms at each step. These
rules are special to n = 4 and have no n-dimensional generalization.
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symplectic invariant

Chapter 12

Symplectic groups

PC: 10/08/2005: final ver-
sionSymplectic group Sp(n) is the group of all transformations that leave invariant a

skew symmetric (p, q) = fabp
aqb:

fab = − fba a, b = 1, 2, . . . n

����
����
����
����

ba
= − ������ n even . (12.1)

The birdtrack notation is motivated by the need to distinguish the first and the
second index: it is a special case of the birdtracks for antisymmetric tensors of
even rank (6.57). If (p, q) is an invariant, so is its complex conjugate (p, q)∗ =
f bapaqb, and

fab = − f ba

����
����
����
����

ba
= − ������ (12.2)

is also an invariant tensor. The matrix Ab
a = facf

cb must be proportional to
unity, as otherwise its characteristic equation would decompose the defining n-
dimensional rep. A convenient normalization is

facf
cb = − δb

a

���
���
���
���

���
���
���
��� = − ������

���
���
���
��� = − . (12.3)

Indices can be raised and lowered at will, so the arrows on lines can be dropped.
However, omitting symplectic invariants (the black triangles) is not recommended,
as without them it is hard to keep track of signs. Our convention will be to
perform all contractions with fab and omit the arrows but not the symplectic
invariants:

fab = ������
a b

. (12.4)

All other tensors will have lower indices. The Lie group generators (Ti)ab will be
replaced by

(Ti)ab = (Ti)acfcb = ������ . (12.5)
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skew-symmetric
invariant

negative dimensions
The invariance condition (4.37) for the symplectic invariant tensor is

������ + ������ = 0
(Ti)acfcb + fac(Ti)cb = 0 . (12.6)

A skew-symmetric matrix fab has the inverse in (12.3) only if det f �= 0. That
is possible only in even dimensions [122, 145], so Sp(n) can be realized only for
even n.PC: maybe refer to odd n

literature here In this chapter we shall outline the construction of Sp(n) tensor reps. They
are obtained by contracting the irreducible tensors of SU(n) with the symplec-
tic invariant fab and decomposing them into traces and traceless parts. The
representation theory for Sp(n) is analogous in step-by-step fashion to the rep-
resentation theory for SO(n). This arises because the two groups are related
by supersymmetry, and in chapter 13 we shall exploit this connection by show-
ing that all group-theoretic weights for the two groups are related by analytic
continuation into negative dimensions.

12.1 Two-index tensors

The decomposition goes the same way as for SO(n), sect. 10.1. The matrix
(10.8), given by

T =
��
��
��
��

��
��
��
�� , (12.7)

satisfies the same characteristic equation (10.9) as for SO(n). Now T is antisym-
metric, AT = T , and only the antisymmetric subspace gets decomposed. Sp(n)
2-index tensors decompose as

singlet: (P1)ab,cd = 1
nfabfcd = 1

n ��
��
��
��

��
��
��
��

antisymmetric: (P2)ab,cd = 1
2 (fadfbc − facfbd) − 1

nfabfcd

=
������

���
���
���
���

− 1
n ��

��
��
��

��
��
��
��

symmetric: (P3)ab,cd = 1
2 (fadfbc + facfbd) = ������

������

.

(12.8)

The SU(n) adjoint rep (10.14) is now split into traceless symmetric and antisym-
metric parts. The adjoint rep of Sp(n) is given by the symmetric subspace, as
only P3 satisfies the invariance condition (12.6):

��
��
��
��

��
��
��
��

������

+
��
��
��
��

���
���
���
���

������

= 0 .

Hence, the adjoint rep projection operator for Sp(n) is given by

1
a

������������ = ������

������

. (12.9)
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spn@$Sp(n)$—)

Young tableaux ⊗ = • + +

Dynkin labels (10 . . .) × (10 . . .) = (00 . . .) + (010 . . .) + (20 . . .)

Dimensions n2 = 1 + n(n+1)
2 + (n−2)(n+1)

2

Dynkin indices 2n
n+2 = 0 + 1 + n−2

n+2

Projectors = 1
n ��

��
��
��

��
��
��
�� +

��������

��������

+
{

������

������ − 1
n ��

��
��
��

���
���
���
���

}

Table 12.1: Sp(n) Clebsch-Gordan series for V ⊗V .

The dimension of Sp(n) isadd dots here?

N = trPA =

������

������

������

������

=
n(n + 1)

2
. (12.10)

Remember that all contractions are carried out by fab – hence the symplectic
invariants in the trace expression. Dimensions of the other reps and the Dynkin
indices (see sect. 7.5) are listed in table 12.1.

We could continue as for the SO(n) case, with A⊗V , V⊗V⊗V , · · · decomposi-
tions, but that would turn out to be a step-by-step repetition of chapter 10. As we
shall show next, reps of SO(n) and Sp(n) are related by a “negative dimensional”
duality, so there is no need to work out the Sp(n) reps separately. PC: 10/08/2005: gave up

on adding extra sections
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Chapter 13

Negative dimensions

P. Cvitanović and A. D. Kennedy

A cursory examination of the expressions for the dimensions and the Dynkin
indices listed in tables 7.3 and 7.5, and in the tables of chapter 9, chapter 10,
and chapter 12, reveals intriguing symmetries under substitution n → −n. This
kind of symmetry is best illustrated by the reps of SU(n); if λ stands for a Young
tableau with p boxes, and λ for the transposed tableau obtained by flipping λ
across the diagonal (i.e., exchanging symmetrizations and antisymmetrizations),
then the dimensions of the corresponding SU(n) reps are related by

SU(n) : dλ(n) = (−1)pdλ(−n) . (13.1)

This is evident from the standard recipe for computing the SU(n) rep dimensions
(sect. 9.3), as well as from the expressions listed in the tables of chapter 9. In all
cases, exchanging symmetrizations and antisymmetrizations amounts to replacing
n by −n.

Here we shall prove the following:

Negative Dimensionality Theorem 1: For any SU(n) invariant scalar exchanging
symmetrizations and antisymmetrizations is equivalent to replacing n by −n:

SU(n) = SU(−n) . (13.2)

Negative Dimensionality Theorem 2: For any SO(n) invariant scalar there exists
the corresponding Sp(n) invariant scalar (and vice versa), obtained by exchanging
symmetrizations and antisymmetrizations, replacing the SO(n) symmetric bilin-
ear invariant gab by the Sp(n) antisymmetric bilinear invariant fab, and replacing
n by −n: PC: should replace gab in

chapter 10 and chapter 12
by gab/fabSO(n) = Sp(−n) , Sp(n) = SO(−n) . (13.3)

The bars on SU , Sp, SO indicate interchange of symmetrizations and antisym-
metrizations. In chapter 14 we shall extend the relation (13.3) to spinorial rep-
resentations of SO(n).
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Levi-Civita tensor
Such relations are frequently noted in literature: Parisi and Sourlas [273] have

suggested that a Grassmann vector space of dimension n can be interpreted as an
ordinary vector space of dimension −n. Penrose [284] has introduced the term
“negative dimensions” in his construction of SU(2) � Sp(2) reps as SO(−2).
King [193] has proved that the dimension of any irreducible rep of Sp(n) is equal
to that of SO(n) with symmetrizations exchanged with antisymmetrizations (the
transposed Young tableau), and n replaced by −n. Mkrtchyan [249] has observed
this relation for the QCD loop equations. With the advent of supersymmetries,
n → −n relations have become commonplace, as they are built into the structure
of groups such as the orthosymplectic group OSp(b, f).

Various examples of n → −n relations cited in the literature are all special
cases of the theorems that we now prove. The birdtrack proof is simpler than
the published proofs for the special cases. Some highly nontrivial examples of
n → −n symmetries for the exceptional groups [78] will be discussed in chapter 18
and chapter 20, where we show that the negative-dimensional cousins of SO(4)
are E7(56), D6(32), · · ·, and that for SU(3) the n → −n symmetry leads to
E6(27), · · ·.

13.1 SU(n) = SU(−n)

As we have argued in sect. 5.2, all physical consequences of a symmetry (rep
dimensions, level splittings, etc) can be expressed in terms of invariant scalars.
The primitive invariant tensors of SU(n) are the Kronecker tensor δa

b and the
Levi-Civita tensor εa1···an . All other invariants of SU(n) are built from these two
objects. A scalar (3n-j coefficient, vacuum bubble) is a tensor object with all
indices contracted, which in birdtrack notation corresponds to a diagram with
no external legs. Thus, in scalars, Levi-Civita tensors can appear only in pairs
(the lines must end somewhere), and by (6.28) the Levi-Civita tensors combine to
antisymmetrizers. Consequently SU(n) invariant scalars are all built only from
symmetrizers and antisymmetrizers. Expanding all symmetry operators in an
SU(n) vacuum bubble gives a sum of entangled loops. Each loop is worth n, so
each term in the sum is a power of n, and therefore an SU(n) invariant scalar is
a polynomial in n.

The idea of the proof is illustrated by the following typical computation: eval-
uate, for example, the SU(n) 9-j coefficient for recoupling of three antisymmetric
rank-2 reps:
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���
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���
���

= n3 − n2 − n2 + n − n2 + n + n − n2

= n(n − 1)(n − 3) . (13.4)

Notice that in the expansion of the symmetry operators the graphs with an odd
number of crossings give an even power of n, and vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms that change the sign are
exactly those with an even number of crossings. The crossing in the original
graph that had nothing to do with any symmetry operator, appears in every
term of the expansion, and thus does not affect our conclusion; an exchange of
symmetrizations and antisymmetrizations amounts to substitution n → −n. The
overall sign is only a matter of convention; it depends on how we define the
vertices in the 3n-j’s.

The proof for the general SU(n) case is even simpler than the above example:
Consider the graph corresponding to an arbitrary SU(n) scalar, and expand all
its symmetry operators as in (13.4). The expansion can be arranged (in any of
many possible ways) as a sum of pairs of form

. . . + ������������ ±
���
���
���

���
���
���

���
���
���
���

+ . . . , (13.5)

with a plus sign if the crossing arises from a symmetrization, and a minus sign if
it arises from an antisymmetrization. The gray blobs symbolize the tangle of lines
common to the two terms. Each graph consists only of closed loops, i.e., a definite
power of n, and thus uncrossing two lines can have one of two consequences. If
the two crossed line segments come from the same loop, then uncrossing splits
this into two loops, whereas if they come from two loops, it joins them into one
loop. The power of n is changed by the uncrossing:

������������ = n
���
���
���

���
���
���

���
���
���
���

. (13.6)

Hence, the pairs in the expansion (13.5) always differ by n±1, and exchanging
symmetrizations and antisymmetrizations has the same effect as substituting n →
−n (up to an irrelevant overall sign). This completes the proof of (13.2).

Some examples of n → −n relations for SU(n) reps:

• Dimensions of the fully symmetric reps (6.13) and the fully antisymmetric
reps (6.21) are related by the Beta-function analytic continuation formula

n!
(n − p)!

= (−1)p
(−n + p − 1)!

(−n − 1)!
. (13.7)

PUP copyeditor version 8.7, September 27, 2007, printed October 14, 2007P. Cvitanović, Group Theory, negdim, last edited July 12, 2007
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skew-symmetric
invariant

Levi-Civita tensor
• The reps (9.13) and (9.14) correspond to the 2-index symmetric, antisym-

metric tensors, respectively. Therefore, their dimensions in fig. 9.1 are re-
lated by n → −n.PC: corrected refs to

(7.21), (7.22), (7.45), (7.46)
by changing 6 to 8 • The reps (9.79) and (9.80) (see also table 7.5) are related by n → −n for

the same reason.

• sect. 9.9.
PC: override PUP capital-
ization of all section title
text

13.2 SO(n) = Sp(−n)

In addition to δa
b and εab...d, SO(n) preserves a symmetric bilinear invariant gab,

for which we have introduced open circle birdtrack notation in (10.1). Such open
circles can occur in SO(n) 3n-j graphs, flipping the line directions. The Levi-
Civita tensor still cannot occur, as directed lines, starting on an ε tensor, would
have to end on a g tensor, that gives zero by symmetry. Sp(n) differs from SO(n)
by having a skew-symmetric fab, for which we have introduced birdtrack notation
in (12.1). In Sp(n) we can convert a Levi-Civita tensor with upper indices into
one with lower indices by contracting with n f ’s, with the appropriate power of
det f appearing. We can therefore eliminate pairs of Levi-Civita tensors. A single
Levi-Civita tensor can still appear in an Sp(n) 3n-j graph, but as

���
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���
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��������������������������

������ ������ ������ ������ �������� ������
... = Pf(f) , (13.8)

where Pf(f) is the Pfaffian, and Pf(f)2 = det f (that is left as an exercise for the
reader). Therefore a Levi-Civita can always be replaced by an antisymmetrization

������ ������ ������

����������������
����������������
����������������
����������������

... = (det f)−
1
2

������ ������ ������ ������
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���

���
���
���
���

. (13.9)

For any SO(n) scalar there exists a corresponding Sp(n) scalar, obtained by
exchanging the symmetrizations and antisymmetrizations and the gab’s and fab’s
in the corresponding graphs. The proof that the two scalars are transformed into
each other by replacing n by −n, is the same as for SU(n), except that the two
line segments at a crossing could come from a new kind of loop, containing gab’s
or fab’s. In that case, equation (13.6) is replaced by
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= �������� ������ ⇔
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= − ���
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����

����
����
����
����

��������
. (13.10)

While now uncrossing the lines does not change the number of loops, changing
gab’s to fab’s does provide the necessary minus sign. This completes the proof of
(13.3) for the tensor reps of SO(n) and Sp(n).

Some examples of SO(n) = Sp(−n) relations:
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Penrose!binor
binor
negative dimensions—)

• The SO(n) antisymmetric adjoint rep (10.13) corresponds to the Sp(n)
symmetric adjoint rep (12.9).

• Compare table 12.1 and table 10.1. See table 7.3, table 7.4, and table 7.2.

• Penrose [284] binors: SU(2) = Sp(2) = SO(−2).

In order to extend the proof to the spinor reps, we will first have to invent
the Sp(n) analog of spinor reps. We turn to this task in the next chapter. ⇓INTERNAL

NOTES (perhaps worth following up):
Dunne ref. [103] discussion, references:
constraints are “removed dimensions”
“dimensional reduction” in stochastic path integrals
infinite-dimensional symplectic spinor representations of Sp(n).
Weyl [346] theory of invariants
Thierry-Mieg [325] has shown that metaplectic representation of Sp(n) re-

sembles a negative-dimensional version of spinor representation of SO(n).
“Patterns of Duality in N=1 SUSY Gauge Theories,” hep-th/9611197
“Negative dimensional group extrapolation and dualities in N = 1 supersym-

metric gauge theories,” hep-th/9609230
“M(atrix) Theory on the Negative Light-Front,” hep-th/9712055
“Misleading Anomaly Matchings?” hep-th/9802092
“Odd Sympl dims: Lattice path proofs for determinant formulas for symplec-

tic and orthogonal characters,” www.mat.univie.ac.at/∼kratt/artikel/symporth.html⇑INTERNAL
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Grassmann
skew-symmetric

invariant
spn@$Sp(n)$!metaplectic

reps
metaplectic reps of

$Sp(n)$

Chapter 14

Spinors’ symplectic sisters

P. Cvitanović and A. D. Kennedy

Dirac discovered spinors in his search for a vectorial quantity that could be in-
terpreted as a “square root” of the Minkowski 4-momentum squared,

(p1γ1 + p2γ2 + p3γ3 + p4γ4)2 = −p2
1 − p2

2 − p2
3 + p2

4.

What happens if one extends a Minkowski 4-momentum (p1, p2, p3, p4) into fermionic,
Grassmann dimensions (p−n, p−n+1, . . . , p−2, p−1, p1, p2, . . . , pn−1, pn)? The Grass-
mann sector pμ anticommute and the gamma-matrix relatives in the Grassmann
dimensions have to satisfy the Heisenberg algebra commutation relation,

[γμ, γν ] = fμν1 ,

instead of the Clifford algebra anticommutator condition (11.2), with the bilinear
invariant fμν = −fνμ skew-symmetric in the Grassmann dimensions.

In chapter 12, we showed that the symplectic group Sp(n) is the invariance
group of a skew-symmetric bilinear symplectic invariant fμν . In sect. 14.1, we
investigate the consequences of taking γ matrices to be Grassmann valued; we
are led to a new family of objects, which we have named spinsters [81]. In the
literature such reps are called metaplectic [338, 312, 194, 325, 303, 103, 195, 226].
Spinsters play a role for symplectic groups analogous to that played by spinors for
orthogonal groups. With the aid of spinsters we are able to compute, for example,
all the 3-j and 6-j coefficients for symmetric reps of Sp(n). We find that these
coefficients are identical with those obtained for SO(n) if we interchange the
roles of symmetrization and antisymmetrization and simultaneously replace the
dimension n by −n. In sect. 14.2, we make use of the fact that Sp(2) � SU(2)
to show that the formulas for SU(2) 3-j and 6-j coefficients are special cases of
general expressions for these quantities we derived earlier.

This chapter is based on ref. [81]. For a discussion of the role negative-
dimensional groups play in quantum physics, see ref. [103]. PC: add Dunne discussion,

references
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Dirac $“gamma$
matrix!Grassmann
valued

Grassmann!Clifford
algebra

Clifford
algebra!Grassmann
extension

14.1 Spinsters
PC: is Grassmann
needed?The Clifford algebra (11.2) Dirac matrix elements (γμ)ab are commuting numbers.

In this section we shall investigate consequences of taking γμ to be Grassmann
valued,

(γμ)ab(γν)cd = −(γν)cd(γμ)ab . (14.1)

The Grassmann extension of the Clifford algebra (11.2) is

1
2
[γμ, γν ] = fμν1 , μ, ν = 1, 2, . . . , n, n even . (14.2)

The anticommutator gets replaced by a commutator, and the SO(n) symmetric
invariant tensor gμν by the Sp(n) symplectic invariant fμν . Just as the Dirac
gamma-matrices lead to spinor reps of SO(n), the Grassmann valued γμ give rise
to Sp(n) reps, which we shall call spinsters. Following the Sp(n) diagrammatic
notation for the symplectic invariant (12.1), we represent the defining commuta-
tion relation (14.2) by

a c

νμ

= ��������

a c

νμ

. (14.3)

For the symmetrized products of γ matrices, the above commutation relations
lead to

��
��
��
��

...

...

21 3 p

=
��
��
��
��

...

... + (p − 1)
��
��
��
��

������

...

... . (14.4)

As in chapter 11, this gives rise to a complete basis for expanding products of
γ-matrices. Γ’s are now the symmetrized products of γ matrices:

...

...

21 3 a

≡ a . (14.5)

Note that while for spinors the Γ(k) vanish by antisymmetry for k > n, for
spinsters the Γ(k)’s are nonvanishing for any k, and the number of spinster basis
tensors is infinite. However, the reduction of a product of k-γ-matrices involves
only a finite number of Γ(l), 0 � l � k. As the components (γμ)ab are Grassmann
valued, spinster traces of even numbers of γ’s are anticyclic:

tr γμγν = (γμ)ab(γν)ba = − tr γνγμ

��
��
��
��

���
���
���
���

νμ = −
��
��
��
��

���
���
���
���

,

tr γμγνγργσ = − tr γνγργσγμ (14.6)

������ ������

σ ρ

νμ

= −
����

������

σ ρ

νμ

.
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spinster!trace
trace!spinster
spinster!orthogonality
orthogonality!spinster
skew-symmetric

invariant
3vertex@3-vertex,

spinster

In the diagrammatic notation we indicate the beginning of a spinster trace by a
dot. The dot keeps track of the signs in the same way as the symplectic invariant
(12.3) for fμν . Indeed, tracing (14.3) we have

tr γμγν = fμν tr1

��
��
��
��

��
��
��
��

= ������ . (14.7)

Moving a dot through a γ matrix gives a factor −1, as in (14.6).
Spinster traces can be evaluated recursively, as in (11.7). For a trace of an

even number of γ’s we have

����

���
���
���
���

...

=
����

��
��
��
��

���
���
���
���...

+
����

��
��
��
��

��������...

+ · · · +
����

��
��
��
��

������
...

. (14.8)

The trace of an odd number of γ’s vanishes [81]. Iteration of equation (14.8)
expresses a spinster trace as a sum of the (p− 1)!! = (p− 1)(p − 3) . . . 5.3.1 ways
of connecting the external legs with fμν . The overall sign is fixed uniquely by the
position of the dot on the spinster trace:

1

��
��
��
��

��
��
��
��

= �������� ������ + �������� �������� + ��������

��������

, (14.9)

and so on (see (11.15)).
Evaluation of traces of several Γ’s is again a simple combinatoric exercise.

Any term in which a pair of fμν indices are symmetrized vanishes, which implies
that any Γ(k) with k > 0 is traceless. The Γ’s are orthogonal:

a b
���
���
���
���

��
��
��
��

= a! δab
������

a . (14.10)

The symmetrized product of a fμν ’s denoted by

������

a =
������

������

���
���
���
���

1
2

a

... ......

(14.11)

is either symmetric or skew-symmetric:
������

a = (−1)a
������

a . (14.12)

A spinster trace of three symmetric Sp(n) reps defines a 3-vertex:

b

ca
��
��
��
��

������ = (−1)t
a!b!c!
s!t!u! ���

���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

c

b

a

u s

t

= 0 for a + b + c = odd ,

s =
1
2
(b + c − a) , t =

1
2
(c + a − b) , u =

1
2
(a + b − c) . (14.13)
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spinster!completeness
completeness!spinster As in (11.20), Γ’s provide a complete basis for expanding products of arbitrary

numbers of γ matrices:

������ ������

...

=
∑

b

1

b!
���
���
���

���
���
���

���
���
���

���
���
���

b
����

���
���
���
���

...

. (14.14)

The coupling coefficients in (14.14) are computed as spinster traces using the
orthogonality relation (14.10). As only traces of even numbers of γ’s are nonvan-
ishing, spinster traces are even Grassmann elements; they thus commute with any
other Γ, and all the signs in the above completeness relation are unambiguous.

The orthogonality of Γ’s enables us to introduce projection operators and
3-vertices:

1
������

a
���
���
���
���

���
���
���

���
���
���

=
1

a!
������

a
���
���
���
���

���
���
���

���
���
���

, (14.15)

��
��
��
��

a b

c

=
(−1)t

��
��
��
��

������

���
���
���
���

a b

c

. (14.16)

The sign factor (−1)t gives a symmetric definition of the 3-vertex (see (3.11)).
It is important to note that the spinster loop runs clockwise in this definition.
Because of (3.41), the 3-vertex has a nontrivial symmetry under interchange of
two legs:

���
���
���
���

a b

c

= (−1)s+t+u
��
��
��
��

a b

c

. (14.17)

Note that this is different from (11.26); one of the few instances of spinsters and
spinors differing in a way that cannot be immediately understood as an n → −n
continuation.

The completeness relation (14.14) can be written as

������ ������

...

=
∑

b

1
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

...

b

. (14.18)

The recoupling relation is derived as in the spinor case (11.32):

��
��
��
��

��
��
��
��

���
���
���
���c ... =

∑
b

���
���
���
��� ����

����
����
����

������

���
���
���
���c

b

��
��
��
�� 2

db
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
���� ...

b . (14.19)

P. Cvitanović: Group Theory, spinster, last edited July 23, 2007 printed October 14, 2007



14.1. SPINSTERS 179

spinster!recoupling
coefficient

recoupling coefficient,
spinster

spinster!rep dimension
rep!spinster, dimension

Here db is the dimension of the fully symmetrized b-index tensor rep of Sp(n):

db =
������

b

��
��
��
��

���
���
���
��� =

... b

2
1

...

=
(

n + b − 1
b

)
= (−1)b

(
−n

b

)
. (14.20)

The spinster recoupling coefficients in (14.19) are analogues of the spinor Fierz
coefficients in (11.32). Completeness can be used to evaluate spinster traces in
the same way as in examples (11.34) to (11.35). PC: fix

The next step is the evaluation of 3-j’s, 6-j’s, and spinster recoupling coeffi-
cients. The spinster recoupling coefficients can be expressed in terms of 3-j’s just
as in (11.37):

1
���
���
���
���

������

���
���
���
���c

b

=
∑

(−1)
a+b+c

2
���
���
���
���

��
��
��
��

��
��
��
��

����

��
��
��
��

a cb . (14.21)

The evaluation of 3-j and 6-j coefficients is again a matter of simple combina-
torics:

���
���
���
���

��
��
��
��

��
��
��
��

����

��
��
��
��

a cb = (−1)s+t+u

(
n + s + t + u − 1

s + t + u

)
(s + t + u)!

s!t!u!
, (14.22)

���
���
���
���

����

��
��
��
��

����

����
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

a4

a3

a1
a6

a2

a5

=
∑

t

(
n + t − 1

t

)
(−1)tt!

t1!t2!t3!t4!t5!t6!t7!
, (14.23)

with the ti defined in (11.48).
We close this section with a comment on the dimensionality of spinster reps.

Tracing both sides of the spinor completeness relation (11.27), we determine the
dimensionality of spinor reps from the sum rule (11.30):

(tr1)2 =
n∑

a=0

(
n

a

)
= 2n .

Hence, Dirac matrices (in even dimensions) are [2n/2 × 2n/2], and the range of
spinor indices in (11.3) is a, b = 1, 2, . . . , 2n/2.

For spinsters, tracing the completeness relation (14.18) yields (the string of
γ matrices was indicated only to keep track of signs for odd b’s):

��
��
��
��

��
��
��
��

=
∑

b

1
����������

���
���
���
���b =

∑
b

db (14.24)

(tr 1)2 =
∞∑

c=o

(
n + b − 1

b

)
.

The spinster trace is infinite. This is the reason why spinster traces are not to be
found in the list of the finite-dimensional irreducible reps of Sp(n). One way of
making the traces meaningful is to note that in any spinster trace evaluation only
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Grassmann!extension,
Clifford algebra

Clifford
algebra!Grassmann
extension

negative
dimensions!spinsters

Racah coefficient
Penrose@Penrose, R.
binor

a finite number of Γ’s are needed, so we can truncate the completeness relation
(14.18) to terms 0 � b � bmax. A more pragmatic attitude is to observe that PC: fix

the final results of the calculation are the 3-j and 6-j coefficients for the fully
symmetric reps of Sp(n), and that the spinster algebra (14.2) is a formal device
for projecting only the fully symmetric reps from various Clebsch-Gordan series
for Sp(n).

The most striking result of this section is that the 3-j and 6-j coefficients are
just the SO(n) coefficients evaluated for n → −n. The reason for this we already
understand from chapter 13.

When we took the Grassmann extension of Clifford algebras in (14.2), it was
not too surprising that the main effect was to interchange the role of symmetriza-
tion and antisymmetrization. All antisymmetric tensor reps of SO(n) correspond
to the symmetric rep of Sp(n). What is more surprising is that if we take the
expression we derived for the SO(n) 3-j and 6-j coefficients and replace the di-
mension n by −n, we obtain exactly the corresponding result for Sp(n). The neg-
ative dimension arises in these cases through the relation

(−n
a

)
= (−1)a

(n+a−1
a

)
,

which may be justified by analytic continuation of binomial coefficients by the
Beta function.PC: copy into intermit-

tency paper

14.2 Racah coefficients

So far, we have computed the 6-j coefficients for fully symmetric reps of Sp(n).
Sp(2) plays a special role here; the symplectic invariant fμν has only one inde-
pendent component, and it must be proportional to εμν . Hence, Sp(2) � SU(2).
The observation that SU(2) can be viewed as SO(−2) was first made by Pen-
rose [284], who used it to compute SU(2) invariants using “binors.” His method
does not generalize to SO(n), for which spinors are needed to project onto totally
antisymmetric reps (for the case n = 2, this is not necessary as there are no other
reps). For SU(2), all reps are fully symmetric (Young tableaux consist of a single
row), and our 6-j’s are all the 6-j’s needed for computing SU(2) � SO(3) group-
theoretic factors. More pedantically: SU(2) � Spin(3) � S̃O(3). Hence, all the
Racah [289] and Wigner coefficients, familiar from the atomic physics textbooks,
are special cases of our spinor/spinster 6-j’s. Wigner’s 3-j symbol (5.14)(

j1
m1

j2
m2

J
−M

)
≡ (−1)j1−j2+M

√
2J + 1

〈j1j2m1m2|JM 〉 (14.25)

is really a clebsch with our 3-j as a normalization factor.
This may be expressed more simply in diagrammatic form:

(
j1
m1

j2
m2

J
−M

)
=

iphase√
2J

j22
j12

���
���
���
���

���
���
���
���

������

������

������

j22

2J������

j12

(14.26)

where we have not specified the phase convention on the right-hand side, as
in the calculation of physical quantities such phases cancel. Factors of 2 appear
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Wigner!3nj@$3$-$j$
orthogonality

orthogonality!Wigner
$3$-$j$

Wigner!3nj@$3$-$j$
completeness

completeness!Wigner
$3$-$j$

Penrose@Penrose, R.
binor

because our integers a, b, . . . = 1, 2, . . . count the numbers of SU(2) 2-dimensional
reps (SO(3) spinors), while the usual j1, j2, . . . = 1

2 , 1, 3
2 , . . . labels correspond to

SO(3) angular momenta. PC: cite ref. [60]?

It is easy to verify (up to a sign) the completeness and orthogonality properties
of Wigner’s 3-j symbols PC: recalculate

2J
term

∑
J,M

(2J + 1)
(
j1
m1

j2
m2

J
M

) (
j1
m1

j2
m2

J
M

)
∼

∑
J

d2J

2J

j22
j12

���
���
���
���

���
���
���
���

������

������

������

2J
j12j12

j22 j22

������ ������
��������

����
����
����
����

����
����
����
����

=
j12

j22
∼ δm1m′

1
δm2m′

2
(14.27)

∑
m1m2

(
j1
m1

j2
m2

J
M

) (
j1
m1

j2
m2

J ′
M ′
)

∼ 1

2J

j22
j12

���
���
���
���

���
���
���
���

������

������

������

2J 2J
j12

j22��
��
��
��

���
���
���
���

������

������

������ δJJ ′

∼ δMM ′δJJ ′

2J + 1
. (14.28)

The expression (14.22) for our 3-j coefficient with n = 2 gives the expression PC: Recheck!

usually written as Δ in Racah’s formula for
(

j
α

k
γ

l
γ

)
,

1
Δ(j, k, l)

= (−1)j+k+l 2k

2j

2l
��
��
��
��

���� ����
����
����
����

��������

����
����
����
����

=
(j + k + l + 1)!

(j + k − l)!(k + l − j)!(l + j − k)!
. (14.29)

Wigner’s 6-j coefficients (5.15) are the same as ours, except that the 3-vertices
are normalized as in (14.26)

{
j1
k1

j2
k2

j3
k3

}
=

1√
2 j1

������������

��������

��������

��������

2 2

2 3

k

k ������������

��������

��������

��������

2 1

2 3

k

k

2 j2

������������

��������

��������

��������

2 1

2 2

k

k

2 j3
2 j2
2 j3

2 j1

������������

��������

��������

��������

2 j1
2 j2

2 j3

2k2 2k3

2k1

������

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

������

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

, (14.30)

which gives Racah’s formula using (14.23), with n = 2:{
j1
k1

j2
k2

j3
k3

}
= [Δ(j1k2k3)Δ(k1j2k3)Δ(k1k2j3)Δ(j1j2j3)]1/2

×
∑

t

(−1)t(t + 1)!
t1!t2!t3!t4!t5!t6!t7!

, where

t1 = t − j1 − j2 − j3 , t5 = j1 + j2 − k1 + k2 − t ,

t2 = t − j1 − k2 − k3 , t6 = j2 + j3 + k2 + k3 − t ,

t3 = t − k1 − j2 − k3 , t7 = j3 + j1 + k3 + k1 − t ,

t4 = t − k1 − k2 − j3 . (14.31)

14.3 Heisenberg algebras
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Heisenberg algebra
orthosymplectic group
spinster—)
spn@$Sp(n)$!spinster

reps—)

What are these “spinsters”? A trick for relating SO(n) antisymmetric reps to
Sp(n) symmetric reps? That can be achieved without spinsters: indeed, Pen-
rose [284] had observed many years ago that SO(−2) yields Racah coefficients in
a much more elegant manner than the usual angular momentum manipulations.
In chapter 13, we have also proved that for any scalar constructed from tensor
invariants, SO(−n) � Sp(n). This theorem is based on elementary properties of
permutations and establishes the equivalence between 6-j coefficients for SO(−n)
and Sp(n), without reference to spinsters or any other Grassmann extensions.

Nevertheless, spinsters are the natural supersymmetric extension of spinors,
and the birdtrack derivation offers a different perspective from the literature
discussions of metaplectic reps of the symplectic group [312, 325, 103, 195, 226].
They do not appear in the usual classifications, because they are infinite-dimensional
reps of Sp(n). However, they are not as unfamiliar as they might seem; if we write
the Grassmannian γ matrices for Sp(2D) as γμ = (p1, p2, . . . pD, x1, x2 . . . xD) and
choose fμν of form

f =
(

0 1
−1 0

)
, (14.32)

the defining commutator relation (14.2) is the defining relation for a Heisenberg
algebra, except for a missing factor of i:

[pi, xj] = δij1 , i, j = 1, 2, . . . D . (14.33)

If we include an extra factor of i into the definition of the “momenta” above, we
find that spinsters resemble an antiunitary Grassmann-valued rep of the usual
Heisenberg algebra. The Clifford algebra has its spinor reps, and the Heisenberg
algebra has its infinite-dimensional Fock representation. The Fock space rep of
the metaplectic group Mp(n) is the double cover of the symplectic group Sp(n),
just as the spinors rep of the Spin group is the double cover of the rotation group
SO(n). If there is any significance in these observations, it would be intriguing⇓PRELIMINARY

to consider relationship between superspace and the spinor/spinster reps of the
orthosymplectic groups.⇑PRELIMINARY
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Chapter 15

SU(n) family of invariance
groups

SU(n) preserves the Levi-Civita tensor, in addition to the Kronecker δ of sect. 9.10.
This additional invariant induces nontrivial decompositions of U(n) reps. In this
chapter, we show how the theory of SU(2) reps (the quantum mechanics text-
books’ theory of angular momentum) is developed by birdtracking; that SU(3) is
the unique group with the Kronecker delta and a rank-3 antisymmetric primitive
invariant; that SU(4) is isomorphic to SO(6); and that for n ≥ 4, only SU(n)
has the Kronecker δ and rank-n antisymmetric tensor primitive invariants.

15.1 Reps of SU(2)

For SU(2), we can construct an additional invariant matrix that would appear
to induce a decomposition of V ⊗ V reps:

Ea
b ,

c
d =

1
2
εacεbd =

a

b

d

c
. (15.1)

However, by (6.28) this can be written as a sum over Kronecker deltas and is not
an independent invariant. So what does εac do? It does two things; it removes the
distinction between a particle and an antiparticle (if qa transforms as a particle,
then εabqb transforms as an antiparticle), and it reduces the reps of SU(2) to the
fully symmetric ones. Consider V ⊗ V decomposition (7.4)

1 ⊗ 2 = 1 2 + •

= + (15.2)

22 =
2 · 3
2

+
2 · 1
2

.

The antisymmetric rep is a singlet,

= . (15.3)
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Now consider the ⊗V 3 and ⊗V 4 space decompositions, obtained by adding
successive indices one at a time:

= + ���
���
���
���

���
���
���
���

= +
3
4

+

1 × 2 × 3 = 1 32 + 1 + 3

= +
4
3

+

+
3
2

+
4
3

+

1 × 2 × 3 × 4 = 1 42 3 + 1 4 + 43 + 1 2 + • + • . (15.4)

This is clearly leading us into the theory of SO(3) angular momentum addition
(or SU(2) spin, i.e., both integer and half-integer irreps of the rotation group),
described in any quantum mechanics textbook. We shall, anyway, persist a little
while longer, just to illustrate how birdtracks can be used to recover some familiar
results.

The projection operator for m-index rep is

Pm = ......

m

2
1

. (15.5)

The dimension is trPm = 2(2 + 1)(2 + 2) . . . (2 + m − 1)/m! = m + 1. In quan-
tum mechanics textbooks m is set to m = 2j, where j is the spin of the rep. The
projection operator (7.10) for the adjoint rep (spin 1) is

= − 1
2

. (15.6)

This can be rewritten as using (15.3). The quadratic casimir for the
defining rep is

=
3
2

. (15.7)

Using

= − 1
2

=
1
2

, (15.8)

we can compute the quadratic casimir for any rep

n = n ... ......

C2(n) = = n2 ...... ... ...
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cubic
invariant!SU3@$SU(3)$—(text

su3@$SU(3)$—(textbf
group!su3@$SU(3)$—(textbf

= n

{

...... ... + (n − 1) ...... ...

}
= n

(
3
2

+
n − 1

2

)
=

n(n + 2)
2

. (15.9)

The Dynkin index for n-index rep is given by

�(n) =
C2(n)dn

C2(2)d2
=

n(n + 1)(n + 2)
24

. (15.10)

PC: replace n, p → m in
various formulas hereWe can also construct clebsches for various Kronecker products. For example,

λp ⊗ λ1 is given by

2
1

...

p

... ... = ...... +
2(p − 1)

p

... ... (15.11)

for any U(n). For SU(2) we have (15.3), so

2 11 p-... × p = p1 2 ... + 2p-1 2 ...

...... = ...... +
2(p − 1)

p

...... . (15.12)

Hence, the Clebsch-Gordan for λp ⊗ λ1 → λp−1 is

√
2(p − 1)/p -2

2
1

p
...... . (15.13)

As we have already given the complete theory of SO(3) angular momentum in
chapter 14, by giving explicit expressions for all Wigner 6-j coefficients (Racah
coefficients), we will not pursue this further here.

Group-theoretic weights have an amusing graph-theoretic interpretation for
SO(3). For a planar vacuum (no external legs) diagram weight WG with nor-
malization α = 2, WG is the number of ways of coloring the lines of the graph
with three colors [284]. This, in turn, is related to the chromatic polynomials,
Heawood’s conjecture, and the 4-color problem [296, 271].

15.2 SU(3) as invariance group of a cubic invariant

QCD hadrons are built from quarks and antiquarks, and with hadron spectrum
consisting of the following

• Mesons, each built from a quark and an antiquark.

• Baryons, each built from three quarks or antiquarks in a fully antisymmetric
color combination.
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• No exotic states, i.e., no hadrons built from other combinations of quarks
and antiquarks.

We shall show here that for such hadronic spectrum the color group can be only
SU(3).

In the group-theoretic language, the above three conditions are a list of the
primitive invariants (color singlets) that define the color group:

• One primitive invariant is δa
b , so the color group is a subgroup of SU(n).

• There is a cubic antisymmetric invariant fabc and its dual fabc.

• There are no further primitive invariants. This means that any invariant
tensor can be written in terms of the tree contractions of δb

a, f
abc and fbca.

In the birdtrack notation,

fabc =
���
���
���
���

���
���
���
���

������

a b

c

, fabc =
���
���
���
���

���
���
���
���

����
����
����
����

a b

c

. (15.14)

fabc and fabc are fully antisymmetric:

���
���
���

���
���
���

���
���
���
���

= −
���
���
���
���

���
���
���
���

������

. (15.15)

We can already see that the defining rep dimension is at least three, n ≥ 3,
as otherwise fabc would be identically zero. Furthermore, f ’s must satisfy a
normalization condition,

fabcfbdc = αδa
d

= α . (15.16)

(For convenience we set α = 1 in what follows.) If this were not true, eigenvalues
of the invariant matrix F a

d = fabcfbdc could be used to split the n-dimensional
rep in a direct sum of lower-dimensional reps; but then n-dimensional rep would
not be the defining rep.

V ⊗V states: According to (7.4), they split into symmetric and antisymmetric
subspaces. The antisymmetric space is reduced to n + n(n − 3)/2 by the fabc

invariant:

= +
{

−
}

Aab
cd = fabef

ecd +
{

Aab
cd − fabef

ecd
}

. (15.17)
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characteristic
equation!su3@$SU(3)$On the symmetric subspace the fabef

ecd invariant vanishes due to its antisym-
metry, so this space is not split. The simplest invariant matrix on the symmetric
subspace involves four f ’s:

Kab,
cd = ���

���
���
���

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��a

b

c

d
h

ge

f

= faeffbhgf
cehfdfg . (15.18)

As the symmetric subspace is not split, this invariant must have a single eigen-
value

Kab,
cd = βSab,

cd = β . (15.19)

Tracing Kab,
ad fixes β = 2

n+1 . The assumption, that k is not an independent
invariant, means that we do not allow the existence of exotic qqqq hadrons. The
requirement, that all invariants be expressible as trees of contractions of the
primitives

��
��
��
��

��
��
��
��

= A + B + C , (15.20)

leads to the relation (15.19). The left-hand side is symmetric under index inter-
change a ↔ b, so C = 0 and A = B.

V ⊗V states: The simplest invariant matrix that we can construct from f ’s is

Qa
b ,

d
c =

1
α ��

��
��
��

����
��
��
��
��

��
��
��
��

������

a

b

c

d
= faedfbce . (15.21)

By crossing (15.19), Q satisfies a characteristic equation,

Q2 =
1

n + 1
{1 + T}

��
��
��
��

������
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������ =
1

n + 1

{
��
��
��
��

��
��
��
��

+
}

. (15.22)

On the traceless subspace (7.8), this leads to(
Q2 − 1

n + 1
1
)

P2 = 0 , (15.23)

with eigenvalues ±1/
√

n + 1. V ⊗ V contains the adjoint rep, so at least one
of the eigenvalues must correspond to the adjoint projection operator. We can
compute the adjoint rep eigenvalue from the invariance condition (4.37) for f bcd:

���
���
���
���

���
���
���
���

������

+
������

���
���
���
���

���
���
���
���

+
��������

���
���
���
���

���
���
���
���

= 0 . (15.24)

Contracting with f bcd, we find PC: redraw
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188 CHAPTER 15. SU(N) FAMILY OF INVARIANCE GROUPS

Levi-Civita
tensor!$SU(3)$

cubic
invariant!SU3@$SU(3)$—)

su3@$SU(3)$—)
Levi-Civita

tensor!$SU(n)$
skew-symmetric

invariant

����
����
����

����
����
����

����
����
����

����
����
����

������������ = −1
2

������

PAQ = −1
2
PA . (15.25)

Matching the eigenvalues, we obtain 1/
√

n + 1 = 1/2, so n = 3: quarks can
come in three colors only, and fabc is proportional to the Levi-Civita tensor εabc

of SU(3). The invariant matrix Q is not an independent invariant; the n(n −
3)/2-dimensional antisymmetric space (15.17) has dimension zero, so Q can be
expressed in terms of Kronecker deltas:

0 = −
��
��
��
��

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

0 = Aab
cd − Qc

a,
d
b . (15.26)

We have proven that the only group that satisfies the conditions 1.)–3.), at the
beginning of this section, is SU(3). Of course, it is well known that the color
group of physical hadrons is SU(3), and this result might appear rather trivial.
That it is not so will become clear from the further examples of invariance groups,
such as the G2 family of the next chapter.PC: rework sect 7. of the

Oxford preprint

15.3 Levi-Civita tensors and SU(n)

In chapter 12, we have shown that the invariance group for a symplectic invariant
fab is Sp(n). In particular, for fab = εab, the Levi-Civita tensor, the invariance
group is SU(2) = Sp(2). In the preceding section, we have proven that the
invariance group of a skew-symmetric invariant fabc is SU(3), and that fabc must
be proportional to the Levi-Civita tensor. Now we shall show that for fabc...d with
r indices, the invariance group is SU(r), and f is always proportional to the Levi-
Civita tensor. (We consider here unitary transformations only; in general, the
whole group SL(3) preserves the Levi-Civita tensor.) r = 2 and r = 3 cases had
to be treated separately, because it was possible to construct from fab and fabc

tree invariants on the V ⊗V → V ⊗V space, which could reduce the group SU(n)
to a subgroup. For fab, n ≥ 4 this is, indeed, what happens: SU(n) → Sp(n), for
n even.

For r ≥ 4, we assume here that the primitive invariants are δb
a and the fully

skew-symmetric invariant tensors

fa1a2...ar = ... , fa1a2...ar = ... , r > 3 . (15.27)

A fully antisymmetric object can be realized only in n ≥ r dimensions. By the
primitiveness assumption

... = α

... =
2α

n − 1
��
��
��
��

��
��
��
��

, etc, (15.28)
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i.e., various contractions of f ’s must be expressible in terms of δ’s, otherwise
there would exist additional primitives. (f invariants themselves have too many
indices and cannot appear on the right-hand side of the above equations.)

The projection operator for the adjoint rep can be built only from δa
b δc

d and
δa
dδc

b . From sect. 9.10, we know that this can give us only the SU(n) projection
operator (7.8), but just for fun we feign ignorance and write

1
a

������ ������ = A

{
��
��
��
��

��
��
��
��

+ b ������ ������

}
. (15.29)

The invariance condition (6.56) on fab...c yields

0 =

������

���
���
���
��� ������

���
���
���

���
���
���

...

...

+ b ���
���
���

���
���
���

���
���
���

���
���
���

������

����
����
����

����
����
����

...
.

Contracting from the top, we get 0 = 1+b n. Antisymmetrizing all outgoing legs,
we get

0 =
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

������

���
���
���

���
���
���

���
���
���
���������

...

... . (15.30)

Contracting with δa
b from the side, we get 0 = n − r. As in (6.30), this defines

the Levi-Civita tensor in n dimensions and can be rewritten as

...

...
= nα

���������������
���������������
���������������
���������������

������ ������ ������...

...
. (15.31)

(The conventional Levi-Civita normalization is nα = n! .) The solution b = −1/n
means that Ti is traceless, i.e., the same as for the SU(n) case considered in
sect. 9.10. To summarize: The invariance condition forces fabc...c to be propor-
tional to the Levi-Civita tensor (in n dimensions, a Levi-Civita tensor is the only
fully antisymmetric tensor of rank n), and the primitives δa

b , fab...d (rank n) have
SU(n) as their unique invariance algebra.

15.4 SU(4)–SO(6) isomorphism

In the preceding sections, we have shown that if the primitive invariants are
δ′ab , fab...cd′ , the corresponding Lie group is the defining rep of SU(n), and fab...cd

is proportional to the Levi-Civita tensor. However, there are still interesting
things to be said about particular SU(n)’s. As an example, we will establish the
SU(4) � SO(6) isomorphism.
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Dirac $“gamma$ matrix
Levi-Civita

tensor!$SU(4)$ -
$SO(6)$

The antisymmetric SU(4) rep is of dimension dA = 4 · 3/2 = 6. Let us
introduce clebsches

��
��
��
��

��
��
��
��

=
����
����
����

����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

Aab,
cd =

1
4
(γμ)ab(γμ)cd , μ = 1, 2, . . . , 6 . (15.32)

1/4 normalization ensures that γ’s will have the Dirac matrix normalization.
The Levi-Civita tensor induces a quadratic symmetric invariant on the 6-

dimensional space

gμν = =

=
1
4
(γμ)abεbacd(γν)dc . (15.33)

This invariant has an inverse:

gμν = = 6 , (15.34)

where the factor 6 is the normalization factor, fixed by the condition gμνgνσ = δσ
μ :

gμνgνσ =

= 6

= 6

= 6
(n − 3)

4
(n − 2)

3
= = δσ

μ . (15.35)

Here we have used (6.28), (15.32), and the orthonormality for clebsches:

=

(γμ)ab(γμ)ba = 4δν
μ . (15.36)

As we have shown in chapter 10, the invariance group for a symmetric invariant
gμν is SO(dA). One can check that the generators for the 6-dimensional rep of
SU(4), indeed, coincide with the defining rep generators of SO(6), and that the
dimension of the Lie algebra is in both cases 15.

The invariance condition (6.56) for the Levi-Civita tensor is

0 =
������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

������ ������

������

����
����
����
����

...

...
=

������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

������

��
��
��
��

��
��
��
��

������

...

... − 1
n

��������

�����������������
�����������������
�����������������
�����������������

������

����
����
����
����

������

... . (15.37)
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sun@$SU(n)$—)
For SU(4) we have

����������������
����������������
����������������
����������������

������ ������ ������
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��
��

��
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��

+
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+
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��
��

+
����������������
����������������
����������������
����������������

������ ������ ������ ������

=
����������������
����������������
����������������
����������������

����
����
����
����

������ ������ ������ ������ . (15.38)

Contracting with (γμ)ab(γν)cd, we obtain

����������������
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=
1
2
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(γμ)be(γν)ab + (γμ)ad(γν)de = 2δe
agμν . (15.39)

Here (γν)ab ≡ (γν)cdεdcab, and we recognize the Dirac equation (11.4). So the
clebsches (15.32) are, indeed, the γ-matrices for SO(6) (semi)spinor reps (11.65).

PC: recheck (11.4), (11.65)
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Chapter 16

G2 family of invariance groups

In this chapter, we begin the construction of all invariance groups that possess
a symmetric quadratic and an antisymmetric cubic invariant in the defining rep.
The resulting classification is summarized in fig. 16.1. We find that the cubic PC: give correct name to

n = 6 solutioninvariant must satisfy either the Jacobi relation (16.7) or the alternativity relation
(16.11). In the former case, the invariance group can be any semisimple Lie group
in its adjoint rep; we pursue this possibility in the next chapter. The latter case
is developed in this chapter; we find that the invariance group is either SO(3) or
the exceptional Lie group G2. The problem of evaluation of 3n-j coefficients for
G2 is solved completely by the reduction identity (16.14). As a by-product of the
construction, we give a proof of Hurwitz’s theorem (sect. 16.6) and demonstrate
that the independent casimirs for G2 are of order 2 and 6, by explicitly reducing
the order 4 casimir in sect. 16.5. Here we are concerned only with the derivation
of G2. For a systematic discussion of G2 invariants (in tensorial notation) we
refer the reader to Macfarlane [225]. PC: Cartier: read about

Felix Klein “Encyclopedia
von Mathematik”, editor
Molt, about 1900’s. French
version: Elie Cartan on
“Hyper-complex algebras.”
Dixon book on the history
of algebra”.

Consider the following list of primitive invariants:

1. δa
b , so the invariance group is a subgroup of SU(n).

2. Symmetric gab = gba, gab = gba, so the invariance group is a subgroup of
SO(n). As in chapter 10, we take this invariant in its diagonal, Kronecker
delta form δab.

3. A cubic antisymmetric invariant fabc.

Primitiveness assumption requires that all other invariants can be expressed in
terms of the tree contractions of δab , fabc.

In the diagrammatic notation, one keeps track of the antisymmetry of the
cubic invariant by reading the indices off the vertex in a fixed order: PC: Make all black dots

bigger.

fabc = = − = −facb . (16.1)

The primitiveness assumption implies that the double contraction of a pair of f ’s
is proportional to the Kronecker delta. We can use this relation to fix the overall

193
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+ B= A

,

(3)SO

E family8

(3)SU

n=7 n=6

= 0

(n)(n),(n),

=

6 =

SU SO Sp

2G

primitives:

quartic primitive no quartic primitive

any adjoint representation

Jacobi

no relations

two relations one relation

alternativity

assume:

Figure 16.1: Logical organization of chapters 16–17. The invariance groups SO(3) and
G2 are derived in this chapter, while the E8 family is derived in chapter 17.

normalization of f ’s:

fabcfcbd = α δad

= α . (16.2)

For convenience, we shall often set α = 1 in what follows.
1

The next step in our construction is to identify all invariant matrices on
V ⊗V and construct the Clebsch-Gordan series for decomposition of 2-index
tensors. There are six such invariants: the three distinct permutations of indices
of δabδcd, and the three distinct permutations of free indices of fabefecd. For
reasons of clarity, we shall break up the discussion in two steps. In the first
step, sect. 16.1, we assume that a linear relation between these six invariants

1Ref2: I think that the author is implicitly assuming the equation gaifibc = fabig
ic in all the

diagrammatic calculations in this chapter. This equation has a nice pictorial interpretation that
allows one to wiggle diagrams around without changing the tensor they represent. Moreover,
this equation holds for the Lie bracket and Killing form in a semisimple Lie algebra, where it’s
equivalent to g([X, Y ], Z) = g(X, [Y, Z]). For the Lie algebra of SO(3), it says simply (X × Y ) ·
Z = X · (Y ×Z). So, I think this equation needs to be added to the definition of the G2 family.
PC: here I disagree - I have disposed of the symmetric 2-index invariant tensor gab in Chapter
10 “Orthogonal groups”, here I am looking at subgroups of SO(n). gab is not a Killing form,
this is the defining, not the adjoint representation. Later on it does become the Killing form for
the E8 family, but that is a result of calculation, not an assumption.
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Jacobi relation
exists. Pure symmetry considerations, together with the invariance condition,
completely fix the algebra of invariants and restrict the dimension of the defining
space to either 3 or 7. In the second step, sect. 16.3, we show that a relation
assumed in the first step must exist because of the invariance condition.

Example. Consider “quarks” and “hadrons” of a Quantum Chromodynamics
with the hadronic spectrum consisting of the following singlets:

1. Quark-antiquark mesons.

2. Mesons built of two quarks (or antiquarks) in a symmetric color combina-
tion.

3. Baryons built of three quarks (or antiquarks) in a fully antisymmetric color
combination.

4. No exotics, i.e., no hadrons built from other combinations of quarks and
antiquarks.

As we shall now demonstrate, for this hadronic spectrum the color group is either
SO(3), with quarks of three colors, or the exceptional Lie group G2, with quarks
of seven colors.

16.1 Jacobi relation

If the above six invariant tensors are not independent, they satisfy a relation of
form PC: remove extra inter-

spaces

0 = A + B + C + D + E + F . (16.3)

Antisymmetrizing a pair of indices yields

0 = A′ + E + F ′ , (16.4)

and antisymmetrizing any three indices yields

0 = (E + F ′) . (16.5)

If the tensor itself vanishes, f ’s satisfy the Jacobi relation (4.50):

0 = − + . (16.6)

If A′ �= 0 in (16.4), the Jacobi relation relates the second and the third term:

0 = + E′ . (16.7)
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Levi-Civita
tensor!$SO(3)$

alternativity relation
The normalization condition (16.2) fixes E′ = −1 :

= . (16.8)

Contracting the free ends of the top line with δab, we obtain 1 = (n − 1)/2,
so n = 3. We conclude that if pair contraction of f ’s is expressible in terms
of δ’s, the invariance group is SO(3), and fabc is proportional to the 3-index
Levi-Civita tensor. To spell it out; in three dimensions, an antisymmetric rank-3
tensor can take only one value, fabc = ±f123, that can be set equal to ±1 by the
normalization convention (16.2). 2

If A′ = 0 in (16.4), the Jacobi relation is the only relation we have, and the
adjoint rep of any simple Lie group is a possible solution. We return to this case
in chapter 17.

16.2 Alternativity and reduction of f-contractions

If the Jacobi relation does not hold, we must have E = −F ′ in (16.5), and (16.4)
takes the form

+ = A′′ . (16.9)

Contracting with δab fixes A′′ = 3/(n − 1). Symmetrizing the top two lines and
rotating the diagrams by 900, we obtain the alternativity relation:

=
1

n − 1

{
−

}
. (16.10)

The name comes from the octonion interpretation of this formula (see sect. 16.5).
Adding the two equations, we obtain

+ =
1

n − 1

{
− 2 +

}
. (16.11)

By (16.9), the invariant is reducible on the antisymmetric subspace. By
(16.10), it is also reducible on the symmetric subspace. The only independent f ·f
invariant is , which, by the normalization (16.2), is already the projection
operator that projects the antisymmetric 2-index tensors onto the n-dimensional
defining space. The Clebsch-Gordan decomposition of V ⊗V follows:

=
1
n

+
{

− 1
n

}
+ +

{
−

}
n2 = 1 +

(n − 1)(n + 2)
2

+ n +
n(n − 3)

2
. (16.12)

2Hendryk: This is correct, but you have not proved it. You have shown only that E �= F ′

and A′ �= 0 implies n = 3 and ff = δδ, but not the converse implication.
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The dimensions of the reps are obtained by tracing the corresponding projection
operators.

The adjoint rep of SO(n) is now split into two reps. Which one is
the new adjoint rep? We determine this by considering (6.56), the invariance
condition for fabc. If we take to be the projection operator for the adjoint
rep, we again get the Jacobi condition (16.6), with SO(3) as the only solution.
However, if we demand that the last term in (16.12) is the adjoint projection
operator

1
a

= − , (16.13)

the invariance condition takes the form

0 = ���
���
���
���

��
��
��

��
��
��

= − . (16.14)

The last term can be simplified by (6.19) and (16.9):

3 = − 2 = 3 + 2
3

n − 1
.

Substituting back into (16.14) yields

= − 2
n − 1

= .

Expanding the last term and redrawing the equation slightly, we have

=
2

n − 1
− 2

3
+

1
3

.

This equation is antisymmetric under interchange of the left and the right index
pairs. Hence, 2/(n − 1) = 1/3, and the invariance condition is satisfied only for
n = 7. Furthermore, the above relation gives us the G2 reduction identity

=
α

3

⎧⎪⎪⎨⎪⎪⎩ − 2 +

⎫⎪⎪⎬⎪⎪⎭ . (16.15)

This identity is the key result of this chapter: it enables us to recursively reduce
all contractions of products of δ-functions and pairwise contractions fabcfcde, and
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alternativity relation
Dirac $“gamma$ matrix thus completely solves the problem of evaluating any casimir or 3n-j coefficient

of G2.
The invariance condition (16.14) for fabc implies that

=
1
2

. (16.16)

The “triangle graph” for the defining rep can be computed in two ways, either by
contracting (16.10) with fabc, or by contracting the invariance condition (16.14)
with δab:PC: reinstate {16.18},

recheck text

=
4 − n

n − 1
=

5 − n

4
. (16.17)

So, the alternativity and the invariance conditions are consistent if (n−3)(n−7) =
0, i.e., only for three or seven dimensions. In the latter case, the invariance
group is the exceptional Lie group G2, and the above derivation is also a proof
of Hurwitz’s theorem (see sect. 16.5).

In this way, symmetry considerations together with the invariance conditions
suffice to determine the algebra satisfied by the cubic invariant. The invariance
condition fixes the defining dimension to n = 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the cubic invariant is not
a structure constant, it can be realized only in seven dimensions, and its algebra
is completely determined. The identity (16.15) plays the role analogous to one
the Dirac relation {γμ, γν} = 2gμν1 plays for evaluation of traces of products of
Dirac gamma-matrices, described above in chapter 11. Just as the Dirac relation
obviates the need for explicit reps of γ’s, (16.14) reduces any f · f · f contraction
to a sum of terms linear in f and obviates any need for explicit construction of
f ’s.

The above results enable us to compute any group-theoretic weight for G2

in two steps. First, we replace all adjoint rep lines by the projection operators
PA (16.13). The resulting expression contains Kronecker deltas and chains of
contractions of fabc, which can then be reduced by systematic application of the
reduction identity (16.15). Several examples of such calculations are given in⇓INTERNAL

appendix C.⇑INTERNAL

The above 1975 diagrammatic derivation of the Hurwitz theorem was one of
the first nontrivial applications of the birdtrack technology [73, 74, 82]. More
recently, the same diagrammatic proof of Hurwitz’s theorem has been given by
Dominic Boos [27], based on the algebraic proof by Markus Rost [302].

16.3 Primitivity implies alternativity
PC: Make this an appendix

The step that still remains to be proven is the assertion that the alternativity
relation (16.10) follows from the primitiveness assumption. We complete the
proof in this section. The proof is rather inelegant and should be streamlined (an
exercise for the reader).
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If no relation (16.3) between the three f · f contractions is assumed, then by
the primitiveness assumption the adjoint rep projection operator PA is of the
form

= A

{
+ B + C

}
. (16.18)

Assume that the Jacobi relation does not hold; otherwise, this immediately re-
duces to SO(3). The generators must be antisymmetric, as the group is a sub-
group of SO(n). Substitute the adjoint projection operator into the invariance
condition (6.56) (or (16.14)) for fabc:

0 = + B + C . (16.19)

Resymmetrize this equation by contracting with . This is evaluated

substituting (6.19) and using the relation (6.61):

= 0 . (16.20)

The result is

0 = − +
C − B

2
+ B . (16.21)

Multiplying (16.19) by B, (16.21) by C, and subtracting, we obtain

0 = (B + C)
{

+
(

B − C

2

) }
. (16.22)

We treat the case B + C = 0 below, in (16.26).

If B + C �= 0, by contracting with fabc we get B − C/2 = −1, and

0 = − . (16.23)

To prove that this is equivalent to the alternativity relation, we contract with
, expand the 3-leg antisymmetrization, and obtain PC: gave up on some bird-

tracks here...

0 = − +

− + −

0 = − 2 − + 2 . (16.24)
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The triangle subdiagram can be computed by adding (16.19) and (16.21)

0 = (B + C)
{

1
2

+
}

and contracting with . The result is

= −1
2

. (16.25)

Substituting into (16.24), we recover the alternativity relation (16.10). Hence,
we have proven that the primitivity assumption implies the alternativity relation
for the case B + C �= 0 in (16.22).

If B + C = 0, (16.19) takes the form

0 = + B

{
−

}
. (16.26)

Using the normalization (7.38) and orthonormality conditions, we obtain

=
6 − n

9 − n
(16.27)

1
a

=
6

15 − n
+

2(9 − n)
15 − n

{
−

}
(16.28)

N =
1
a

=
4n(n − 3)

15 − n
. (16.29)

The remaining antisymmetric rep

= − − 1
a

=
9 − n

15 − n

{
− 2 +

3 − n

9 − n

}
(16.30)

has dimension

d = �������������������������������������� =
n(n − 3)(7 − n)

2(15 − n)
. (16.31)

The dimension cannot be negative, so d ≤ 7. For n = 7, the projection operator
(16.30) vanishes identically, and we recover the alternativity relation (16.10).

The Diophantine condition (16.31) has two further solutions: n = 5 and
n = 6.
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skew-symmetric
invariantThe n = 5 is eliminated by examining the decomposition of the traceless

symmetric subspace in (16.12), induced by the invariant Q = . By the
primitiveness assumption, Q2 is reducible on the symmetric subspace

0 =
{

+ A + B

}{
− 1

n

}
0 = (Q2 + AQ + B1)P2 .

Contracting the top two indices with δab and (Ti)ab, we obtain PC: compare with anti-
symm E6?(

Q2 − 1
2

3 − n

9 − n
Q − 5

2
6 − n

(2 + n)(9 − n)
1
)

P2 = 0 . (16.32)

PC: redo this with Mathe-
maticaFor n = 5, the roots of this equation are irrational and the dimensions of the

two reps, induced by decomposition with respect to Q, are not integers. Hence,
n = 5 is not a solution. We turn to the case n = 6 next. ⇓INTERNAL

16.4 Lie’s, sextonians and bird tracks
PC: I find Sp(6) is the solu-
tion - but that cannot pos-
sibly be true, as it says that
Sp(6) ⊆ SO(6)?

For the remaining n = 6 case the equation (16.32) reduces to(
Q +

1
2
1
)

QP2 = 0 , (16.33)

with the associated projection operators

P+ =
{

+ 2
}

P2 , d+ = 12 (16.34)

P− = −2 P2 , d− = 8 . (16.35)

The adjoint (9.3) and the antisymmetric (9.51) projection operators are given PC: recheck (9.3), (9.51)

by

=
2
3

{
− +

}
, N = 8

=
1
3

{
− 2 −

}
, d = 1 , (16.36)

and = 0 .

The existence of a 1-dimensional rep implies that n = 6 owns an associated
skew-symmetric rank-2 invariant,

= −1
6

. (16.37)

Here the normalization is chosen so that the symplectic invariant

= − (16.38)
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satisfies the identity

= − . (16.39)

This invariant projects onto the 1-dimensional subspace (16.36) and is thus or-
thogonal to the defining and the adjoint reps:

= = 0 . (16.40)

The cubic invariant can now be altogether eliminated in favor of the symplectic
one: first we rewrite (16.36) as

2 + = +
1
2

.

Antisymmetrizing the top two lines yields

=
1
2

{
+

}
. (16.41)

With this substitution the adjoint (16.36) and the two symmetric (16.35) rep
projection operators are given by

=
1
2

{
−

}
+

1
6

P+ =
1
2

{
+

}
P− =

1
2

{
−

}{
− 1

6

}
. (16.42)

The invariance condition 0 = is satisfied trivially.

The 1-dimensional rep also satisfies the invariance condition, so it corresponds
to a U(1). Not only that, but P+ also satisfies the invariance condition

+ =
1
2

{
−

}
= 0 . (16.43)

Hence, the sum of the three adjoint reps,

− 1
6

+ + =
1
2

{
− +

}
= , (16.44)

is the 8 + 1 + 12 = 21-dimensional adjoint rep of Sp(6). The remaining reps
also coalesce to Sp(6) reps:

+ =
1
2

{
+ + −

}
−1

6

= − 1
6

; 14 of Sp(6) . (16.45)
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PC: I am confused. Sp(6)
is a simple group, so
what does my decompo-
sition to orthogonal sub-
spaces mean? Also, as-
sumption of existence of
invariance means that we
have assumed real reps,
while Sp(6) is pseudo real.

The symplectic invariant identity (16.39) can be used to split the defining rep
6 → 3 + 3;

P+ =
1
2
{ + i } = , P±P∓ = 0

P− =
1
2
{ − i } = , P±P± = P± . (16.46)

The symplectic invariant has eigenvalues ± :

= −i , = i . (16.47)

The n = 6 case appears to be related to Westbury’s sextonians [343, 210,
211, 344] a 6-dimensional alternative algebra, intermediate between the complex
quaternions and octonions. I leave the proof of that as an exercise to the reader.

⇑INTERNAL

16.5 Casimirs for G2

In this section, we prove that the independent casimirs for G2 are of order 2 and
6, as indicated in table 7.1. As G2 is a subgroup of SO(7), its generators are
antisymmetric, and only even-order casimirs are nonvanishing.

The quartic casimir, in the notation of (7.9),

= tr X4 =
∑
ijkl

xixjxkxl tr (TiTjTkTl) ,

can be reduced by manipulating it with the invariance condition (6.56)

= −2 = 2 + 2 .

The last term vanishes by further manipulation with the invariance condition PC: this follows from ver-
tex invariance, no need for
extra contraction

= = 0 . (16.48)

The remaining term is reduced by the alternativity relation (16.10)

= =
1
6

{
−

}
.

This yields the explicit expression for the reduction of quartic casimirs in the
defining rep of G2:

=
1
3

{
−

}
tr X4 =

1
4
(
tr X2

)2
. (16.49)

As the defining rep is 7-dimensional, the characteristic equation (7.10) reduces
the casimirs of order 8 or higher. Hence, the independent casimirs for G2 are of
order 2 and 6.
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Frobenius’s theorem
16.6 Hurwitz’s theorem

Throughout this text the field over which the defining vector space V is defined
is either R, the field of real numbers, or C, the field of complex numbers. Nei-
ther quaternions (a skew field or division ring), nor octonions (a nonassociative
algebra) form a field.

Frobenius’s theorem states that the only associative real division algebras
are the real numbers, the complex numbers, and the quaternions. In order to
interpret the results obtained above, we need to define normed algebras.PC: find a reference for the

Frobenius’ theorem

Definition (Curtis [70]). A normed algebra A is an (n+1)-dimensional vector
space over a field F with a product xy such that

(i) x(cy) = (cx)y = c(xy) , c ∈ F

(ii) x(y + z) = xy + xz , x, y, z ∈ A

(x + y)z = xz + yz,

and a nondegenerate quadratic norm that permits composition

(iii) N(xy) = N(x)N(y) , N(x) ∈ F. (16.50)

Here F will be the field of real numbers. Let {e0, e1, . . . , en} be a basis of A over
F :

x = x0e0 + x1e1 + . . . + xnen , xa ∈ F , ea ∈ A . (16.51)

It is always possible to choose eo = I (see Curtis [70]). The product of remaining
bases must close the algebra:

eaeb = −dabI + fabcec , dab, fabc ∈ F a, . . . , c = 1, 2, . . . , n . (16.52)

The norm in this basis is

N(x) = x2
0 + dabxaxb. (16.53)

From the symmetry of the associated inner product (Tits [328]),

(x, y) = (y, x) = −N(x + y) − N(x) − N(y)
2

, (16.54)

it follows that −dab = (ea, eb) = (eb, ea) is symmetric, and it is always possible
to choose bases ea such that

eaeb = −δab + fabcec. (16.55)

Furthermore, from

− (xy, x) =
N(xy + x) − N(x)N(y)

2
= N(x)

N(y + 1) − N(y) − 1
2

= N(x)(y, 1), (16.56)
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alternativity relation
Hurwitz’s theorem
alternativity relation

it follows that fabc = (ea, eb, ec) is fully antisymmetric. [In Tits’s notation [328],
the multiplication tensor fabc is replaced by a cubic antisymmetric form (a, a′, a′′),
his equation (14)]. The composition requirement (16.50) expressed in terms of
bases (16.51) is

0 = N(xy) − N(x)N(y)
= xaxbycyd (δacδbd − δabδcd + facefcbd) . (16.57)

To make a contact with sect. 16.2, we introduce diagrammatic notation (factor
i
√

6/α adjusts the normalization to (16.2))

fabc = i

√
6
α

. (16.58)

Diagrammatically, (16.57) is given by

0 = − +
6
α

. (16.59)

This is precisely the alternativity relation (16.10) we have proven to be nontriv-
ially realizable only in three and seven dimensions. The trivial realizations are
n = 0 and n = 1, fabc = 0. So we have inadvertently proven

Hurwitz’s theorem [167, 168, 70, 171]: (n+1)-dimensional normed algebras
over reals exist only for n = 0, 1, 3, 7 (real, complex, quaternion, octonion).

We call (16.10) the alternativity relation, because it can also be obtained by
substituting (16.55) into the alternativity condition for octonions [307]

[xyz] ≡ (xy)z − x(yz) ,

[xyz] = [zxy] = [yzx] = − [yxz] . (16.60)

Cartan [43] was first to note that G2(7) is the isomorphism group of octonions,
i.e., the group of transformations of octonion bases (written here in the infinites-
imal form)

e′a = (δab + iDab)eb ,

which preserve the octonionic multiplication rule (16.55). The reduction identity
(16.15) was first derived by Behrends et al. [18], in index notation: see their
equation (V.21) and what follows. Tits also constructed the adjoint rep projection
operator for G2(7) by defining the derivation on an octonion algebra as

Dz = 〈x, y〉z = −1
2
((x · y) · z) +

3
2
[(y, z)x − (x, z)y]

[Tits 1966, equation (23)], where

ea · eb ≡ fabcec, (16.61)
(ea, eb) ≡ −δab. (16.62)
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G2@$G˙2$—)
Substituting x = xaea, we find

(Dz)d = −3xayb

(
1
2
δabδbd +

1
6
fabefecd

)
zc . (16.63)

The term in the brackets is just the G2(7) adjoint rep projection operator PA in
(16.13), with normalization α = −3.
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E8@$E˙8$ primitiveness
assumption

Jacobi relation

Chapter 17

E8 family of invariance groups

In this chapter we continue the construction of invariance groups characterized
by a symmetric quadratic and an antisymmetric cubic primitive invariant. In
the preceding chapter we proved that the cubic invariant must either satisfy the
alternativity relation (16.11), or the Jacobi relation (4.49), and showed that the
first case has SO(3) and G2 as the only interesting solutions.

Here we pursue the second possibility and determine all invariance groups
that preserve a symmetric quadratic (4.29) and an antisymmetric cubic primitive
invariant (4.47),

, = − ��
��
��
�� , (17.1)

with the cubic invariant satisfying the Jacobi relation (4.49)

− = . (17.2)

Our task is twofold:

• Enumerate all Lie algebras defined by the primitives (17.1). The key idea
here is the primitiveness assumption (3.39). By requiring that the list of
(17.1) is the full list of primitive invariants, i.e., that any invariant tensor
can be expressed as a linear sum over the tree invariants constructed from
the quadratic and the cubic invariants, we are classifying those invariance
groups for which no quartic primitive invariant exists in the adjoint rep (see
fig. 16.1).

• Demonstrate that we can compute all 3n-j coefficients (or casimirs, or vac-
uum bubbles); the ones up to 12-j are listed in table 5.1. Due to the
antisymmetry (17.1) of structure constants and the Jacobi relation (17.2),
we need to concentrate on evaluation of only the even-order symmetric

207
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Cartan-Killing! form
casimirs, a subset of (7.13):

, , , · · · . (17.3)

Here cheating a bit and peeking into the list of the Betti numbers (table 7.1)
offers some moral guidance: the orders of Dynkin indices for the E8 group
are 2, 8, 12, 14, 18, 20, 24, 30. In other words, there is no way manual
birdtracking is going to take us to the end of this road.

We accomplish here most of 1.): the Diophantine conditions (17.13)-(17.19) and
(17.38)-(17.40) yield all of the E8 family Lie algebras, and no stragglers, but we
fail to prove that there exist no further Diophantine conditions, and that all of
these groups actually exist. We are much further from demonstrating 2.): the
projection operators (17.15), (17.16), (17.31)–(17.33) for the E8 family enable us
to evaluate diagrams with internal loops of length 5 or smaller, but we have no
proof that any vacuum bubble can be so evaluated. Should we be intimidated
by existence of Dynkin indices of order 30? Not necessarily: we saw that any
classical Lie group vacuum bubble can be iteratively reduced to a polynomial in
n, regardless of the number of its Dynkin indices. But for F4, E6, E7, and E8

such algorithms remain unknown.
As, by assumption, the defining rep satisfies the Jacobi relation (17.2), the

defining rep is in this case also A, the adjoint rep of some Lie group. Hence, in
this chapter we denote the dimension of the defining rep by N , the cubic invariant
by the Lie algebra structure constants −iCijk, and draw the invariants with the
thin (adjoint) lines, as in (17.1) and (17.2).

The assumption that the defining rep is irreducible means in this case that
the Lie group is simple, and the quadratic casimir (Cartan-Killing tensor) is
proportional to the identity

= CA . (17.4)

In this chapter we shall choose normalization CA = 1. The Jacobi relation (17.2)
reduces a loop with three structure constants

=
1
2

. (17.5)

PC: check spelling
Remember diagram (1.1)? The one diagram that launched this whole odyssey?
In order to learn how to reduce such 4-vertex loops we turn to the decomposition
of the A⊗A space.

In what follows, we will generate quite a few irreducible reps. In order to keep
track of them, we shall label each family of such reps (for example, the eigenvalues
λ , λ in (17.12)) by the generalized Young tableau (or Dynkin label) notation
for the E8 irreducible reps (sect. 17.4). A review of related literature is given in
sect. 21.2.
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characteristic
equation!e8@$E˙8$17.1 Two-index tensors

The invariance group of the quadratic invariant (17.1) alone is SO(n), so as in
table 10.1, A⊗A decomposes into singlet, symmetric, and antisymmetric sub-
spaces.

Of the three possible tree invariants in A⊗A → A⊗A constructed from the
cubic invariant (17.1), only two are linearly independent because of the Jacobi
relation (17.2). The first one induces a decomposition of antisymmetric A ⊗ A
tensors into two subspaces:

= +
{

−
}

+
1
N

+
{

− 1
N

}
(17.6)

1 = P + P + P• + Ps .

As the other invariant matrix in A⊗A → A⊗A we take

Qij,kl =
k

i

j

l
. (17.7)

By the Jacobi relation (17.2), Q has zero eigenvalue on the antisymmetric sub-
space

QP = P =
1
2

P =
1
2
P P = 0 , (17.8)

so Q can decompose only the symmetric subspace Sym2A.
The assumption that there exists no primitive quartic invariant is the defining

relation for the E8 family. By the primitiveness assumption, the 4-index loop
invariant Q2 is not an independent invariant, but is expressible in terms of any
full linearly independent set of the 4-index tree invariants Qij,k�, CijmCmk�, and
δij ’s constructed from the primitive invariants (17.1),

+ A + B + C + D + E = 0 .

Rotate by 900 and compare. That eliminates two coefficients. Flip any pair of
adjacent legs and use the Jacobi relation (17.2) (i.e., the invariance condition).
Only one free coefficient remains:

−1
6

{
+

}
−q

2

{
+ +

}
= 0 .(17.9)

Now, trace over a pair of adjacent legs, and evaluate 2- and 3-loops using (17.4)
and (17.5). This expresses the parameter q in terms of the adjoint dimension,
and (17.9) yields the characteristic equation for Q restricted to the traceless
symmetric subspace,(

Q2 − 1
6
Q − 5

3(N + 2)
1
)

Ps = 0 . (17.10)
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An eigenvalue of Q satisfies the characteristic equation

λ2 − 1
6
λ − 5

3(N + 2)
= 0 ,

so the adjoint dimension can be expressed as

N + 2 =
5

3λ(λ − 1/6)
= 60

{
6 − λ−1

6
− 2 +

6
6 − λ−1

}
. (17.11)

As we shall seek for values of λ such that the adjoint rep dimension N is an
integer, it is natural to reparametrize the two eigenvalues as

λ = − 1
m − 6

, λ =
1
6

m

m − 6
, (17.12)

a form that will lend itself to Diophantine analysis. In terms of the parameter
m, the dimension of the adjoint representation is given by

N = −2 + 60 (m/6 − 2 + 6/m) , (17.13)

and the two eigenvalues map into each other under m/6 → 6/m. Substituting

λ − λ =
1
6

m + 6
m − 6

(17.14)

into (3.48), we obtain the corresponding projection operators:

P = ���
���
���
���

= −6(m − 6)
m + 6

{
− 1

6
m

m − 6

}
Ps (17.15)

P =

=
6(m − 6)
m + 6

{
+

1
m − 6

}
Ps . (17.16)

In order to compute the dimensions of the two subspaces, we evaluate

trPsQ = − 1
N

= − N + 2
2

(17.17)

and obtain

d = trP =
(N + 2)(1/λ + N − 1)

2(1 − λ /λ )
. (17.18)

Dimension d is obtained by interchanging λ and λ . Substituting (17.13),
(17.12) leads toPC: recheck: and in-

terchanged?

d =
5(m − 6)2(5m − 36)(2m − 9)

m(m + 6)

d =
270(m − 6)2(m − 5)(m − 8)

m2(m + 6)
. (17.19)
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To summarize, in absence of a primitive 4-index invariant, A⊗A decomposes
into 5 irreducible reps

1 = P + P + P• + P + P . (17.20)

The decomposition is parametrized by rational values of m, and is possible only
for integer N and d that satisfy the Diophantine conditions (17.13), (17.19).

This happened so quickly that the reader might have missed it: our homework
problem is done. What we have accomplished by (17.9) is the reduction of the
adjoint rep 4-vertex loop in (1.1) for, as will turn out, all exceptional Lie algebras.

17.2 Decomposition of Sym3A

Now that you have aced the homework assignment (1.1), why not go for extra
credit: can you disentangle vacuum bubbles whose shortest loop is of length 6,

= ? (17.21)

If you have an elegant solution, let me know. But what follows next is cute
enough.

The general strategy for decomposition of higher-rank tensor products is as
follows; the equation (17.10) reduces Q2 to Q, Pr weighted by the eigenvalues
λ , λ . For higher-rank tensor products, we shall use the same result to decom-
pose symmetric subspaces. We shall refer to a decomposition as “uninteresting”
if it brings no new Diophantine condition. As Q acts only on the symmetric
subspaces, decompositions of antisymmetric subspaces will always be uninter-
esting, as was already the case in (17.8). We illustrate this by working out the
decomposition of Sym3A in the next section, and ⊗ in appendix D.1. ⇓INTERNAL

⇑INTERNALThe invariance group of the quadratic invariant (17.1) alone is SO(N), with
the 7 reps Clebsch-Gordan decomposition of the SO(N) 3-index tensors (ta-
ble 10.4): one fully symmetric, one fully antisymmetric, two copies of the mixed
symmetry rep, and three copies of the defining rep. As the Jacobi relation (17.2)
trivializes the action of Q on any antisymmetric pair of indices, the only seri-
ous challenge that we face is reducing ⊗A3 within the fully symmetric Sym3A
subspace.

As the first step, project out the A and A⊗A content of Sym3A:

P =
3

N + 2
(17.22)

P =
6(N + 1)(N2 − 4)
5(N2 + 2N − 5)

������

������

���
���
���
���

����

��
��
��
��

����
���
���
���
���

���
���
���
���

ar r . (17.23)

P projects out Sym3A → A, and P projects out the antisymmetric subspace
(17.6) Sym3A → V . The ugly prefactor is a normalization, and will play no role
in what follows. We shall decompose the remainder of the Sym3A space

Pr = S −P − P = r (17.24)
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by the invariant tensor Q restricted to the Pr remainder subspace

Q =
����

��
��
��
�� , Q̂ =

������

������r r Q̂ = PrQPr . (17.25)

We can partially reduce Q̂2 using (17.10), but symmetrization leads also to a new
invariant tensor,

Q̂2 =
1
3

������

���
���
���
���

������

���
���
���
���

r r +
2
3

������������

���
���
���
���

���
���
���
���

r r . (17.26)

A calculation that requires applications of the Jacobi relation (17.2), symmetry
identities (6.63) such as

������

���
���
���
���

������

���
���
���
���

���
���
���
���

��
��
��
��

r r = 0 , (17.27)

PC: fix, this was
wrong:“(follows from
refeq6.63a)”

and relies on the fact that Pr contains no A, A⊗A subspaces yields

Q̂3 =
1
3

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

����

r r r +
2
3

���
���
���
���

������

��
��
��
��

����

������

���
���
���
���

r r . (17.28)

Reducing by (17.10) and using λ + λ = 1/6 leads to

Q̂3 =
1
6

{
1
3
Q̂2 +

2
3

������������

���
���
���
���

���
���
���
���

r r

}
− λ λ Q̂ . (17.29)

The extra tensor can be eliminated by (17.26), and the result is a cubic equation
for Q̂:

0 =
(
Q̂ − 1

18
1
)(

Q̂ − λ 1
)(

Q̂ − λ 1
)

Pr . (17.30)

The projection operators for the corresponding three subspaces are given by (3.48)
PC: recheck (17.31) are P
and P3 interchanged?

P =
1

(1/18 − λ ) (1/18 − λ )

(
Q̂− λ 1

)(
Q̂ − λ 1

)
Pr

= − 162 (m − 6)2

(m + 3)(m + 12)

(
Q̂2 − 1

6
Q̂− 6m

(2 − 6m)2
1
)

Pr , (17.31)

P
���
���
���
��� =

1
(λ − 1/18) (λ − λ )

(
Q̂ − 1

18
1
)(

Q̂ − λ 1
)

Pr (17.32)

=
54 (m − 6)2

(m + 3)(m + 6)

(
Q̂2 − m − 24

18(m − 6)
Q̂ +

1
18(m − 6)

1
)

Pr ,

P3 =
1

(λ − 1/18) (λ − λ )

(
Q̂− 1

18
1
)(

Q̂− λ 1
)

Pr (17.33)

=
108 (m − 6)2

(m + 6)(m + 12)

(
Q̂2 − 2(m − 3)

9(m − 6)
Q̂ +

m

108(m − 6)
1
)

Pr .

The presumption is (still to be proved for a general tensor product) that the
interesting reductions only occur in the symmetric subspaces, always via the Q
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characteristic equation (17.10). As the overall scale of Q is arbitrary, there is
only one rational parameter in the problem, either λ /λ or m, or whatever is
convenient. Hence all dimensions and 3n-j coefficients (casimirs, Dynkin indices,
vacuum bubbles) will be ratios of polynomials in m.

To proceed, we follow the method outlined in appendix A. On P , P sub-
spaces SQ has eigenvalues

SQP =
������

������r r =
1
3

r → λ = 1/3 (17.34)

SQP =
����

����

��
��
��
��

������

���
���
���
���

���
���
���
���

���
���
���
���

arr =
1
6

������

���
���
���
���

������

���
���
���
���

���
���
���
���

ar → λ = 1/6 , (17.35)

so the eigenvalues are λ = 1/3, λ = 1/6, λ3 = 1/18, λ
���
���
���
��� = λ , λ = λ . The

dimension formulas (A.8) require evaluation of

tr SQ = = −N(N + 2)
6

(17.36)

tr(SQ)2 = =
N(3N + 16)

36
. (17.37)

Substituting into (A.8) we obtain the dimensions of the three new reps: PC: recheck (17.31) are d
and d3 interchanged?

d =
27(m− 5)(m − 8)(2 m − 15)(2 m− 9)(5 m − 36)(5 m− 24)

m2(3 + m)(12 + m)
(17.38)

d
���
���
���
��� =

10(m− 6)2(m − 5)(m − 1)(2 m− 9)(5 m − 36)(5 m− 24)
3 m2(6 + m)(12 + m)

(17.39)

d3 =
5(m − 5)(m − 8)(m − 6)2(2 m − 15)(5 m− 36)

m3(3 + m)(6 + m)
(36 − m) . (17.40)

17.3 Diophantine conditions

As N in (17.13) is an integer, allowed m are rationals m = P/Q built from Q
any combination of subfactors of the denominator 360 = 1 · 23 · 32 · 5, and the
numerator P = 1, 2, or 5, where P and Q are relative primes. The solutions
are symmetric under interchange m/6 ↔ 6/m, so we need to check only the 23
rationals m ≥ 6. The Diophantine conditions (17.13), (17.19), and (17.38) are PC: recheck

satisfied only for m = 5, 8, 9, 10, 12, 18, 20, 24, 30, and 36. The solutions that
survive the Diophantine conditions form the E8 family, listed in table 17.1. PC: check m = 3 case

PC: table 17.2 last D4 en-
try incomplete - recheck
(2000) + (0001)

The formulas (17.15), (17.16) yield, upon substitution of N , λ and λ , the A⊗A
Clebsch-Gordan series for the E8 family (table 17.2).

Particularly interesting is the (36−m) factor in the d3 formula (17.40): posi-
tivity of a dimension excludes m > 36 solutions, and vanishing of the correspond-
ing projection operator (17.33) for m = 36 implies a birdtrack identity valid only
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Coxeter!graph
Cartan-Killing!

classification

m 5 8 9 10 12 15 18 24 30 36
A1 A2 G2 D4 F4 E6 E7 · E8

N 0 3 8 14 28 52 78 133 190 248
d3 0 0 1 7 56 273 650 1,463 1,520 0
d 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250
d

���
���
���
��� 0 0 27 189 1,701 10,829 34,749 152,152 392,445 779,247

Table 17.1: All solutions of Diophantine conditions (17.13), (17.19), and (17.38).

for E8, the presumed key to the homework assignment (17.21). For inspiration,
go through the derivation of (18.37), the analogous 6-loop reduction formula for
E6. According to ref. [297], the smallest vacuum bubble that has no internal loop
with fewer than six edges has fourteen vertices and is called the “Coxeter graph.”

PC: track down Coxeter
graph Birdtracks yield the E8 family, but they do not tie it into the Cartan-Killing

theory. For that we refer the reader to the very clear [29] and thorough exposition
by Deligne [89]. All the members of the family are immediately identifiable, with
exception of the m = 30 case. The m = 30 solution was found independently by
Landsberg and Manivel [211], who identify the corresponding column in table 17.1
as a class of nonreductive algebras. Here this set of solutions will be eliminated
by (19.44), which says that it does not exist as a semisimple Lie algebra for the
F4 subgroup of E8.

The main result of all this heavy birdtracking is that N > 248 is excluded
by the positivity of d3, and N = 248 is special, as P3 = 0 implies existence of a
tensorial identity on the Sym3A subspace specific to E8. That dimensions should
all factor into terms linear in m is altogether not obvious.PC: P1 = 0 ⇒ what spe-

cial E8 relation? Reduction
of 6-loops birdTrack?

17.4 Dynkin labels and Young tableaux for E8

A rep of E8 is characterized by 8 Dynkin labels (a1a2a3a4a5a6a7a8). The cor-
respondence between the E8 Dynkin diagram from table 7.6, Dynkin labels, ir-
reducible tensor Young tableaux, and the dimensions [297] of the lowest reps is

PC: pick a name for (ai) =
(0, 0, · · · , 1, 0, · · ·) rep

1 2 3 4 5 6 7

8

↔ (a1a2a3a4a5a6a7a8) ↔ (17.41)

⎛⎜⎝ , , , , , , ,

⎞⎟⎠ ↔

(248, 30380, 2450240, 146325270, 6899079264, 6696000, 3875, 147250)

Label a1 counts the number of not antisymmetrized defining (= adjoint) represen-
tation indices. Labels a2 through a5 count the number of antisymmetric doublets,
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triplets, quadruplets, and quintuplets, respectively. Label a7 counts the number
of not antisymmetrized indices, and a6 the number of its antisymmetrized
doublets. The label a8 counts the number of . PC: and what is ?

PC: check these!

PC: table 17.2 - fill this
out?
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⊗
=

+
+

•
+

+

D
ynkin

labels

E
8

(10000000)⊗
(10000000)

=
(10000000)

+
(01000000)

+
(00000000)

+
(20000000)

+
(00000010)

E
7

(1000000)⊗
(1000000)

=
(1000000)

+
(0100000)

+
(0000000)

+
(2000000)

+
(0000100)

E
6

(000001)⊗
(000001)

=
(000001)

+
(001000)

+
(000000)

+
(000002)

+
(100010)

F
4

(1000)⊗
(1000)

=
(1000)

+
(0100)

+
(0000)

+
(2000)

+
(0010)

D
4

(0100)⊗
(0100)

=
(0100)

+
(1010)

+
(0000)

+
(0200)

+
(2000)+

(0001)

G
2

(10)⊗
(10)

=
(10)

+
(03)

+
(00)

+
(20)

+
(02)

A
2

(11)⊗
(11)

=
(11)

+
(12)+

(21)
+

(00)
+

(22)
+

(11)

A
1

(2)⊗
(2)

=
(2)

+
(0)

+
(4)

+
(4)

D
im

ensions
N

2
=

N
+

N
(N

−
3
)

2
+

1
+

d
+

d

E
8

248
2

=
248

+
30

,380
+

1
+

27
,000

+
3
,875

E
7

133
2

=
133

+
8
,645

+
1

+
7
,371

+
1
,539

E
6

78
2

=
78

+
2
,925

+
1

+
2
,430

+
650

F
4

52
2

=
52

+
1
,274

+
1

+
1
,053

+
324

D
4

28
2

=
28

+
350

+
1

+
300

+
35

+
35

+
35

G
2

14
2

=
14

+
77

+
1

+
77

+
27

A
2

8
2

=
8

+
10

+
10

+
1

+
27

+
8

A
1

3
2

=
3

+
0

+
1

+
5

+
0

T
able

17.2:
E

8
fam

ily
C

lebsch-G
ordan

series
for

A
⊗

A
.

C
orresponding

projection
operators

are
given

in
(17.6),

(17.15),
and

(17.16).
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⊗ = + + • + +

2482 = 27000 + 30380 + 1 + 248 + 3875

⊗ = + + +
�����
�����
�����

�����
�����
����� +

248 · 3875 = 248 + 3875 + 30380 +779247+ 147250

⊗ = + + + + +
�����
�����
�����

�����
�����
�����

27000 · 248 = 1763125 + 4096000 + 248 + 27000 + 30380 + 779247

⊗ = + + + + +

+
�����
�����
�����

�����
�����
����� +

30380 · 248 = 4096000 + 2450240 + 248 + 30380 + 27000 + 3875

+ 779247 + 147250

⊗ = + • + + + +

+ + + +
�����
�����
�����

�����
�����
�����

38752 = 4881384 + 1 + 27000 + 3875 + 2450240 + 147250

+ 6696000 + 30380 + 248 + 779247

⊗ =
������
������
������

������
������
������ + + + +

�����
�����
�����

�����
�����
����� +

+ + +

⊗ = + +
�����
�����
�����

�����
�����
����� + + +

⊗ = + +
������
������
������

������
������
������ + + +

�����
�����
�����

�����
�����
�����

⊗ = + + + + +

+ +
�����
�����
�����

�����
�����
����� + +

Table 17.3: Some of the low-dimensional E8 Clebsch-Gordan series [355].
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Chapter 18

E6 family of invariance groups

In this chapter, we determine all invariance groups whose primitive invariant ten-
sors are δa

b and fully symmetric dabc, dabc. The reduction of V ⊗V space yields
a rule for evaluation of the loop contraction of four d-invariants (18.9). The re-
duction of V ⊗ V̄ yields the first Diophantine condition (18.13) on the allowed
dimensions of the defining rep. The reduction of V ⊗V ⊗V tensors is straightfor-
ward, but the reduction of A⊗V space yields the second Diophantine condition (d4

in table 18.4) and limits the defining rep dimension to n ≤ 27. The solutions of
the two Diophantine conditions form the E6 family consisting of E6, A5, A2 +A2,
and A2. For the most interesting E6, n = 27 case, the cubic casimir (18.44)
vanishes. This property of E6 enables us to evaluate loop contractions of 6 d-
invariants (18.37), reduce V ⊗A tensors (table 18.5), and investigate relations
among the higher-order casimirs of E6 in sect. 18.8. In sect. 18.7 we introduce a
Young tableau notation for any rep of E6 and exemplify its use in construction
of the Clebsch-Gordan series (table 18.6).

18.1 Reduction of two-index tensors

By assumption, the primitive invariants set that we shall study here is

δb
a = ba

dabc =

b c

a

= dbac = dacb , dabc =

b c

a

. (18.1)

Irreducibility of the defining n-dimensional rep implies

dabcd
bcd = αδd

a

= α . (18.2)

The value of α depends on the normalization convention. For example, Freuden-
thal [131] takes α = 5/2. Kephart [189] takes α = 10. We find it convenient to
set it to α = 1. PC: recheck: ref. [130] or

[131]?

PC: recheck the Kephart
ref

219
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We can immediately write the Clebsch-Gordan series for the 2-index tensors.
The symmetric subspace in (9.4) is reduced by the dabcd

cde invariant:

= +
1
α

+
{

− 1
α

}
. (18.3)

The rep dimensions and Dynkin indices are given in table 18.1.
By the primitiveness assumption, any V 2⊗V̄ 2 invariant is a linear combination

of all tree invariants that can be constructed from the primitives:

= a + b + c . (18.4)

In particular,

1
α2

=
1
α2

=
A

α
+ B . (18.5)

One relation on constants A, B follows from a contraction with δb
a:

1
α2

=
A

α
+ B

1 = A + B
n + 1

2
.

The other relation follows from the invariance condition (6.53) on dabc:

1
α

= −1
2

. (18.6)

Contracting (18.5) with (Ti)ba, we obtain

1
α2

=
A

α
+ B

��
��
��
��

���
���
���
���

1
4

= −A

2
+

B

2
, A = − n − 3

2(n + 3)
, B =

3
n + 3

. (18.7)

18.2 Mixed two-index tensors

Let us apply the above result to the reduction of V ⊗V̄ tensors. As always, they
split into a singlet and a traceless part (9.54). However, now there exists an
additional invariant matrix

Qa
b
d
c =

b
��
��
��
��

c
��
��
��
��

d

���
���
���
���

���
���
���
���

������

a
, (18.8)
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= + 1
α +

{
− 1

α

}
⊗ = ⊕ ⊕

E6 (000010)⊗ (000010) = (000100) ⊕ (100000) ⊕ (000020)
A5 (00010)⊗ (00010) = (00101) ⊕ (01000) ⊕ (00020)
A2 (02) ⊗ (02) = (12) ⊕ (20) ⊕ (04)

dimension n2 = n(n − 1)/2 + n + n(n − 1)/2
E6 272 = 351 + 27 + 351
A5 152 = 105 + 15 + 105

A2 + A2 92 = 36 + 9 + 36
A2 62 = 15 + 6 + 15

index 2n� = (n − 2)� + � + (n + 1)�
E6 2 · 27 · 1

4 = 25
4 + 1

4 + 7
A5 2 · 15 · 1

3 = 13
3 + 1

3 + 16
3

A2 + A2 2 · 9 · 1
2 = 7

2 + 1
2 + 5

A2 2 · 6 · 5
6 = 10

3 + 5
6 + 35

6

Table 18.1: E6 family Clebsch-Gordan series Dynkin labels, dimensions, and
Dynkin indices for V ⊗V . The defining rep Dynkin index � is computed in
(18.14).
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characteristic
equation!e8@$E˙6$ which, according to (18.5) and (18.7), satisfies the characteristic equation

��
��
��
��

��
��
��
��

��
��
��
��

������

��
��
��
��

������

��
��
��
��

��
��
��
��

= A ���
���
���
���

���������
���
���
������

���
���
���

���
���
���
���

+
B

2

{
+

}
Q2 = −1

2
n − 3
n + 3

Q +
1
2

3
n + 3

(T + 1). (18.9)

On the traceless V⊗V̄ subspace, the characteristic equation for Q takes the form

P2

(
Q +

1
2

)(
Q − 3

n + 3

)
= 0 , (18.10)

where P2 is the traceless projection operator (9.54). The associated projection
operators (3.48) are

PA =
Q − 3

n+3

−1
2 − 3

n+3

P2 , PB =
Q + 1

2
3

n+3 + 1
2

P2 . (18.11)

Their birdtracks form and their dimensions are given in table 18.2.PC: fix vertical borders in
table 18.2

PA, the projection operator associated with the eigenvalue −1
2 , is the adjoint

rep projection operator, as it satisfies the invariance condition (18.6). To compute
the dimension of the adjoint rep, we use the relation

− =
4

n + 9

{
−

}
, (18.12)

that follows trivially from the form of the projection operator PA in table 18.2.
The dimension is computed by taking trace (3.52),

N = =
4n(n − 1)

n + 9
. (18.13)

The 6-j coefficient, needed for the evaluation of the Dynkin index (7.27), can also
be evaluated by substituting (18.12) into

= +
4

n + 9

{
0 −

}
= N

(
1 − 4

n + 9

)
.

The Dynkin index for the E6 family defining rep is

� =
1
6

n + 9
n − 3

. (18.14)
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= 1
n + 1

a +

label ⊗ = • ⊕ ⊕
E6 (000010)⊗ (100000) = (000000) ⊕ (000001) ⊕ (100010)

A5 (00010)⊗ (01000) = (00000) ⊕ (10001) ⊕ (01010)

A2 (02) ⊗ (20) = (00) ⊕ (11) ⊕ (22)

dimension n2 = 1 + 4n(n−1)
n+9 + (n+3)2(n−1)

n+9

E6 272 = 1 + 78 + 650

A5 152 = 1 + 35 + 189

A2 + A2 92 = 1 + 16 + 64

A2 62 = 1 + 8 + 27

index 2n� = 0 + 1 + 2(n+3)2

n+9 �

E6 2 · 27 · 1
4 = 0 + 1 + 50 · 1

4

A5 2 · 15 · 1
3 = 0 + 1 + 27 · 1

3

A2 + A2 2 · 9 · 1
2 = 0 + 1 + 16 · 1

2

A2 2 · 6 · 5
6 = 0 + 1 + 54

6

PA = 1
a = 6

n+9

{
+ 1

3 − n+3
3α

}
PB = = n+3

n+9

{
− 3

n + 2
α

}

Table 18.2: E6 family Clebsch-Gordan series for V ⊗V . The defining rep Dynkin
index � is computed in (18.14).
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18.3 Diophantine conditions and the E6 family

The expressions for the dimensions of various reps (see tables in this chapter) are
ratios of polynomials in n, the dimension of the defining rep. As the dimension
of a rep should be a nonnegative integer, these relations are the Diophantine
conditions on the allowed values of n. The dimension of the adjoint rep (18.13)
is one such condition; the dimension of V4 from table 18.4 another. Furthermore,
the positivity of the dimension d4 restricts the solutions to n ≤ 27. This leaves
us with six solutions: n = 3, 6, 9, 15, 21, 27. As we shall show in chapter 21, of
these solutions only n = 21 is spurious; the remaining five solutions are realized
as the E6 row of the Magic Triangle (fig. 1.1).

In the Cartan notation, the corresponding Lie algebras are A2, A2 + A2,
A5, and E6. We do not need to prove this, as for E6 Springer has already
proved the existence of a cubic invariant, satisfying the relations required by
our construction, and for the remaining Lie algebras the cubic invariant is easily
constructed (see sect. 18.9). We call these invariance groups the E6 family and list
the corresponding dimensions, Dynkin labels, and Dynkin indices in the tables of
this chapter.

18.4 Three-index tensors

The V ⊗V ⊗V tensor subspaces of U(n), listed in table 9.1, are decomposed
by invariant matrices constructed from the cubic primitive dabc in the following
manner.

18.4.1 Fully symmetric V ⊗V ⊗V tensors

We substitute expansion from table 18.1 into the symmetric projection operator

= +
{

−
}

.

The V ⊗V̄ subspace is decomposed by the expansion of table 18.2:

=
1
n

+ + . (18.15)

The last term vanishes by the invariance condition (6.53). To get the correct
projector operator normalization for the second term, we compute

=
1
3

+
2
3

=
1
3

(
1 + 2

3
n + 3

)
=

n + 9
3(n + 3)

. (18.16)

Here, the second term is given by the -subspace eigenvalue (18.10) of the in-
variant matrix Q from (18.8). The resulting decomposition is given in table 18.3.
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18.4.2 Mixed symmetry V ⊗V ⊗V tensors

The invariant dabe(Ti)ec satisfies

=
4
3

. (18.17)

This follows from the invariance condition (6.53):

= + = − 1
2

= +
1
4

.

Hence, the adjoint subspace lies in the mixed symmetry subspace, projected by
(9.10). Substituting expansions of tables 18.2 and 18.3, we obtain

4
3

=
(

4
3

)2

+
4
3

(
− 4

3

)

= +
(

3
4

)2

. (18.18)

The corresponding decomposition is listed in table 18.3. The other mixed sym-
metry subspace from table 9.1 decomposes in the same way.

18.4.3 Fully antisymmetric V ⊗V ⊗V tensors

All invariant matrices on ⊗V 3 → ⊗V 3, constructed from dabc primitives, are
symmetric in at least a pair of indices. They vanish on the fully antisymmetric
subspace, hence, the fully antisymmetric subspace in table 9.1 is irreducible for
E6.

18.5 Defining ⊗ adjoint tensors

We turn next to the determination of the Clebsch-Gordan series for V ⊗A reps.
As always, this series contains the n-dimensional rep

=
n

Na
+
{

− n

Na

}
.

1 = P1 + P5 (18.19)

Existence of the invariant tensor

(18.20)
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characteristic
equation!e8@$E˙6$implies that V⊗A also contains a projection onto the V⊗V space. The symmetric

rep in (18.3) does not contribute, as the dabc invariance reduces (18.20) to a
projection onto the V space:

= −1
2

. (18.21)

The antisymmetrized part of (18.20),

R = , R† = , (18.22)

projects out the V ⊗V antisymmetric intermediate state, as in (18.3):

P2 =
n + 9

6
1
aα

RR† =
n + 9
6aα

≡ . (18.23)

Here the normalization factor is evaluated by substituting the adjoint projection
operator PA (table 18.2) into

R†R = =
6

n + 9
aα . (18.24)

In this way, P5 in (18.19) reduces to P5 = P2 + Pc,

Pc = − n

Na
− . (18.25)

However, Pc subspace is also reducible, as there exists still another invariant
matrix on V ⊗A space:

Q =
1
a

. (18.26)

We compute Q2Pc by substituting the adjoint projection operator and dropping
the terms that belong to projections onto V and V ⊗V spaces:

PcQ
2 =

1
a2

Pc

= Pc
6

n + 9

{
+

1
3
· 0 − n + 3

3aα

}

= Pc
6

n + 9

{
1 − n + 3

3aα
− 0

}
= Pc

6
n + 9

{
1 +

n + 3
3aα

}
= Pc

6
n + 9

{
1− n + 3

6
1
a

+ 0
}

. (18.27)

The resulting characteristic equation is surprisingly simple:

Pc(Q + 1)
(
Q − 6

n + 9

)
= 0 . (18.28)
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The associated projection operators and rep dimensions are listed in table 18.4. PC: table 18.4 is m
d , dThe rep V4 has dimension zero for n = 27, singling out the exceptional group

E6(27). Vanishing dimension implies that the corresponding projection operator
(4.22) vanishes identically. This could imply a relation between the contractions
of primitives, such as the G2 alternativity relation implied by the vanishing of
(16.30). To investigate this possibility, we expand P4 from table 18.4.

We start by using the invariance conditions and the adjoint projection oper-
ator PA from table 18.2 to evaluate

������

=
n − 3
n + 9

. (18.29)

This yields

���
���
���
���

=
n − 3
n + 9

(18.30)

P4 =
n + 9
n + 15

{
1
4

− +
6

n + 9
− n + 3

n + 9

}
.

Next, motivated by the hindsight of the next section, we rewrite P2 in terms of
the cubic casimir (7.44). First we use invariance and Lie algebra (4.48) to derive
the relation

= − 1
4

. (18.31)

We use the adjoint projection operator (18.11) to replace the dabcd
cde pair in the

first term,

=
1

n + 3

{
− n + 9

2
+ 3 +

}
.(18.32)

In terms of the cubic casimir (7.44), the P2 projection operator is given by

=
n + 9

6(n + 3)

{
−n + 9

4
− n − 3

4

+
3
2

+
}

. (18.33)

Substituting back into (18.30), we obtain

P4 =
n + 9
n + 15

{
27 − n

6

(
1

n + 9
− 1

4

)
+

n + 9
24

}
. (18.34)

We shall show in the next section that the cubic casimir, in the last term,
vanishes for n = 27. Hence, each term in this expansion vanishes separately for
n = 27, and no new relation follows from the vanishing of P4. Too bad.

P. Cvitanović: Group Theory, e6family, last edited July 8, 2007 printed October 14, 2007



18.5. DEFINING ⊗ ADJOINT TENSORS 229

However, the vanishing of the cubic casimir for n = 27 does lead to several
important relations, special to the E6 algebra. One of these is the reduction of
the loop contraction of 6 dabc’s. For E6 (18.33) becomes

E6 : =
1
5

{
+

3
2

− 6
}

. (18.35)

The left-hand side of this equation is related to a loop of 6 dabc’s (after substituting
the adjoint projection operators):

E6 : = 6 − 3
2

. (18.36)

The right-hand side of (18.35) contains no loop contractions. Substituting the ad-
joint operators in both sides of (18.35), we obtain a tree expansion for loops of length 6:

E6 :
1
α3

= (18.37)

1
500

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2

{
+

}
− + + +

− 5
α

{
+ + + + +

}

+10
α

{
+ +

}
+ 15

α

− 50
α2

{
+ + + + +

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
At the time of writing this report, we lack a proof that we can compute any

scalar invariant built from dabc contractions. However, the scalar invariants that
we might be unable to compute are of very high order, bigger than anything listed
in table 5.1, as their shortest loop must be of length 8 or longer, with no less
than 30 vertices in a vacuum bubble. (See table 2 in ref. [297] for the minimal
number of vacuum bubble vertices for a given shortest loop, or “girth.”)

The Dynkin indices (table 18.4) are computed using (7.29) with λ = defining
rep, μ = adjoint rep, ρ = λ3, λ4

�ρ =
(

�

n
+

1
N

)
dρ −

2�
N

ρ
. (18.38)

The value of the 6-j coefficient follows from (18.28), the eigenvalues of the ex-
change operator Q. PC: refer to (7.29), omit

the figure
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18.6 Two-index adjoint tensors

A⊗A has the usual starting decomposition (17.7). As in sect. 9.1, we study the
index interchange and the index contraction invariants Q and R:

Q = , R = . (18.39)

The decomposition induced by R follows from table 18.2; it decomposes the
symmetric subspace Ps

PsRPs =
1
a3

+
1
a2

. (18.40)

By (9.80) R has no effect on the antisymmetric subspaces PA, Pa. The corre-
sponding projection operators are normalized by evaluating

1
a3

=
(27 − n)(n + 1)

2(n + 9)2

1
a2

=
12(n − 3)
(n + 9)2

. (18.41)

Such relations are evaluated by substituting the Clebsch-Gordan series of ta-

ble 18.2 into , which yields

=
16

(n + 9)2

{
+ (n − 2) +

(n + 1)(n + 9)
16

}
.

Equation (18.41) then follows by substitution into

= − CA

4
= −a2

2
(n + 1)(n − 27)

(n + 9)2
. (18.42)

This implies that the norm of the cubic casimir (7.44) is given by

1
N

dijkdijk =
1
N

= 4
1
N

= 2a3 (n + 1)(27 − n)
(n + 9)2

. (18.43)

Positivity of the norm restricts n ≤ 27. For E6 (n = 27), the cubic casimir
vanishes identically:

E6 : = 0 . (18.44)

PC: complete reftab label
for table 17.5
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18.6.1 Reduction of antisymmetric three-index tensors

Consider the clebsch for projecting the antisymmetric subspace of V ⊗V ⊗V onto
A⊗A. By symmetry, it projects only onto the antisymmetric subspace of A⊗A:

= . (18.45)

Furthermore, it does not contribute to the adjoint subspace:

= − + = 0 . (18.46)

That both terms vanish can easily be checked by substituting the adjoint projec-
tion operator (table 18.2). Furthermore, by substituting (18.37) we have

E6 n = 27 : =
1
30

. (18.47)

This means that for E6 reps and fully antisymmetrized 3-index tensors are
equivalent.

18.7 Dynkin labels and Young tableaux for E6

A rep of E6 is characterized by six Dynkin labels (a1a2a3a4a5a6). The corre-
sponding Dynkin diagram is given in table 7.6. The relation of the Dynkin labels
to the Young tableaux (sect. 7.9) is less obvious than in the case of SU(n), SO(n),
and Sp(n) groups, because for E6 they correspond to tensors made traceless also
with respect to the cubic invariant dabc.

The first three labels a1, a2, a3 have the same significance as for the U(n)
Young tableaux. a1 counts the number of (not antisymmetrized) contravari-
ant indices (columns of one box ����

����
����
����). a2 counts the number of antisymmetrized

contravariant index pairs (columns of two boxes ). a3 is the number of anti-
symmetrized covariant index triples. That is all as expected, as the symmetric
invariant dabc cannot project anything from the antisymmetric subspaces. That is
why the antisymmetric reps in table 18.1 and table 18.3 have the same dimension
as for SU(27).

However, according to (18.47), an antisymmetric contravariant index triple is
equivalent to an antisymmetric pair of adjoint indices. Hence, contrary to the
U(n) intuition, this rep is real. We can use the clebsches from (18.47) to turn
any set of 3p antisymmetrized contravariant indices into p adjoint antisymmetric
index pairs. For example, for p = 2 we have

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

=
1

302

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

≡ . (18.48)

Hence, a column of more than two boxes is always reduced modulo 3 to a3

antisymmetric adjoint pairs (in the above example a3 = p), that we shall denote
by columns of two crossed boxes .
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+
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=
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+
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+
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+
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=
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=
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=
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⊗
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234 CHAPTER 18. E6 FAMILY OF INVARIANCE GROUPS

In the same fashion, the antisymmetric covariant index n-tuples contribute to
a3, the number of antisymmetric adjoint pairs , a4 antisymmetrized covariant
index pairs , and a5 (not antisymmetrized) covariant indices .

Finally, taking a trace of a covariant-contravariant index pair implies removing
both a singlet and an adjoint rep. We shall denote the adjoint rep by . The
number of (not antisymmetrized) adjoint indices is given by a6. For example,
an SU(n) tensor xa

b ∈ V ⊗V̄ decomposes into three reps of table 18.2. The first
one is the singlet (000000), that we denote by •. The second one is the adjoint
subspace (0000001) = . The remainder is labeled by the number of covariant
indices a1 = 1, and contravariant indices a5 = 1, yielding (100010) = rep.

Any set of 2p antisymmetrized adjoint indices is equivalent to p symmetrized
pairs by the identity

p2

...

2
1

=

p}

}  2

}  1

...

}  3 = +

...

= + = · · · (18.49)

This reduces any column of three or more antisymmetric indices. We con-
clude that any irreducible E6 tensor can, therefore, be specified by six numbers
a1, a2, ...a6.

An E6 tensor is made irreducible by projecting out all invariant subspaces.
We do this by identifying all invariant tensors with right indices and symmetries
and constructing the corresponding projection operators, as exemplified by ta-
bles 18.1 through 18.5. If we are interested only in identifying the terms in a
Clebsch-Gordan series, this can be quickly done by listing all possible nonvanish-
ing invariant projections (many candidates vanish by symmetry or the invariance
conditions) and checking whether their dimensions (from the Patera-Sankoff ta-
bles [277]) add up. Examples are given in table 18.6.

To summarize, the correspondence between the E6 Dynkin diagram from
table 7.6, Dynkin labels, irreducible tensors, and the dimensions of the lowest
corresponding reps is

4

6

1 52 3

↔ (a1, a2, a3, a4, a5, a6) ↔

( , , , , , ) ↔ (27, 351, 2925, 351, 27, 78) (18.50)
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18.8. CASIMIRS FOR E6 235

triality, $E˙6$
E6@$E˙6$!trialitya1 = number of not antisymmetrized contravariant indices

a2 = number of antisymmetrized contravariant pairs

a3 = number of antisymmetrized adjoint index pairs = =

a4 = number of antisymmetrized covariant pairs

a5 = number of not antisymmetrized covariant indices

a6 = number of not antisymmetrized adjoint indices
PC: make some adjust-
ments, make smaller

AJ: I think size is okay.
Should only be smaller
when in text.

For example, the Young tableau for the rep (2,1,3,2,1,2) can be drawn as

. (18.51)

The difference in the number of the covariant and contravariant indices

a1 + 2a2 − 2a4 − a5 (mod 3) (18.52)

is called triality. Modulo 3 arises because of the conversion of antisymmetric
triplets into the real antisymmetric adjoint pairs by (18.47). The triality is a
useful check of correctness of a Clebsch-Gordan series, as all subspaces in the
series must have the same triality.

18.8 Casimirs for E6

In table 7.1 we have listed the orders of independent casimirs for E6 as 2, 5, 6,
8, 9, 12. Here we shall use our construction of E6(27) to partially prove this
statement. By the hermiticity of Ti, the fully symmetric tensor dijk from (18.43)
is real, and

= (dijk)2 ≥ 0. (18.53)

By (18.43), this equals PC: fix this

=
a3

2
(n + 1)(27 − n)

(n + 9)2
N. (18.54)

The cubic casimir dijk vanishes identically for E6.
Next we prove that the quartic casimir for E6 is reducible. From table 18.1

expression for the adjoint rep projection operator we have

=
3

n + 3

{
−n + 9

6
+

1
3

+
}

, (18.55)
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27 · 27 351 351 27

⊗ = + +

27 · 27 = 650 1 78
⊗ = + • +

351 · 27 5824 2925 650 78

⊗ = + + +

27 · 351 7371 27 1728 351

⊗ = + + +

27 · 78 1728 27 351

⊗ = + +

78 · 78 2925 2430 1 78 650

⊗ = + + • + +

351 · 27 5824 3003 650

⊗ = + +

27 · 351 7722 27 1728
⊗ = + +

650 · 27 7722 7371 351 351 1728 27

⊗ = + + + + +

331 · 78 17550 351 351 27 7311 1728

⊗ = + + + + +

2925 · 27 51975 1728 17550 7371 351

⊗ = + + + +

Table 18.6: Examples of the E6 Clebsch-Gordan series in terms of the Young
tableaux. Various terms in the expansion correspond to projections on various
subspaces, indicated by the Clebsch-Gordan coefficients listed on the right. See
tables 18.1 through 18.5 for explicit projection operators.
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18.8. CASIMIRS FOR E6 237

which yields

=
3

n + 3

{
− n + 9

6
+ +

1
3

}
. (18.56)

Now the quartic casimir. By the invariance (6.53)

= −2 = 2 + 2 . (18.57)

The second term vanishes by the invariance (6.53):

== = 0 . (18.58)

Substituting (18.32), we obtain PC: recheck if (18.32) cor-
rect

= −n + 9
n − 3

+
2

n − 3
. (18.59)

For E6 the cubic casimir vanishes, and consequently the quartic casimir is a
square of the quadratic casimir:

E6 : tr X4 =
1
12

(tr X2)2 . (18.60)

The quintic casimir tr X5 for E6 must be irreducible, as it cannot be expressed
as a power of tr X2. We leave it as an exercise to the reader to prove that tr X6

is irreducible. ⇓INTERNAL

PC: complete thisTo prove the reducibility of trX7, we first streamline our notation by intro-
ducing the E6 defining rep analogue of the determinant (6.46)

(A,B,C) ≡ 1
α

dabcd
a′b′c′Aa′aBb′

bCc′
c , (18.61)

with A, B, C arbitrary [n×n] matrices. The invariance condition (6.53) for dabc

implies

(TiA,B,C) + (A,TiB,C) + (A,B, TiC) = 0
(TiA,A,A) = 0 . (18.62)

With the normalization condition (18.3), the septic casimir can be written as

tr X7 = (X7, 1, 1) . (18.63)
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Levi-Civita tensor!$E˙6$
E6@$E˙6$!Springer

construction—(textbf
Springer $E˙6$

construction—(textbf

We manipulate this expression by means of the invariance condition (6.53)

(X7, 1, 1) = −2(X6,X, 1) = 2(X5,X2, 1) + 2(X5,X,X)
= ... = 7(X3,X3,X) + 6(X3,X2,X2) (18.64)

The second term vanishes by invariance (6.53), as in (18.58). Substituting PC: recheck ref to (6

refeq18.?? into the first term, we obtain a formula that reduces the septic casimir:

(X7, 1, 1) = −14(X4,X3, 1) = 14{(X5,X2, 1) + (X4,X2,X1)} . (18.65)
PC: explain! forgot why
this proves anything

⇑INTERNAL

18.9 Subgroups of E6

Why is A2(6) in the E6 family? The symmetric 2-index rep (9.2) of SU(3)PC: recheck (9.2)

is 6-dimensional. The symmetric cubic invariant (18.2) can be constructed using
a pair of Levi-Civita tensors,

= . (18.66)

Contractions of several dabc’s can be reduced using the projection operator prop-
erties (6.28) of Levi-Civita tensors, yielding expressions such as

A2(6) :
1
α

=
1
3

{
+ − 2

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

}
, (18.67)

1
a

=
4
5

{
− 1

3

}
, etc. (18.68)

The reader can check that, for example, the Springer relation (18.70) is satisfied.
Why is A5(15) in the E6 family? The antisymmetric 2-index rep (9.3)
of A5 = SU(6) is 15-dimensional. The symmetric cubic invariant (18.2) isPC: fix

constructed using the Levi-Civita invariant (6.27) for SU(6):DG: PC fix label

= . (18.69)

The reader is invited to check the correctness of the primitiveness assumption
(18.5). All other results of this chapter then follow.
Is A2 + A2(9) in the E6 family? Exercise for the reader: unravel the A2 + A2

9-dimensional rep, construct the dabc invariant.

18.10 Springer relation
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Substituting PA into the invariance condition (6.53) for dabc, one obtains the
Springer relation [317, 318]

=
1
3

{
+ +

}
=

4α
n + 3

. (18.70)

The Springer relation can be used to eliminate one of the three possible contrac-
tions of three dabc’s. For the G2 family it was possible to reduce any contraction of
three fabc’s by (16.15); however, a single chain of three dabc’s cannot be reducible.
If it were, symmetry would dictate a reduction relation of the form

= A

{
+

}
. (18.71)

Contracting with dabc one finds that contractions of pairs of dabc’s should also be
reducible:

= A

{
+

}
. (18.72)

Contractions of this relation with dabc and δa
b yields n = 1, i.e., reduction relation

(18.71) can be satisfied only by a trivial 1-dimensional defining rep.

18.11 Springer’s construction of E6

In the preceding sections we have given a self-contained derivation of the E6

family, in notation unfamiliar to the handful of living experts on this subject.
Here we translate our results into the more established algebraic notation, and
identify the relations already given in the literature.

1

Definition (Springer [317, 318]). Let V , V̄ be finite-dimensional vector spaces
paired by an inner product 〈x̄, x〉 (see sect. 3.1.2). Assume existence of symmetric

1Ref2: Definitions (18.75) and (18.76) don’t make sense, for too many reasons to easily sort
out. For example, is equation (18.76) a definition of the cross product or the letter z? Neither
option is viable. Is x an element of A or the dual vector space of A? Neither option is viable.

If the algebra A being discussed here is really the Jordan algebra of 3×3 hermitian octonionic
matrices, correct definitions are as follows: define (x, y) = tr(xy), set 〈x, x, x〉 = det(x) and then
extend 〈·, ·, ·〉 to be a symmetric trilinear form, and then let x × y be the unique element of A
such that (x×y, z) = 3(x, y, z). Of course, for all this to make sense, we need to define the trace
and (more subtly) the determinant of 3 × 3 hermitian octonionic matrices.
PC: now I cite Springer word for word.
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240 CHAPTER 18. E6 FAMILY OF INVARIANCE GROUPS

trilinear forms 〈x, y, z〉, 〈x̄, ȳ, z̄〉. If x, y ∈ V , there exists by duality x × y ∈ V̄
such that

3〈x, y, z〉 = 〈x × y, z〉 , (18.73)

with the x̄× ȳ ∈ V product defined similarly. Assume that the × product satisfies
Springer relation [131]

(x × x) × (x × x) = 〈x, x, x〉x (18.74)

(together with the corresponding formula for x → x̄). Springer proves that the
exceptional simple Jordan algebra of [3×3] hermitian matrices x with octonionic
matrix elements [130, 131, 307, 170] satisfies these assumptions, and that the
characteristic equation for [3×3] matrix x yields the relation (18.74). Our purpose
here is not to give an account of Freudenthal theory, but to aid the reader in
relating the birdtrack notation to Freudenthal-Springer octonionic formulation.
The reader is referred to the cited literature for the full exposition and proofs.

The nonassociative multiplication rule for elements x can be written in an
orthonormal basis x = xaea, x̄ = xaea,

〈ea, eb〉 = δb
a , a, b = 1, 2, ......, 27 . (18.75)

Expand x, x̄ and define [152]

ea × eb = dabcec . (18.76)

Expressed in this basis, (18.74) is the Springer relation (18.70), with α = 5/2.
Freudenthal and Springer prove that (18.74) is satisfied if dabc is related to the
Jordan product

ea · eb = d̂abcec

by

dabc ≡ d̂abc − 1
2
[δab tr(ec) + δac tr(eb) + δbc tr(ea)] +

1
2

tr(ea) tr(eb) tr(ec) .

PC: recheck
The defining n = 27 representation of E6 is the group of isomorphisms that
leave 〈x̄, y〉 = δb

ax
ayb and 〈x, y, z〉 = dabcxaybzc invariant. The “derivation” (4.25)

V 2 ⊗ Ṽ = V ⊗ A → V is given by Freudenthal, equation (1.21) in ref. [130]:

Dz ≡ [x, ȳ] z = 2ȳ × (x × z) − 1
2
〈ȳ, z〉x − 1

6
〈ȳ, x〉 z .

Expressed in the basis (18.75), this is the adjoint projection operator PA (ta-
ble 18.2),

(Dz)d = −3xay
b(PA)ab

c
d zc . (18.77)

⇓INTERNAL
The object 〈z, ȳ〉 considered by Freudenthal is in our notation and the above fac-PC: insert birdtrack
tor −3 is the normalization (18.2), Freudenthal’s equation (1.26). The invariance⇑INTERNAL

of the x-product is given by Freudenthal as

〈Dx, x × x〉 = 0.

Expressed in the basis (18.75) this is the invariance condition (6.53) for dabc.⇓INTERNAL
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E6@$E˙6$—)
E6@$E˙6$!Springer

construction—)
Springer $E˙6$

construction—)

18.12 Magic negative dimensions

18.12.1 E6 and SU(3)
PC: complete this

⇑INTERNAL
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F4@$F˙4$—(textbf

Chapter 19

F4 family of invariance groups

In this chapter we classify and construct all invariance groups whose primitive
invariant tensors are a symmetric bilinear dab, and a symmetric trilinear dabc,
satisfying the relation (19.16). The results are summarized in table 19.1. ⇓INTERNAL

PC: make table 19.1, { .12}
in manus

⇑INTERNAL

Take as primitives a symmetric quadratic invariant dab and a symmetric cubic
invariant dabc. As explained in chapter 12, we can use dab to lower all indices.
In the birdtrack notation, we drop the open circles denoting symmetric 2-index
invariant tensor dab, and we drop arrows on all lines:

dab = dab = ,

dabc = dbac = dacb =

a

b c

= . (19.1)

The defining n-dimensional rep is by assumption irreducible, so

dabcdbcd = = α = α δad (19.2)

dabb = = 0 . (19.3)

Were (19.3) nonvanishing, we could use to project out a 1-dimensional
subspace, violating the assumption that the defining rep is irreducible. The value
of α depends on the normalization convention (Schafer [307] takes α = 7/3).

19.1 Two-index tensors

dabc is a clebsch for V ⊗V → V , so without any calculation the V ⊗V space is
decomposed into four subspaces:

= +
1
n

+
1
α

+
{

− 1
α

− 1
n

}
,

1 = P + P• + P + P3 . (19.4)

243
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dijk@$d˙ijk$
tensor!f4@$F˙4$ We turn next to the decompositions induced by the invariant matrix

Qab,cd =
1
α

. (19.5)

I shall assume that Q does not decompose the symmetric subspace, i.e., that its
symmetrized projection can be expressed as

1
α

=
A

α
+ B + C . (19.6)

Together with the list of primitives (19.1), this assumption defines the F4 family.
This corresponds to the assumption (16.3) in the construction of G2. I have not
been able to construct the F4 family without this assumption.PC: TRY AGAIN! ...refer

to the appendix of my E7

paper here? Invariance groups with primitives dab, dabc that do not satisfy (19.6) do exist.
The familiar example [73, 41] is the adjoint rep of SU(n), n ≥ 4, where dabc is
the Gell-Mann symmetric tensor (9.87).PC: recheck the ref to Can-

ning Let us first dispose of the possibility that the invariant 4-tensors in (19.6)
satisfy additional relationships. Symmetrizing (19.6) in all legs, we obtain

1 − A

α
= (B + C) . (19.7)

Neither of the tensors can vanish, as contractions with δ’s would lead to

0 = ⇒ n + 2 = 0, 0 = ⇒ α = 0 . (19.8)

If the coefficients were to vanish, 1 − A = B + C = 0, we would have

1
αB

{
−

}
= − . (19.9)

Antisymmetrizing the top two legs, we find that

1
αB

= . (19.10)

In this case the invariant matrix Q of (19.5) can be eliminated,

= +
α

n − 1

{
−

}
, (19.11)

and does not split the antisymmetric part of (19.4). In that case the adjoint rep
of SO(n) would also be the adjoint rep for the invariance group of dabc. However,
the invariance condition

0 = (19.12)
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cannot in this case be satisfied for any positive dimension n:

0 =

��������
��������
��������
��������

⇒ 0 = − ⇒ n + 1 = 0 . (19.13)

Hence the coefficients in (19.7) are nonvanishing, and there are no additional
relations beyond (19.6). The coefficients are fixed by tracing with δab:

1
α

=
2

n + 2
. (19.14)

Expanding the symmetrization operator, we can write this relation as
1
α

+
1
2α

=
2

n + 2
+

1
n + 2

, (19.15)

or, more symmetrically, as

+ + =
2α

n + 2

{
+ +

}
,

dabedecd + dadedebc + dacedebd =
2α

n + 2
(δabδcd + δadδbc + δacδbd) . (19.16)

In sect. 19.3, we shall show that this relation can be interpreted as the charac-
teristic equation for [3×3] octonionic matrices. This is the defining relation for
the F4 family, equivalent to the assumption (19.6).

The eigenvalue of the invariant matrix Q on the n-dimensional subspace can
now be computed from (19.15):

1
α

+
1
2

=
2

n + 2
,

1
α

= −1
2

n − 2
n + 2

. (19.17)

Let us now turn to the action of the invariant matrix Q on the antisymmetric
subspace in (19.4). We evaluate Q2 with the help of (19.16) and the identity
(6.60), replacing the top dabedecd pair by

= − −

+
2α

n + 2

{
+ α

}
0 = A

(
Q2 − 1

2
n − 6
n + 2

Q − 2
n + 2

1
)

. (19.18)

The roots are λ = −1/2, λ = 4/(n+2), and the associated projectors yield the
adjoint rep and the antisymmetric rep

P =
8

n + 10

{
+

n + 2
4α

}
(19.19)

P =
n + 2
n + 10

{
− 2

α

}
. (19.20)
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Dynkin index!f4@$F˙4$ label ⊗ = + + • + +

F4 (0001)× (0001) = (0002) + (0001) + (0000) + (0010) + (1000)
C3 (010)× (010) = (???) + (010) + (000) + (101) + (03) + (03)
A2 (11) × (11) = (??) + (11) + (00) + (??) + (11)
A1 (4) × (4) = (?) + (4) + (0) + (?) + (2)

dimension n2 = (n+1)(n−2)
2 + n + 1 + n(n+1)(n+2)

2(n+10) + 3n(n−2)
n+10

F4 262 = 324 + 26 + 1 + 273 + 52
C3 142 = 90 + 14 + 1 + 70 + 21
A2 82 = 27 + 8 + 1 + 20 + 8
A1 52 = 9 + 5 + 1 + 7 + 3

index n+10
5n−22 = ? + ? + 0 + ? + 1

F4 2 · 26 · 1
? = + + 0 + + 1

C3 2 · 14 · 1
? = + + 0 + + 1

A2 2 · 8 · 1
? = + 1 + 0 + + 1

A1 2 · 5 · 5
? = + 5 + 0 + + 1

Table 19.1: EDIT! V ⊗V F4 family Clebsch-Gordan series. Projection operators
P , P•, P are given in (19.4), (19.19) and (19.20). The defining rep Dynkin
index � is computed in refeq??18.14.

P is the projection operator for the adjoint rep, as it satisfies the invariance
condition (19.12)⇓INTERNAL

PC: insert eq Oxford
(15.15) [Jordan identity] (19.21)

and acting on Q it returns the correct eigenvalue λ = −1/2:

= −1
2

QP = −1
2
P . (19.22)

The dimensions of the two representations are (see also table 19.1)⇑INTERNAL

⇓INTERNAL

⇑INTERNAL N = trP =
3n(n − 2)

n + 10
, d = tr P =

n(n + 1)(n + 2)
2(n + 10)

, (19.23)

and the Dynkin index of the defining representation is

� =
n + 10
5n − 22

. (19.24)

⇓INTERNAL

⇑INTERNAL
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19.2 Defining ⊗ adjoint tensors

The V ⊗A space always contains the defining rep:

=
n

aN
+
{

− n

aN

}
.

1 = P6 + P7 . (19.25)

We can use dabc and (Ti)ab to project a V ⊗V subspace from V ⊗A:

Ria,bc =
c

ba

i
. (19.26)

By the invariance condition (19.12), R projects the symmetrized V ⊗V subspace
onto V

= −1
2

. (19.27)

Hence, R maps the P7 subspace only onto the antisymmetrized V ⊗V :

P7R = RA

P7 = . (19.28)

The V ⊗V space was decomposed in the preceding section. Using (19.19) and
(19.20), we have

= + 5
. (19.29)

The P7 space can now be decomposed as

P7 = P8 + P9 + P10

− n

aN
=

N
+

d

5

5 + P10 . (19.30)

Here,

=
1
a

���������
���
���
���

������
���
���
���

���
���
���

,

5 = − , (19.31)

and the normalization factors are the usual normalizations (5.8) for 3-vertices.
An interesting thing happens in evaluating the normalization for the P8 subspace:

substituting (19.19) into 1
α

���
���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
���� , we obtain

1
N

=
1

αa2

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

=
26 − n

4(n + 10)
,

1
d

5 =
6(n − 2)

(n + 2)(n + 10)
. (19.32)
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characteristic
equation!e8@$F˙4$ The normalization factor is a sum of squares of real numbers:

=
1

αa2

∑
i,j,a

[(Ti)bcdacd(Tj)db]
2 ≥ 0 . (19.33)

Hence, either n = 26 or n < 26. We must distinguish between the two cases: as
the corresponding clebsches are identically zero,PC: ?

n = 26 : = 0 , (19.34)

and P7 subspace in (19.30) does not contain the adjoint rep, (19.30) is replaced
by

n = 26 : − n

aN
=

d

5

5
+ P10 . (19.35)

Another invariant matrix on V⊗A space can be formed from two (Ti)ab generators:

Q = . (19.36)

We compute P10Q2 by substituting the adjoint projection operator by (19.19),
using the characteristic equation (19.15) and the invariance condition (19.12),
and dropping the contributions to the subspaces already removed from P10:

P10 = P10
8

n + 10

{
+

n + 2
4α

}

= P10
4

n + 10

{
1 − Q +

n + 2
4α

(
−

)}

= P10
4

n + 10

{
1 − Q − n + 2

4α

(
��
��
��
��

+ 2 ����
����
����

����
����
���� )

+
1
2

+
1
2

}
= P10

2
n + 10

{
31 −Q − n + 2

α

(
��
��
��
��

��
��
��
��

−
��
��
��

��
��
��

��
��
��
�� )}

= P10
2

n + 10

{
31 − n + 4

2
Q + (vanishing)

}
. (19.37)

Hence Q2 satisfies a characteristic equation

0 = P10

(
Q2 +

n + 4
n + 10

Q − 6
n + 10

1
)

, (19.38)

with roots α11 = −1, α12 = 6/(n + 10), and the corresponding projection opera-
tors

P11 = P10
n + 10
n + 16

(
6

n + 10
1− Q

)
, (19.39)

P12 = P10
n + 10
n + 16

(1 + Q) . (19.40)
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To use these expressions, we also need to evaluate the eigenvalues of the invariant
matrix Q on subspaces P6,P8, and P9 :

QP6 =
n

aN
=
(

N

n
− CA

2

)
P6 =

1
2
P6 . (19.41)

We find it somewhat surprising that this eigenvalue does not depend on the
dimension n.

QP8 =
N

= − N ���
���
���
���

= −N

2n
P8 = − 3(n − 2)

2(n + 10)
P8

QP9 = − n − 8
n + 10

P9 . (19.42)

These relations are valid for any n.
Now we can evaluate the dimensions of subspaces P11,P12. We obtain for

n < 26

d11 = trP11 =
n(n − 2)(n − 5)(14 − n)

2(n + 10)(n + 16)
, (19.43)

d12 = trP12 =
3n(n + 1)(n − 5)

n + 16
. (19.44)

A small miracle has taken place: only n = 26 and n ≤ 14 are allowed. However,
d12 < 0 for n < 5 does not exclude the n = 2 solution, as in that case the
dimension of the adjoint rep (19.19) is identically zero, and V ⊗A decomposition
is meaningless.

For n = 26,P10 is defined by (19.35), the adjoint rep does not contribute, and
the dimensions are given by

n = 26 : d11 = 0, d12 = 1053 . (19.45)

If a dimension is zero, the corresponding projection operator vanishes identically,
and we have a relation between invariants:

0 = P11 = P10

(
1
6
1 − Q

)
= (1− P6 − P9)

(
1
6
1− Q

)
.

Substituting the eigenvalues of Q, we obtain a relation specific to F4

n = 26 : =
1
6

+
1
6

− 14
3

. (19.46)

Hence, for F4 Lie algebra (n = 26) the two invariants, R in (19.28) and Q in
(19.36), are not independent.

By now the (very gifted) reader has the hang of it, and can complete the
calculation on her own: if so, the author would be grateful to see it. The 2-
index adjoint tensors decomposition proceeds in what, by now, is a routine: one
first notes that A⊗A always decomposes into at least four reps (17.6). Then
one constructs an invariant tensor that satisfies a characteristic equation on the
A⊗A space, and so on. Some of these calculations are carried out in ref. [74],
sections 15, 20, and appendix, p. 97. PC: are ref. [240] and

ref. [196] the best refer-
ences?

PUP copyeditor version 8.7, September 27, 2007, printed October 14, 2007P. Cvitanović, Group Theory, f4family, last edited July 7, 2007
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characteristic
equation!e8@$F˙4$ ⊗ = + + • + +

262 = 324 + 26 + 1 + 273 + 52

⊗ = + +

52 · 26 = 1053 + 26 + 273

⊗ = + + + • +

522 = 1053 + 1274 + 52 + 1 + 324

⊗ = + + + + +

324 · 26 = 2652 + 4096 + 26 + 273 + 324 + 1053

⊗ = + + + + + +

273 · 26 = 4096 + 1274 + 324 + 273 + 52 + 26 + 1053

Table 19.2: Kronecker products for the five lowest-dimensional reps of F4, where
is the 26-dimensional defining rep, and the 52-dimensional adjoint rep. See

Patera et al. [240] and ref. [196] for tabulations of higher-order series.

19.3 Jordan algebra and F4(26)

1 As in sect. 18.11, consider the exceptional simple Jordan algebra of hermitian
[3×3] matrices with octonionic matrix elements. The nonassociative multiplica-
tion rule for traceless octonionic matrices x can be written, in a basis x = xaea,
as

eaeb = ebea =
δab

3
I + dabcec , a, b, c ∈ {1, 2, . . . , 26} , (19.47)

where tr(ea) = 0, and I is the [3×3] unit matrix. Traceless [3×3] matrices satisfy
the characteristic equation

x3 − 1
2

tr(x2)x − 1
3

tr(x3) I = 0 . (19.48)

Substituting (19.47) we obtain (19.14), with normalization α = 7/3. Substituting⇓INTERNAL

(19.47) into the Jordan identity [307],

(xy)x2 = x(yx2) , (19.49)

we obtain (19.21). It is interesting to note that the Jordan identity (which defines
Jordan algebra in the way Jacobi identity defines Lie algebra) is a trivial conse-
quence of (19.14). Freudenthal [131] and Schafer [307] show that the groupPC: fix this

⇑INTERNAL 1Ref2: The author speaks of “the exceptional simple Jordan algebra of traceless Hermitian
3 × 3 matrices with octonion matrix elements”. The traceless hermitian octonionic matrices do
not form a Jordan algebra, since they aren’t closed under the Jordan product and don’t include
the identity. F4 acts as automorphisms of the exceptional Jordan algebra, and as a rep of F4

this algebra splits as the direct sum of a 1-dimensional trivial rep and a 26-dimensional irrep
given by the traceless matrices.
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F4@$F˙4$—)
of isomorphisms that leave forms tr(xy) = δabxaxb and tr(xyz) = dabcxaybzc in-
variant is F4(26). The “derivation” (i.e., Lie algebra generators) is given by
Tits:

Dz = (xz)y − x(zy) [eq. (28) in ref. [328]]. (19.50)

Substituting (19.47), we recover the n = 26 case of the adjoint rep projection
operator (19.19):

(Dz)d = −xayb

(
1
3
(δadδbc − δacδbd) + (dbcedead − dacedebd)

)
zc . (19.51)

19.4 Dynkin labels and Young tableaux for F4

The correspondence between the f4 Dynkin diagram from table 7.6, the four
Dynkin labels, irreducible tensor Young tableaux, and the dimensions of the
lowest corresponding reps is

���� ������

41 2 3 ↔ (a1a2a3a4) ↔(
, , ,

)
↔ (52, 1274, 273, 26) . (19.52)

PC: cite discussion of B1(5)
(why not A1?), A2(8) and
C3(14) family members in
out in ref. [74], sects. 15 and
20.
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E7@$E˙7$—(textbf
negative

dimensions!E7@$E˙7$
Penrose!binor
binor
Levi-Civita

tensor!supersymmetric
invariantsChapter 20

E7 family and its
negative-dimensional cousins

PC: recheck: were any
m =rational solutions
missed in negative dimen-
sions?

Parisi and Sourlas [273] have suggested that a Grassmann vector space of dimen-
sion n can be interpreted as an ordinary vector space of dimension −n. As we
have seen in chapter 13, semisimple Lie groups abound with examples in which an
n → −n substitution can be interpreted in this way. An early example was Pen-
rose’s binors [284], reps of SU(2) = Sp(2) constructed as SO(−2), and discussed
here in chapter 14. This is a special case of a general relation between SO(n) and
Sp(−n) established in chapter 13; if symmetrizations and antisymmetrizations
are interchanged, reps of SO(n) become Sp(−n) reps. Here we work out in detail
a 1977 example of a negative-dimensions relation [74], subsequently made even
more intriguing [78] by Cremmer and Julia’s discovery of a global E7 symmetry
in supergravity [68].

We extend the Minkowski space into Grassmann dimensions by requiring that
the invariant length and volume that characterize the Lorentz group (SO(3, 1)
or SO(4) – compactness plays no role in this analysis) become a quadratic and a
quartic supersymmetric invariant. The symmetry group of the Grassmann sector
will turn out to be one of SO(2), SU(2), SU(2)×SU(2)×SU(2), Sp(6), SU(6),
SO(12), or E7, which also happens to be the list of possible global symmetries of
extended supergravities.

As shown in chapter 10, SO(4) is the invariance group of the Kronecker delta
gμν and the Levi-Civita tensor εμνσρ; hence, we are looking for the invariance
group of the supersymmetric invariants

(x, y) = gμνxμyν ,

(x, y, z, w) = eμνσρx
μyνzσwρ , (20.1)

where μ, ν, . . . = 4, 3, 2, 1,−1,−2, . . . ,−n. Our motive for thinking of the Grass-
mann dimensions as −n is that we define the dimension as a trace (3.52), n = δμ

μ,
and in a Grassmann (or fermionic) world each trace carries a minus sign. For
the quadratic invariant gμν alone, the invariance group is the orthosymplectic
OSp(4, n). This group [179] is orthogonal in the bosonic dimensions and sym-
plectic in the Grassmann dimensions, because if gμν is symmetric in the ν, μ > 0

253
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indices, it must be antisymmetric in the ν, μ < 0 indices. In this way the super-
symmetry ties in with the SO(n) ∼ Sp(−n) equivalence developed in chapter 13.

Following this line of reasoning, a quartic invariant tensor eμνσρ, antisymmet-
ric in ordinary dimensions, is symmetric in the Grassmann dimensions. Our task
is then to determine all groups that admit an antisymmetric quadratic invariant,
together with a symmetric quartic invariant. The resulting classification can be
summarized by

symmetric gμν + antisymmetric fμνσρ : (20.2)
(A1 + A1)(4), G2(7), B3(8),D5(10)

antisymmetric fμν + symmetric dμνσρ :
SO(2), A1(4), (A1 + A1 + A1)(8), C3(14), A5(20),D6(32), E7(56) ,

where the numbers in ( ) are the defining rep dimensions. The second case
generates a row of the Magic Triangle (fig. 1.1).

From the supergravity point of view, it is intriguing to note that the Grass-
mann space relatives of our SO(4) world include E7, SO(12), and SU(6) in the
same reps as those discovered by Cremmer and Julia. Furthermore, it appears
that all seven possible groups can be realized as global symmetries of the seven
extended supergravities, if one vector multiplet is added to N = 1, 2, 3, 4 extended
supergravities.

In sects. 20.1–20.3, we determine the groups that allow a symmetric quadratic
invariant together with an antisymmetric quartic invariant. The end result of the
analysis is a set of Diophantine conditions, together with the explicit projection
operators for irreducible reps. In sect. 20.4, the analysis is repeated for an anti-
symmetric quadratic invariant together with a symmetric quartic invariant. We
find the same Diophantine conditions, with dimension n replaced by −n, and
the same projection operators, with symmetrizations and antisymmetrizations
interchanged.PC: The calculation of

Dynkin indices - describe in
refappec-applic? Parenthetically, you might wonder, how does one figure out such things with-

out birdtracks? I cannot guess, and I suspect one does not. In this chapter the
E7 family is derived diagrammatically, following ref. [74], but as experts with a
more algebraic mindset used to find birdtracks very foreign, in ref. [78] we hid
our tracks behind the conventional algebraic notation of Okubo [259]. The reader
can decide what is easier to digest, algebraic notation or birdtracks.

20.1 SO(4) family

According to table 10.1, the flip σ from (6.2) together with the index contraction
T from (10.8) decompose V⊗V of SO(n) into singlet (10.11), traceless symmetric
(10.10), and antisymmetric adjoint (10.12) subspaces, V⊗V = V1 ⊕V2⊕V3. Now
demand, in addition to the above set of V 4 invariant tensors, the existence of a
fully antisymmetric primitive quartic invariant,

fμνρδ = −fνμρδ = −fμρνδ = −fμνδρ =
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fμνρδ = . (20.3)

As fμνρδ is of even rank and thus anticyclic, fμνρδ = −fνρδμ, we deploy the black
semicircle birdtrack notation (6.57) in order to distinguish the first leg.

The only V ⊗V → V ⊗V invariant matrix that can be constructed from the
new invariant and the symmetric bilinear tensor (10.2) is

Qμ
ν

ν′
μ′ = gμεfνεμ′σgσν′

= (20.4)

(we find it convenient to distinguish the upper, lower indices in what follows).
Due to its antisymmetry, the Q invariant does not decompose the symmetric
subspaces (10.10), (10.11):

P1Q = 0 , P2Q =
1
2
(1 + σ)Q = 0 .

The Q invariant can, however, decompose the antisymmetric V3 subspace (10.12)
into the new adjoint subspace A and the remaining antisymmetric subspace V7:

adjoint: PA = Q + bP3 , b = N/d3

1
a

= + b

antisymmetric: P7 = −Q + (1 − b)P3

1
a7

= − + (1 − b) , (20.5)

where d3 = n(n− 1)/2 is the dimension of the SO(n) adjoint representation, b is
fixed by N = trPA, and the N is the dimension of the adjoint representation of
the fμνρδ invariance subgroup of SO(n), to be determined.

By the primitiveness assumption (3.39) no further invariant matrices ∈ ⊗V 4

exist, linearly independent of Q. In particular, Q2 is not independent and is
reducible to Q and P3 by the projection operator indempotency, PC: fix e7.4.5 bounding box

0 = P2
A − PA = Q2 + (2b − 1)Q + b(b − 1)P3

0 = + (2b − 1) + b(b − 1) . (20.6)

Rewriting the indempotency relation as

P2
A = (Q + b1)PA = PA

yields the eigenvalue λA = 1 − b of the matrix Q on the adjoint space A:

= (1 − b) . (20.7)

Condition (20.6) also insures that the V → V matrix

(Q2)μν
ν′
μ =

Nd7

nd3
δν′
ν
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is proportional to unity. Were this not true, distinct eigenvalues of the Q2 matrix
would decompose the defining n-dimensional rep, contradicting the primitiveness
assumption that the defining rep is irreducible.

Now antisymmetrize fully the relation (20.6). The P3 contribution drops out,
and the antisymmetrized Q2 is reduced to Q by:

������������������
������������������
������������������
������������������

+ (2b − 1) = 0 . (20.8)

The invariance condition (4.36)

0 = ���
���
���

���
���
���

���
���
���
���

������������������
������������������
������������������
������������������

������ ���
���
���
��� (20.9)

yields the second constraint on the Q2:

0 =
����
����
����

����
����
����

������������������
������������������
������������������
������������������

������

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

= ���
���
���
���

������ ���
���
���
���

���
���
���
���

���
���
���
���

������������������
������������������
������������������
������������������

− 3 ���
���
���
���

���
���
���

���
���
���

������ ������

������������������
������������������
������������������
������������������

. (20.10)

The quadratic casimir for the defining rep and the “4-vertex” insertion are com-
puted by substituting the adjoint projection operator PA,

��
��
��
��

ba
=

b

2
(n − 1)

��
��
��
��

a b
, ���

���
���
���

���
���
���

���
���
���

������ ������

������������������
������������������
������������������
������������������

= − b

2
. (20.11)

In this way the invariance condition (20.9)PC: play with btrack sizes

������������������
������������������
������������������
������������������

+
b

6
(n − 4) = 0 (20.12)

fixes the value of b = 6/(16 − n). The projection operators (20.5)

adjoint: PA = Q +
6

16 − n
P3 (20.13)

antisymmetric: P7 = −Q +
10 − n

16 − n
P3 (20.14)

decompose the n(n − 1)/2-dimensional adjoint space V3 of SO(n) into two sub-
spaces of dimensions

N = trPA =
3n(n − 1)

16 − n
, d7 = trP7 =

n(n − 1)(10 − n)
2(16 − n)

. (20.15)

This completes the decomposition V ⊗V = V1 ⊕ V5 ⊕ A ⊕ V7. From the
Diophantine conditions (20.15) it follows that the subspaces VA, V7 have positive
integer dimension only for n = 4, 6, 7, 8, 10. However, the reduction of A ⊗ V
undertaken next eliminates the n = 6 possibility.
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characteristic
equation!e8@$E˙7$20.2 Defining ⊗ adjoint tensors

The reduction of the V⊗V space, induced by the symmetric gμν and antisymmetric
fμνσρ invariants, has led to very restrictive Diophantine conditions (20.15). Fur-
ther Diophantine conditions follow from the reduction of higher product spaces
⊗V q. We turn to the reduction of (adjoint) ⊗ (defining)=A⊗V Kronecker prod-
uct, proceeding as in sections 9.11, 10.2, 18.5, and 19.2.

The three simplest A ⊗ V → A ⊗ V invariant matrices one can write down
are the identity matrix, and

R = , Q = = . (20.16)

R projects onto the defining space, A ⊗ V → V → A ⊗ V . Its characteristic
equation

R2 = =
N

n
R ,

and the associated projection operators (3.48)

P8 =
n

N
, P9 = − n

N
, (20.17)

decompose A ⊗ V = V8 ⊕ V9, with dimensions

d8 = n , d9 = trP9 = n(N − 1) . (20.18)

The characteristic equation for

Q2 =

is computed by inserting the adjoint rep projection operator (20.13) and using the
invariance condition (20.9) and the Q eigenvalue (20.7). The result (projected
onto the V9 subspace) is a surprisingly simple quadratic equation,

0 =
(
Q2 − (1/2 + b)Q + b/2

)
P9 = (Q − 1/2) (Q + b)P9 , (20.19)

with roots

λ10 = −b , λ11 = 1/2 . (20.20)

The n(N − 1)-dimensional space V9 is now decomposed into

P9 = P10 + P11

− n

aN
=

d10
10

10
+

d11
11

11
(20.21)

(the prefactors are the 3-vertex normalizations (5.8)), with the associated pro-
jection operators (3.48)

P10 =
2(16 − n)
28 − n

(
−Q +

1
2
1
)

P9 ,

P11 =
2(16 − n)
28 − n

(
Q +

6
16 − n

1
)

P9 . (20.22)
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Rep Dimension A1 + A1 G2 B3 D5

V =defining n 4 7 8 10

A=adjoint N = 3n(n−1)
16−n 3 14 21 45

V7=antisym. n(n−1)(10−n)
2(16−n) 3 7 7 0

V5=symmetric (n+2)(n−1)
2 9 27 35 54

V10
3n(n+2)(n−4)

28−n 0 27 48 120

V11
32n(n−1)(n+2)
(16−n)(28−n) 8 64 112 320

Table 20.1: Rep dimensions for the SO(4) family of invariance groups.

This completes the decomposition V ⊗ VA = V8 ⊕ V10 ⊕ V11. To compute the
dimensions of V10, V11 subspaces, evaluate

trP9Q = −2n(2 + n)/(16 − n) , (20.23)

to, finally, obtain

d10 = trP10 =
3n(n + 2)(n − 4)

28 − n
,

d11 = trP11 =
32n(n − 1)(n + 2)
(16 − n)(28 − n)

. (20.24)

The denominators differ from those in (20.15); of the solutions to (20.15), d =
4, 7, 8, 10 are also solutions to the new Diophantine conditions. All solutions are
summarized in table 20.1.PC: check notes for the

casimir2 calculation?

PC: decrease spacing

20.3 Lie algebra identification

As we have shown, symmetric gμν together with antisymmetric fμνσρ invariants
cannot be realized in dimensions other than d = 4, 7, 8, 10. But can they be
realized at all? To verify that, one can turn to the tables of Lie algebras of
ref. [277] and identify these four solutions.

20.3.1 SO(4) or A1 + A1 algebra

The first solution, d = 4, is not a surprise; it was SO(4), Minkowski or euclidean
version, that motivated the whole project. The quartic invariant is the Levi-
Civita tensor εμνρσ . Even so, the projectors constructed are interesting. Taking

Qμ
ν

δ
ρ = gμεgδρεεσνγ , (20.25)

one can immediately calculate (20.6):

Q2 = 4P3 . (20.26)
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The projectors (20.14) become

PA =
1
2
P3 +

1
4
Q, P7 =

1
2
P3 −

1
4
Q , (20.27)

and the dimensions are N = d7 = 3. Also both PA and P7 satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one
shows that the Lie algebra of SO(4) is the semisimple SU(2)+SU(2) = A1 +A1.
Furthermore, the projection operators are precisely the η, η symbols used by
’t Hooft [166] to map the self-dual and self-antidual SO(4) antisymmetric tensors
onto SU(2) gauge group:

(PA)μδ
νρ =

1
4

(
δμ
ρ δδ

ν − gμδgνρ + εμδ
νρ

)
= −1

4
ηa

μ
ν ηa

δ
ρ ,

(P7)μδ
νρ =

1
4

(
δμ
ρ δδ

ν − gμδgνρ − εμδ
νρ

)
= −1

4
ηa

μ
ν ηa

δ
ρ . (20.28)

The only difference is that instead of using an index pair μ
ν , ’t Hooft indexes the

adjoint spaces by a = 1, 2, 3. All identities, listed in the appendix of ref. [166],
now follow from the relations of sect. 20.1.

20.3.2 Defining rep of G2

The 7-dimensional rep of G2 is a subgroup of SO(7), so it has invariants δij and
εμνδσραβ . In addition, it has an antisymmetric cubic invariant [43, 73] fμνρ,
the invariant that we had identified in sect. 16.6 as the multiplication table for
octonions. The quartic invariant we have inadvertently rediscovered is

fμνρσ = εμνρσαβγfαβγ . (20.29)

Furthermore, for G2 we have the identity (16.15) by which any chain of contrac-
tions of more than two fαβγ can be reduced. Projection operators of sect. 20.1
and sect. 20.2 yield the G2 Clebsch-Gordan series (16.12): PC: recheck (15.12)

7 ⊗ 7 = 1 ⊕ 27 ⊕ 14 ⊕ 7 , 7 ⊗ 14 = 7 ⊕ 27 ⊕ 64 .

20.3.3 SO(7) eight-dimensional rep

We have not attempted to identify the quartic invariant in this case. However,
all the rep dimensions (table 20.1), as well as their Dynkin indices (table 20.2),
match B3 reps listed in tables of Patera and Sankoff [277]. PC: why �7 = 0 for A1+A1?

20.3.4 SO(10) ten-dimensional rep

This is a trivial solution; PA = P3 and P7 = 0, so that there is no decomposition.
The quartic invariant is

fμνσρ = εμνσραβγδωξCαβ,γδ,ωξ ≡ 0 , (20.30)

where Cαβ,γδ,ωξ are the SO(10) Lie algebra structure constants.
This completes our discussion of the “bosonic” symmetric gμν , antisymmetric

eαβγδ invariant tensors. We turn next to the “fermionic” case: antisymmetric
gμν , symmetric eαβγδ .
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Rep Dynkin index A1 + A1 G2 B3 D5

V =defining 16−n
4(n+2)

1
2

1
4

1
5

1
8

A=adjoint 1 1 1 1 1

V7=antisym. (10−n)(n−4)
4(n+2) 0 1

4
1
5 0

V5=symmetric 1
4 (16 − n) 3 9

4 2 3
2

V10
7(16−n)(n−4)

4(28−n) − 9
4

14
5

7
2

V11
8(2n+7)
(28−n) 5 8 46

5 12

Table 20.2: Dynkin indices for the SO(4) family of invariance groups.

20.4 E7 family

We have established in chapter 12 that the invariance group of antisymmetric
quadratic invariant fμν is Sp(n), n even. We now add to the set of Sp(n) invari-
ants (12.8) a fully symmetric 4-index tensor,

dμνρδ = dνμρδ = dμρνδ = dμνδρ . (20.31)

All of the algebra of invariants and Kronecker product decomposition that follow
is the same as in sect. 20.1, and is left as an exercise for the reader. All the
dimensions and Dynkin indices are the same, with n → −n replacement in all
expressions:

PA = Q +
6

16 + n
P3 , P7 = −Q +

10 + n

16 + n
P3 , (20.32)

N =
3n(n + 1)

16 + n
= 3n − 45 +

360
8 + 1

2n
(20.33)

d7 =
n(n + 1)(n + 10)

2(16 + n)
.

There are seventeen solutions to this Diophantine condition, but only ten will
survive the next one.

20.4.1 Defining ⊗ adjoint tensors

Rewriting sect. 20.2 for an antisymmetric fμν , symmetric dμνσρ is absolutely
trivial, as these tensors never make an explicit appearance. The only subtlety is
that for the reductions of Kronecker products of odd numbers of defining reps
(in this case ⊗V 3), additional overall factors of minus 1 appear. For example,
it is clear that the dimension of the defining subspace d8 in (20.18) does not
become negative; n → −n substitution propagates only through the expressions
for λA, λ7 and N . The dimension formulas (20.24) become

d10 =
3n(n − 2)(n + 4)

n + 28
, d11 =

32n(n − 2)(n + 1)
(n + 16)(n + 28)

. (20.34)
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skew-symmetric
invariantOut of the seventeen solutions to (20.33), ten also satisfy this Diophantine condi-

tion; d = 2, 4, 8, 14, 20, 32, 44, 56, 164, 224. d = 44, 164, and 224 can be eliminated
[74] by considering reductions along the columns of the Magic Triangle and prov-
ing that the resulting subgroups cannot be realized; consequently the groups
that contain them cannot be realized either. Only the seven solutions listed in
table 20.3 have antisymmetric fμν and symmetric dμνρδ invariants in the defining
rep. PC: aren’t n > 56 excluded

in table 20.3?

PC: Note that ref. [297]
convention �vanR = 3� in
table 20.3 yields integer in-
dices.

20.4.2 Lie algebra identification

It turns out that one does not have to work very hard to identify the series
of solutions of the preceding section. SO(2) is trivial, and there is extensive
literature on the remaining solutions. Mathematicians study them because they
form the third row of the Magic Square [131], and physicists study them because
E7(56) → SU(3)c ×SU(6) once was one of the favored unified models [151]. The
rep dimensions and the Dynkin indices listed in table 20.3 agree with the above
literature, as well as with the Lie algebra tables [277]. Here we shall explain only
why E7 is one of the solutions.

The construction of E7, closest to the spirit of our endeavor, has been carried
out by Brown [34, 356]. He considers an n-dimensional complex vector space V
with the following properties:

1. V possesses a nondegenerate skew-symmetric symplectic invariant {x, y} =
fμνx

μyν .

2. V possesses a symmetric 4-linear form q(x, y, z, w) = dμνσρx
μyνzσwρ.

3. If the ternary product T(x, y, z) is defined on V by {T(x, y, z), w} = q(x, y, z, w),
then 3{T(x, x, y),T(y, y, y)} = {x, y}q(x, y, y, y).

The third property is nothing but the invariance condition (4.37) for dμνρδ as
can be verified by substituting PA from (20.32). Hence, our quadratic, quartic
invariants fulfill all three properties assumed by Brown. He then proceeds to
prove that the 56-dimensional rep of E7 has the above properties and saves us
from that labor. PC: time permitting: in-

clude birdtrack Brown rela-
tion, Oxford prep. (16.9);
include quartic Dynkin ≥ 0
limits n ≤ 56 (or refer to it
in earlier chapter?

The E7 family derived above is a row of the Magic Triangle (fig. 1.1). This is
an extension of the Magic Square, an octonionic construction of exceptional Lie
algebras. The remaining rows are obtained [74] by applying the methods of this
monograph to various kinds of quadratic and cubic invariants, while the columns
are subgroup chains. In this context, the Diophantine condition (20.33) is one of
a family of Diophantine conditions discussed in chapter 21. They all follow from
formulas for the dimension of the adjoint rep of form

N =
1
3
(k − 6)(l − 6) − 72 + 360

(
1
k

+
1
l

)
. (20.35)

(20.33) is recovered by taking k = 24, n = 2l − 16. Further Diophantine condi-
tions, analogous to (20.34), reduce the solutions to k, l = 8, 9, 10, 12, 15, 18, 24, 35.
The corresponding Lie algebras form the Magic Triangle (fig. 1.1).
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R
ep

S
O

(2)
A

1
A

1
+

A
1

+
A

1
C

3
A

5
D

6
E

7

V
=

defining
2

4
8

14
20

32
44

56
164

224

A
=

adjoint
1

3
9

21
35

66
99

133
451

630

V
7 =

sym
m

etric
2

7
27

84
175

462
891

1463
13079

24570

V
5 =

antisym
.

0
5

27
90

189
495

945
1539

13365
24975

V
1
0

0
6

48
216

540
1728

3696
6480

69741
134976

V
1
1

0
2

16
64
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+
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352
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4059
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1
58
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51
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1
0

3
7
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=
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1

1
1

1
1

1
1

V
7 =

sym
m

etric
14

9
9
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35

1
0
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7
5
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6

9
2
2
3
3

3
7
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.

5
6

1
52

9
12

15
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45
60

V
1
0

3
54

14
4
52

6
32

2
5
2

5
70

90
2
2
0
5

8
380

V
1
1

14
2

4
1
14

+
1
14

3
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9
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1
0
7

8
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E7@$E˙7$—)
⊗ = + + • +

562 = 1463 + 1539 + 1 + 133

⊗ = + +

7448 = 133 · 56 = 6480 + 56 + 912

⊗ = + + +

81928 = 1463 · 56 = 24320 + 51072 + 56 + 6480

⊗ = + + + +

86184 = 1539 · 56 = 51072 + 27664 + 56 + 6480 + 912

⊗ = + + + • +

17689 = 1332 = 7371 + 8645 + 133 + 1 + 1539

⊗ = + + + +
�����
�����
�����

�����
�����
����� +

1549184 = 27664 · 56 = 980343 + 365750 + 1539 + 152152 + 40755 + 8645

Table 20.4: The Clebsch-Gordan series for Kronecker products of the five lowest-
dimensional reps of E7.

20.5 Dynkin labels and Young tableaux for E7

A rep of E7 is characterized by seven Dynkin labels (a1a2a3a4a5a6a7). As in
sect. 18.7, tracing with respect to the invariant tensor dμνρδ modifies the Young
tableaux for Sp(56). We leave details as an exercise for the reader. The correspon-
dence between the E7 Dynkin diagram from table 7.6, Dynkin labels, irreducible
tensor Young tableaux, and the dimensions of the lowest corresponding reps is

61 2 3 4 5

7

↔ (a1a2a3a4a5a6a7) ↔ (20.36)(
, , , , , ,

)
↔

(133, 362880, 365750, 27664, 1539, 56, 912) .

The Clebsch-Gordan series for products of the five lowest-dimensional reps of E7

are given in table 20.4.
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264CHAPTER 20. E7 FAMILY AND ITS NEGATIVE-DIMENSIONAL COUSINS
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Chapter 21

Exceptional magic

The study of invariance algebras as pursued in chapters 16–20 might appear a
rather haphazard affair. Given a set of primitives, one derives a set of Diophantine
equations, constructs the family of invariance algebras, and moves onto the next
set of primitives. However, a closer scrutiny of the Diophantine conditions leads
to a surprise: most of these equations are special cases of one and the same
Diophantine equation, and they magically arrange all exceptional families into a
triangular array I call the Magic Triangle.

21.1 Magic Triangle

Our construction of invariance algebras has generated a series of Diophantine
conditions that we now summarize. The adjoint rep dimensions (19.23), (18.13),
(20.33), and (17.13) are

F4 family N = 3n − 36 +
360

n + 10

E6 family N = 4n − 40 +
360

n + 9

E7 family N = 3n − 45 +
360

n/2 + 8

E8 family N = 10m − 122 +
360
m

. (21.1)

There is a striking similarity between the Diophantine conditions for different
families. If we define

F4 family m = n + 10
E6 family m = n + 9
E7 family m = n/2 + 8 , (21.2)

we can parametrize all the solutions of the above Diophantine conditions with a
single integer m (see table 21.1). The Clebsch-Gordan series for A⊗V Kronecker
products also show a striking similarity. The characteristic equations (17.10),
(18.28), (19.38), and (20.19) are one and the same equation: PC: (17.10) does not have

λ = 1? (18.28) has λ = −1.
(20.19) has λ = 1/2. Ex-
plain!265
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m 8 9 10 12 15 18 24 30 36

F4 0 0 3 8 21 . 52

E6 0 0 2 8 16 35 36 78

E7 0 1 3 9 21 35 66 99 133

E8 3 8 14 28 52 78 133 190 248

Table 21.1: All defining representation n values allowed by the Diophantine
conditions (21.1) and (21.4). The m = 30 column of nonreductive algebras,
not eliminated by the Diophantine conditions of chapters 16–20, is indicated by
smaller script.

(Q − 1)
(
Q +

6
m

1
)

Pr = 0 . (21.3)

Here Pr removes the defining and ⊗V 2 subspaces, and we have rescaled the E8

operator Q (17.10) by factor 2. The role of the Q operator is only to distinguish
between the two subspaces; we are free to rescale it as we wish.PC: Table 21.1 needs

brushing up

In the dimensions of the associated reps, the eigenvalue 6/m introduces a new
Diophantine denominator m + 6. For example, from (17.19), table 18.4, (19.44),
and (20.34), the highest-dimensional rep in V ⊗ A has dimension (in terms of
parametrization (21.2)):

F4 family 3(m + 6)2 − 156(m + 6) + 2673 − 15120
m + 6

E6 family 4(m + 6)2 − 188(m + 6) + 2928 − 15120
m + 6

E7 family 2
{

6(m + 6)2 − 246(m + 6) + 3348 − 15120
m + 6

}
E8 family 50m2 − 1485m + 19350 +

27 · 360
m

− 11 · 15120
m + 6

. (21.4)

These Diophantine conditions eliminate most of the spurious solutions of (21.1);
only the m = 30, 60, 90, and 120 spurious solutions survive but are in turn
eliminated by further conditions. For the E8 family, the defining rep is the adjoint
rep, V ⊗ V = V ⊗A = A⊗A, so the Diophantine condition (21.4) includes both
1/m and 1/(m+6) terms. Not only can the four Diophantine conditions (21.1) be
parametrized by a single integer m; the list of solutions (table 21.1) turns out to be
symmetric under the flip across the diagonal. F4 solutions are the same as those
in the m = 15 column, and so on. This suggests that the rows be parametrized
by an integer �, in a fashion symmetric to the column parametrization by m.
Indeed, the requirement of m ↔ � symmetry leads to a unique expression that
contains the four Diophantine conditions (21.1) as special cases:

N =
(� − 6)(m − 6)

3
− 72 +

360
�

+
360
m

. (21.5)
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Figure 21.1: Magic Triangle. The admissible solutions of Diophantine conditions
(21.4) and (21.5) form a triangular array that includes all of the exceptional Lie
group families derived in chapters 16–20. Within each entry the number in the
upper left corner is N , the dimension of the corresponding Lie algebra, and the
number in the lower left corner is n, the dimension of the defining rep. The
“Magic Square” is framed by the double line.
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character
Deligne, P. We take m = 8, 9, 10, 12, 15, 18, 24, 30, and 36 as all the solutions allowed in

table 21.1. By symmetry, � takes the same values. All the solutions fill up the
Magic Triangle (fig. 21.1). Within each entry, the number in the upper left corner
is N , the dimension of the corresponding Lie algebra, and the number in the lower
left corner is n, the dimension of the defining rep. The expressions for n for the
top four rows are guesses. The triangle is called “magic” partly because we
arrived at it by magic, and partly because it contains the Magic Square, marked
by the dotted line in fig. 21.1. 1

21.2 A brief history of exceptional magic

To live outside the law you got to be honest.
Bob Dylan

PC: track down the Bob
Dylan quote

PC: incorporate Cartier re-
marks, p 191 of printout
version 8.3.7

Literature on group theory is vast; hard work builds character and anybody who
has discovered, for example, that a trace is a useful symmetry invariant writes
a paper about it. The good thing about it is that there are many wonderful
papers to study. The bad thing about it is that hardly anybody tracks that vast
literature, and so I soldiered on with this monograph happy and undisturbed,
garnering three citations to the Magic Triangle over the two decades. Theory of
compact Lie groups is complete for nearly a century (Peter-Weyl theorem), and
hardly anyone thinks there is a problem there, let alone a solution to it.

In 1996 Deligne changed this by rediscovering in part the construction of
exceptional Lie groups described here. In quantum field theory, analytic con-
tinuation in space dimension n is a given [163]. In the classical group theory
of Frobenius, Cartan, and Weyl, each group is a discrete object, with its own
specific structure; Deligne’s theory of GLn tensor categories freed the representa-
tion theory of these shackles, and phrased analytic continuation in n (described
here in chapter 9) in a language comfortable to mathematicians. Deligne was a
student of Tits; quantum field theory has flirted with exceptional groups for at
least 50 years, and so from both directions one had to explore how continuation
in n fits into the theory of exceptional groups.

Deligne is a much admired prodigy (he joined IHES at age 19), and the ex-
ceptional drought was followed by new contributions that this monograph makes
no attempt to incorporate. I apologize to colleagues whose important papers I
have either overseen or misunderstood. Where this monograph fits into the larger
picture is explained in chapter 1. A brief history of birdtracks is given in sect. 4.9.
I apologize for the plaintive tone and myopic vision of the “exceptional magic”⇓INTERNAL

1Ref2: The author asks why the magic triangle is symmetric across the diagonal. I don’t
know: this is a fascinating puzzle! But it should be emphasized that while the Freudenthal-Tits
construction of the magic square leaves this symmetry mysterious, Vinberg’s construction [334]
makes it obvious. A more accessible reference is ref. [333]. A more recent construction of the
magic square due to Barton and Sudbery [16] also has manifest symmetry. A tour of all these
constructions, explaining how they are related, is given by Baez [13]. These references should be
cited, for the benefit of the reader who wants to ponder the mysterious symmetry of the magic
triangle.
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Okubo, S.
Angelopoulos, E.
El Houari, M.
Kamiya, N.
miniscule rep
rep!miniscule

literature survey that follows - I have worked too hard and too long not to care. ⇑INTERNAL

PC: thank 2nd PUP referee
for this info

There are many strands woven into the tapestry of “exceptional magic” to
which this monograph is a small contribution. First noted by Rosenfeld [300], the
Magic Square was rediscovered by Freudenthal, and made rigorous by Freudenthal
and Tits [130, 131, 328].

The construction of the exceptional Lie algebras family described here was
initiated [73, 74] in 1975–77. The “Magic Triangle” and the methods used to de-
rive were published in the 1981 article [78] using the E7 family (chapter 20) and
its SO(4)-family of “negative dimensional” cousins as an example. The deriva-
tion of the E8 family presented in chapter 17, based on the assumption of no
quartic primitive invariant (see fig. 16.1), was inspired by S. Okubo’s observa-
tion [262] that the quartic Dynkin index (7.33) vanishes for the exceptional Lie
algebras. In the intervening years several authors have independently reached
similar conclusions.

In 1986 K. Meyberg [244, 245] also showed that the absence of a primitive
quartic casimir leads to uniform decomposition of adjoint Sym2A and obtained
the E8 family of chapter 17.

E. Angelopoulos is credited for obtaining (in an unpublished paper written
around 1987) the Cartan classification using only methods of tensor calculus, by
proving that the quadratic casimir has only two eigenvalues on the symmetric
subspace Sym2A (the 1981 result [78] described here in sect. 17.1). Inspired by
Angelopoulos and ref. [73], in his thesis M. El Houari applied a combination of
tensorial and diagrammatic methods to the problem of classification of simple Lie
algebras and superalgebras [112]. As Algebras, Groups, and Geometries journal
does not practice proofreading (all references are of form [?,?,?]), precise intellec-
tual antecedents to this work are not easily traced. In a subsequent publication
E. Angelopoulos [12] used the spectrum of the casimir operator acting on A⊗A
to classify Lie algebras, and, inter alia, also obtained the E8 family of chapter 17
within the same class of Lie algebras.

In a Shimane University 1989 publication, N. Kamiya [181] constructs the F4,
E6, E7, and E8 subset of the E8 family from “balanced Freudenthal-Kantor triple
systems” of dimensions nFK = 14, 20, 32, 56. In particular, on p. 44 he states
an algebra dimension formula equivalent to (17.13) under substitution nFK =
2(m − 8). ⇓INTERNAL

Dylan Thurston, 23 Dec 2002: There are a couple of references that might
be relevant to your work: Wenzl [342] and Lurie [219]. These both consider
exceptional Lie algebras from the point of view of their miniscule representations:
the representation with the smallest dimension. Wenzl shows that the invariants
(for the ”quantum” groups in addition to the classical ones) are nearly generated
by a single tensor in dimension N (on the nose for N = 6, 7, and in a direct
summand for other N , N ! = 9). Lurie does something similar, but more explicitly,
for E6 and E7. ⇑INTERNAL

In a 1995 paper P. Deligne [181] attributed to P. Vogel [335] the observation
that for the five exceptional groups the antisymmetric A ∧ A and the symmetric
Sym2A adjoint rep tensor product decomposition, P +P and P•+P +P in
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Coxeter, H.˜S.˜M.
Deligne, P.
Vogel, P.
Bourbaki
Coxeter!dual number
dual!Coxeter number

table 17.2, can be decomposed into irreducible reps in a “uniform way,” and that
their dimensions and casimirs are rational functions of the dual Coxeter number
a, related to the parameter m of (17.12) by

a = 1/(m − 6) . (21.6)

Here a is a = Φ(α̃, α̃), where α̃ is the largest root of the rep, and Φ the canonical
bilinear form for the Lie algebra, in the notation of Bourbaki [29]. Deligne con-
jectured the existence of a tensor category that models the A-module structure
of ⊗A. A consequence of the conjecture would be decomposition and dimension
formulas for the irreducible modules in ⊗Ak, ∨k.PC: get Bourbaki initials

right This consequence was checked on computer by Deligne, Cohen, and de Man [62,
90] for all reps up to ⊗A5. They note that “miraculously for all these rational
functions both numerator and denominator factor in Q[a] as a product of linear
factors.” For representations computed so far, this is an immediate consequence
of the methods used here to decompose symmetric subspaces (chapter 17). For
⊗A6 the conjecture is open.

Cohen and de Man have also observed that D4 should be added to the list, in
agreement with our definition of the E8 family, consisting of A1, A2, G2, D4, F4,
E6, E7, and E8. Their computations go way beyond the results of chapter 17, all
of which were obtained by paper and pencil birdtrack computations performed
on trains while commuting between Gothenburg and Copenhagen. In all, Cohen
and de Man give formulas for 25 reps, seven of which are computed here.⇓PRELIMINARY

Landsberg (Jul 2007) suggest reading Schrijver [308]; essentially proves Deligne’s
conjecture for the subexceptional series.⇑PRELIMINARY

In the context of chapter 17, the dual Coxeter number (21.6) is the symmetric
space eigenvalue of the invariant tensor Q defined in (17.12). The role of the
tensor Q is to split the traceless symmetric subspace, and its overall scale is
arbitrary. In chapter 17 scale was fixed in (17.4) by setting the value of the
adjoint rep quadratic casimir to CA = 1. Deligne [89] and Cohen and de Man [62]
fix the scale by setting λ + λ = 1, so their dimension formulas are stated in
terms of a parameter related to the λ used here by λCdM = 6λ . They refer
to the interchange of the roots λ ↔ λ as “involution.” Typical “translation
dictionary” entries: my (17.38) is their A, (17.39) is their Y ∗

3 , (17.40) is their C∗,
etc.

After a prelude on “tensor categories” that puts ruminations of this mono-
graph into perspective, and a GL(n) warm-up in which V ⊗V ⊗V irreducible
reps projection operators and dimensions (here table 9.3 of sect. 9.11) are com-
puted via a birdtrack-evaluated algebra of invariants multiplication table (3.42)
(see sect. 9.11.1), in the 1999 paper [63] A. M. Cohen and R. de Man perform
birdtrack computations of sect. 17.1, and arrive at the same projection operators
and dimension formulas. While they diagonalize the full 5×5 algebra of invari-
ants multiplication table, in this monograph the reduction proceeds in two steps,
first to SO(n) irreducible reps, which in turn are decomposed into E8 family
irreducible reps. This facilitates by-hand computations, but the primitiveness
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Betti number
Landsberg, J.˜M.
Manivel, L.
Gross, B.˜H.

condition (17.10) is more elegantly stated by Cohen and de Man prior to reduc-
tions, here (17.9). They also fail to find an algorithm for reducing E8 family
vacuum bubbles whose loops are of length 6 or longer, and speculate that ex-
pansion in terms of tree diagrams will not suffice, and a new symmetric 6-index
primitive invariant will have to be included in the decomposition of ⊗A6. How-
ever, on the way to decomposing the ⊗A3 space (sect. 17.2) I do eliminate the
6-loop diagram, i.e., replace

by shorter loops (double line refers to V from (17.15) – details are a bit tedious
for this overview). This should imply a 6-loop reduction formula analogous to
(17.9), that I have not tried to extract. In the same spirit, according to table 7.1
of orders of independent casimirs [30, 291, 135, 54, 297] (the Betti numbers) for
the E8 family the next nonvanishing Dynkin index (beyond the quadratic one)
corresponds to a loop of length 8.

Cohen and de Man acknowledge in passing that diagrammatic notation “is
well known to physicists (cf. Cvitanović [83]),” though I have to admit that the
converse is less so: the invariant tensors basis of sect. 3.3.1 is “the ring EndC(X),
a free Z[t]-module,” birdtracks morph to “morphisms,” and so on. Today no one
has leisure for reading source papers in foreign tongues, so Cohen and de Man
verify the E8 family projection operators and dimension formulas of chapter 17
by the birdtrack computations identical to those already given in ref. [83]. PC: recheck ref. [9] vs. L-M

papersInspired by conjectures of Deligne, J. M. Landsberg and L. Manivel [205, 206,
207, 208, 212] utilize projective geometry and the triality model of Allison [9]
to interpret the Magic Square, recover the known dimension and decomposition
formulas of Deligne and Vogel, and derive an infinity of higher-dimensional rep
formulas, all proved without recourse to computers. They arrive at some of the
formulas derived here, including [211] the m = 30 column of nonreductive alge-
bras in table 17.1. They deduce the formula (21.5) conjectured above from Vo-
gel’s [336] “universal Lie algebra” dimension formula (proposition 3.2 of ref. [207]),
and interpret m, � as m = 3(a + 4), � = 3(b + 4), where a, b = 0, 1, 2, 4, 6, 8 are
the dimensions of the algebras used in their construction (in case a or b �= 6 these
are composition algebras). For m ≥ 12 this agrees with the Magic Square, but ⇓INTERNAL

for m ≤ 10 the corresponding “division algebras” would need to be of dimensions
a = −2/3,−1,−4/3. The negative parameters result from going beyond the tri-
ality model to more general models based on Z-gradings of Lie algebras, and they
have no geometrical interpretation so far. PC: Westbury named sex-

tonians, conjectured them
first

⇑INTERNAL

In 2002 Deligne and Gross [92] defined the Lie groups (i.e., specified the
isogeny class) whose Lie algebras were previously known to fit into the Magic
Triangle of fig. 21.1. B. H. Gross credits his student K. E. Rumelhart [304, 91]
with introducing the Magic Triangle in the 1996 Ph.D. thesis. Also in 2002, an
intriguing link between the q-state Potts models and the E8 family was discovered
by Dorey et al. [97]. For a related recent study of E6 and E7 families, see MacKay
and Taylor [230].
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E7@$E˙7$
Magic Triangle—) So much for group theory from my myopic, birdtracks perspective: Are there

any physical applications of exceptional magic?

21.3 Extended supergravities and the Magic Triangle

In chapter 20 I showed that the extension of Minkowski space into negative di-
mensions yields the E7 family. These n → −n relations and the Magic Triangle
arose as by-products of an investigation of group-theoretic structure of gauge
theories undertaken in ref. [73], written up in more detail in the 1977 Oxford
preprint [74]. I obtained an exhaustive classification, but are there any realiza-
tions of it? Surprisingly, every entry in our classification appears to be realized
as a global symmetry of an extended supergravity.

In 1979 Cremmer and Julia [68] discovered that in N = 8 (or N = 7) super-
gravity’s 28 vectors, together with their 28 duals, form a 56 multiplet of a globalPC: recheck

E7 symmetry. This is a global symmetry analogous to SO(2) duality rotations
of the doublet (Fμν , F∗μν) in jμ = 0 sourceless electrodynamics. The appear-
ance of E7 was quite unexpected; it was the first time an exceptional Lie group
emerged as a physical symmetry, without having been inserted into a model by
hand. While the classification I have obtained here does not explain why this
happens, it suggests that there is a deep connection between the extended su-
pergravities and the exceptional Lie algebras. Cremmer and Julia’s N = 7, 6, 5
global symmetry groups E7, SO(12), SU(6) are included in the present classifi-
cation. Furthermore, vectors plus their duals form multiplets of dimension 56,
32, 20, so they belong to the defining reps in our classification. While for N ≤ 4
extended supergravities, the numbers of vectors do not match the dimensions of
the defining reps, Paul Howe has pointed out that with one additional vector mul-
tiplet N = 1, 2, . . . , 7 extended supergravities exhaust the present classification.
These observations are summarized in table 5 of ref. [78].

In 1980 B. Julia introduced a different Magic Triangle [176, 177, 178, 162]
unrelated to the one described here. His work was stimulated by a 1979 Gibbons
and Hawking remark on gravitational instantons and Ehlers symmetry, and the
vague but provocative remarks of Morel and Thierry-Mieg. The two triangles
differ: Julia’s “disintegration (i.e. oxidation) for En cosets” triangle is based
on real forms that match up only with the [3×3] subsquare of the Rosenfeld-
Freudenthal Magic Square. I still do not know whether there is any relation
between extended supergravities and the construction presented here.PC: Append comments

about mathematica
programs

Epilogue

Quantum Field Theory relies heavily on the theory of Lie groups, and so I went
step-by-step through the proof of the Cartan-Killing classification. Frankly, I
did not like it. The proofs were beautiful, but Cartan-Weyl explicit Lie algebra
matrices were inconvenient and unintuitive for Feynmann diagram computations.
There must be more to symmetries observed in nature than a set of Diophantine
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Cartan-Killing!
classificationconditions on Cartan lattices. So I junked the whole thing, and restarted in the

19th century, looking for conditions on Lie groups that would preserve invariant
quantities other than length and volume. Imagine the pleasure of rediscovering
all exceptional Lie algebras, arranged in a single family, in the very first step
of the construction, as invariance groups that preserve an antisymmetric cubic
invariant (fig. 16.1)!

Monotheistic cults seek a single answer to all questions, and to a religious
temperament E8 is the great temptress. My own excursion into invariances be-
yond length and volume yielded no physical insights. Nature is too rich to follow
a single tune; why should it care that all we know today is a bit of differential
geometry? It presents us with so many questions more fundamental and pressing
than whether E8 is the mother or the graveyard of theories, so my journey into
exceptional magic stops here.

Almost anybody whose research requires sustained use of group theory (and
it is hard to think of a physical or mathematical problem that is wholly devoid
of symmetry) writes a book about it. They, in their amazing variety of tastes,
flavors, and ethnicities fill stacks in science libraries. My excuse for yet another
text is that this book is like no other group-theory textbook. It’s written in
birdtracks. It’s self-contained. Every calculation in the book is a pencil-and-
paper exercise, with a rare resort to a pocket calculator. And, of course, it too
is unfinished: it is up to you, dear reader, to complete it. I fear E8 will not yield
to pencil and paper.
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Appendix A

Recursive decomposition

This appendix deals with the practicalities of computing projection operator
eigenvalues, and is best skipped unless you need to carry out such a calculation.

Let P stand for a projection onto a subspace or the entire space (in which case
P = 1). Assume that the subspace has already been reduced into m irreducible
subspaces and a remainder

P =
m∑

γ=1

Pγ + Pr . (A.1)

Now adjoin a new invariant matrix Q to the set of invariants. By assumption,
Q does not reduce further the γ = 1, 2, . . . ,m subspaces, i.e., has eigenvalues
λ1, λ2, . . . , λm:

QPγ = λγPγ (no sum) , (A.2)

on the γth subspace. We construct an invariant, matrix Q̂, restricted to the
remaining (as yet not decomposed) subspace by

Q̂ := PrQPr = PQP −
m∑

γ=1

λγPγ . (A.3)

As Pr projects onto a finite-dimensional subspace, Q̂ satisfies a minimal charac-
teristic equation of order n ≥ 2:

n∑
k=0

akQ̂k =
m+n∏

α=m+1

(Q̂ − λαPr) = 0 , (A.4)

with the corresponding projection operators (3.48):

Pα =
∏
β �=α

Q̂ − λβ

λα − λβ
Pr , α = {m + 1, . . . ,m + n} . (A.5)

�
“Minimal” in the above means that we drop repeated roots, so all eigenvalues are
distinct. Q̂ is an awkward object in computations, so we reexpress the projection
operator, in terms of Q, as follows.
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Define first the polynomial, obtained by deleting the (Q̂ − λα1) factor from
(A.4)

∏
β �=α

(x − λβ) =
n−1∑
k=0

bkx
k , α, β = m + 1, . . . m + n , (A.6)

where the expansion coefficient bk = b
(α)
k depends on the choice of the subspace

α. Substituting Pr = P −
∑m

α=1 Pα and using the orthogonality of Pα, we obtain
an alternative formula for the projection operators

Pα =
1∑
bkλk

α

n−1∑
k=0

bk

⎧⎨⎩(PQ)k −
m∑

γ=1

λk
αPγ

⎫⎬⎭P , (A.7)

DG: i tvivl om oven-
staaende ligning and dimensions

dα = tr Pα =
1∑
bkλk

α

n−1∑
k=0

bk

⎧⎨⎩tr(PQ)k −
m∑

γ=1

λk
γdγ

⎫⎬⎭ . (A.8)

The utility of this formula lies in the fact that once the polynomial (A.6) is given,
the only new data it requires are the traces tr(PQ)k, and those are simpler to
evaluate than tr Q̂k.
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Appendix B

Properties of Young
projections

H. Elvang and P. Cvitanović

In this appendix we prove the properties of the Young projection operators,
stated in sect. 9.4.

B.1 Uniqueness of Young projection operators

We now show that the Young projection operator PY is well defined by proving
the existence and uniqueness (up to an overall sign) of a nonvanishing connection
between the symmetrizers and antisymmetrizers in PY.

The proof is by induction over the number of columns t in the Young diagram
Y – the principle is illustrated in fig. B.1 For t = 1 the Young projection operator
consists of one antisymmetrizer of length s, and s symmetrizers of length 1.
Clearly the connection can only be made in one way, up to an overall sign.

Y

on
e!

Y’Y

co
nn

ec
tio

n

Figure B.1: There is a unique (up to an overall sign) connection between the
symmetrizers and the antisymmetrizers, so the Young projection operators are
well defined by the construction procedure explained in the text. The figure
shows the principle of the proof. The dots on the middle Young diagram mark
boxes that correspond to contracted lines.

Assume the result to be valid for Young projection operators derived from
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orthogonality!Young
projection operators

Young projection
operator!orthogonality

normalization!Young
projection operator

Young projection
operator!normalization

Young diagrams with t− 1 columns. Let Y be a Young diagram with t columns.
The lines from A1 in PY must connect to different symmetrizers for the connection
to be nonzero. There are exactly |A1| symmetrizers in PY, so this can be done in
essentially one way; which line goes to which symmetrizer is only a matter of an
overall sign, and where a line enters a symmetrizer is irrelevant due to (6.8).HE: fix ref

After having connected A1, connecting the symmetry operators in the rest of
PY is the problem of connecting symmetrizers to antisymmetrizers in the Young
projection operator PY′ , where Y′ is the Young diagram obtained from Y by
slicing off the first column. Thus, Y′ has k − 1 columns, so by the induction
hypothesis, the rest of the symmetry operators in PY can be connected in exactly
one nonvanishing way (up to sign).

By construction, the identity is always present in the expansion. The overall
sign of the Young projection operator is fixed by requiring that upon expansion
of the symmetry operators, the identity has a positive coefficient.

B.2 Orthogonality

If Ya and Yb denote standard tableaux derived from the same Young diagram
Y, then PYaPYb

= PYb
PYa = δabP2

Ya
, since there is a nontrivial permutation

of the lines connecting the symmetry operators of Ya with those of Yb, and by
uniqueness of the nonzero connection the result is either P2

Ya
(if Ya = Yb) or 0

(if Ya �= Yb).
Next, consider two different Young diagrams Y and Z with the same num-

ber of boxes. Since at least one column must be bigger in (say) Y than in Z
and the p lines from the corresponding antisymmetrizer must connect to differ-
ent symmetrizers, it is not possible to make a nonzero connection between the
antisymmetrizers of PYa to the symmetrizers in PZb

, where subscripts a and b
denote any standard tableaux of Y and Z. Hence PYaPZb

= 0, and by a similar
argument, PZb

PYa = 0.

B.3 Normalization and completeness

We now derive the formula for the normalization factor αY such that the Young
projection operators are idempotent, P2

Ya
= PYa . By the normalization of the

symmetry operators, Young projection operators corresponding to fully symmet-
rical or antisymmetrical Young tableaux will be idempotent with αY = 1.

Diagrammatically, P2
Ya

is PYa connected to PYa , hence it may be viewed
as a set of outer symmetry operators connected by a set of inner symmetry
operators. Expanding all the inner symmetry operators and using the uniqueness
of the nonzero connection between the symmetrizers and antisymmetrizers of the
Young projection operators, we find that each term in the expansion is either 0
or a copy of PYa . For a Young diagram with s rows and t columns there will be
a factor of 1/|Si|! (1/|Aj |!) from the expansion of each inner (anti)symmetrizer,

P. Cvitanović: Group Theory, appendUnitary, last edited February 21, 2004 printed October 14, 2007



B.3. NORMALIZATION AND COMPLETENESS 279

so we find

P2
Ya

= α2
Ya

=
α2

Ya∏s
i=1 |Si|!

∏t
j=1 |Aj |!

∑
σ

σ

= αYa

κY∏s
i=1 |Si|!

∏t
j=1 |Aj |!

PYa ,

where the sum is over permutations σ from the expansion of the inner symmetry
operators. Note that by the uniqueness of the connection between the symmetriz-
ers and antisymmetrizers, the constant κY is independent of which tableau gives
rise to the projection, and consequently the normalization constant αY depends
only on the Young diagram and not the tableau.

For a given k, consider the Young projection operators PYacorresponding to
all the k-box Young tableaux. Since the operators PYa are orthogonal and in
1-1 correspondence with the Young tableaux, it follows from the discussion in
sect. 9.3.2 that there are no other operators of k lines orthogonal to this set.
Hence the PYa ’s form a complete set, so that

1 =
∑
Ya

PYa . (B.1)

Expanding the projections the identity appears only once, so we have

PYa = αY
1∏s

i=1 |Si|!
∏t

j=1 |Aj |!

⎛⎝

...p
+ . . .

⎞⎠ ,

and using this, equation (B.1) states

...p
=

(
k!
∑
Y

αY/|Y|∏s
i=1 |Si|!

∏t
j=1 |Aj |!

)

...p
, (B.2)

since all permutations different from the identity must cancel. When changing the
sum from a sum over the tableaux to a sum over the Young diagrams, we use the
fact that that αY depends only on the diagram and that there are ΔY = k!/|Y |
k-standard tableaux for a given diagram. Choosing

αY =

∏s
i=1 |Si|!

∏t
j=1 |Aj |!

|Y| , (B.3)

the factor on the right-hand side of (B.2) is 1 by (9.19).
Since the choice of normalization (B.3) gives the completeness relation (B.1),

it follows that it also gives idempotent operators: multiplying by PZb
on both

sides of (B.1) and using orthogonality, we find PZb
= P2

Zb
for any Young tableau

Zb.
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B.4 Dimension formula

Here we derive the dimension formula (9.28) of the U(n) irreps recursively from
the Young projection operators.

Let Y be a standard tableau and Y′ the Young diagram obtained from Y by
removal of the right-most box in the last row. Note that Y′ is a standard tableau.
Next, draw the Young projection operator corresponding to Y and Y′ and note
that PY with the last line traced is proportional to PY′ .

Quite generally, this contraction will look like

YRest of P

...

. (B.4)

Using (6.10) and (6.19), we have

ts =
1
s

⎛⎝s-1 t + (s − 1) s-1 t

⎞⎠

=
(n − t + 1)

st s-1 t-1
+

(s − 1)
st

s-1 t-1

−(s − 1)(t − 1)
st

t-1s-1

=
n − t + s

st s-1 t-1

−(s − 1)(t − 1)
st

t-1s-1 .

Inserting this into (B.4) we see that the first term is proportional to the projection
operator PY′ . The second term vanishes:

s-1 S* A*

Rest of PY

t-1
= 0 .

The lines entering S∗ from the right come from antisymmetrizers in the rest of
the PY-diagram. One of these lines, from Aa, say, must pass from S∗ through
the lower loop to A∗ and from A∗ connect to one of the symmetrizers, say Ss in
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un@$U(n)$!Young proj.
oper—)

Young projection
operator!properties—)

the rest of the PY-diagram. But due to the construction of the connection be-
tween symmetrizers and antisymmetrizers in a Young projection operator, there
is already a line connecting Ss to Aa. Hence the diagram vanishes.

The dimensionality formula follows by induction on the number of boxes in
the Young diagrams, with the dimension of a single box Young diagram being
n. Let Y be a Young diagram with p boxes. We assume that the dimensionality
formula is valid for any Young diagram with p − 1 boxes. With PY′ obtained
from PY as above, we have (using the above calculation and writing DY for the
diagrammatic part of PY):

dimPY = αY tr DY =
n − t + s

st
αY tr DY′ (B.5)

= (n − t + s)αY′
|Y′|
|Y| tr DY′ (B.6)

= (n − t + s)
fY′

|Y| =
fY

|Y| . (B.7)

This completes the proof of the dimensionality formula (9.28).
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Appendix C

G2 calculations

C.1 Evaluation rules for G2

The G2 invariance algebra is derived in chapter 16. The evaluation rules are as
follows: PC: keep on the web only

Adjoint rep A:

=
1
2

(δadδbc − δacδbd) − fabefecd

1
a b

c

d

a
= − , (C.1)

V ⊗ V decomposition:

Projector: =
1
7

+
{

− 1
7

}
+ +

{
−

}
Dimension: n2 = 1 + +7 + 14
Dynkin index: l−1 = + + 1 . (C.2)

fabc algebra is defined by (a) normalization PC: fix above

= , (C.3)

(b) total antisymmetry

= − = − , (C.4)

and (c) the alternativity relation

+ =
1
6

{
2 − −

}
. (C.5)
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alternativity relation
Other forms of the alternativity relation are

+ =
1
6

{
+ − 2

}
,

+ =
1
2

, =
1
6

{
−

}
.

From the above three defining relations (C.3) – (C.5) follow all other G2 identities:

Reduction identity provides the algorithm for evaluating any color weight:

=
1
3

⎧⎪⎪⎨⎪⎪⎩ − 2 +

⎫⎪⎪⎬⎪⎪⎭ . (C.6)

Another form of the reduction identity is

=
1
6

⎧⎪⎪⎨⎪⎪⎩ − + 6

⎫⎪⎪⎬⎪⎪⎭ . (C.7)

Sundry relations:

= −1
2

. (C.8)

=
1
2

(C.9)

= 0 (C.10)

= 0 (C.11)

− 6 = − + 2 − a (C.12)

=
7
18

{
+

}
− 1

9
+ (C.13)

PC: fix these

= · · · [to be continued] . (C.14)
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characteristic
equation!e8@$G˙2$C.2 G2, further calculations

Some formulas (not to be included into the manuscript) for symmetric reps (−9)
:

d± =
(n + 2)

4

{
n − 1 ± (n2 − 3n − 30)

√
n + 2

n3 + ...

}
. (C.15)

The n2 − 3n − 30 seem to be off by an extra factor of 4?

C.2.1 G2 antisymmetric V ⊗ V subspace

=
{

−
}

+

PA = Pa + P .
(C.16)

The Pa is split by primitiveness. Q =
���
���
���
���

���
���
���
���

(
���� ����

��������

+ A
���
���
���
���

���
���
���
���

+ B
)

Pa = 0 ↔ (Q2+AQ+B1)Pa = 0(C.17)

The A
���
���
���
���

���
���
���
���

+ B are the only trees on Pa subspace.

Invariance condition: Know that it must contain the adjoint rep:

Pa = + (C.18)

and that the adjoint rep has eigenvalue 1
2 :

=
1
2

. (C.19)

The remaining eigenvalue λ needs to be fixed. The projection operators are

P =
Q − 1/21
λ − 1/2

Pa , PA =
Q − λ1
1/2 − λ

Pa , (C.20)

and the characteristic equation is

(Q2 − (λ + 1/2)Q + λ/21)Pa = 0 . (C.21)

This eliminates A,B above in favor of single parameter λ. However, there are
two parameters. Expanding Pλ get

0 = − (λ +
1
2
) +

λ

2

−(β2 − (λ +
1
2
)β +

λ

2
) (C.22)
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β2 − (λ +
1
2
)β +

λ

2
= (β − λ)(β − 1

2
) ≡ γ . (C.23)

So we need to fix = λ and = β . Trace, contract with

from above, get

0 =
1
2

{
������

���
���
���
���

���
���
���
���

������ − ����

��
��
��
��

��
��
��
��

����

}
−λ + 1/2

2

{
��
��
��
��

����

−
����

��
��
��
��

}
+

λ(n − 1)
4

− γ = 0 (C.24)

1 − β − (λ + 1
2) + λ

2 (n − 1) − 2γ = 0 . (C.25)

Trace with

0 =
1
2

{
������

���
���
���
���

���
���
���
���

������

��
��
��

��
��
��

− ���
���
���
���

���� ������

��
��
��
��

���
���
���
��� }

− λ + 1/2
2

{
��
��
��
��

����

��
��
��
��

−
����

��
��
��
��

��
��
��
��

}

+
λ

2
1
2

{
��
��
��
��

−
���
���
���
��� }

− γ ��
��
��
��

��
��
��
��

��
��
��

��
��
��

. (C.26)

The second term in the first bracket and the first term in the second bracket both
equal 0 by symmetry.

1
4
− (λ +

1
2
)(−1

2
) +

λ

2
− γ

2
⇒ λ + 1

2 = γ . (C.27)

Trace with

0 =
1
2

{
������

���
���
���
���

���
���
���
���

������

������

− ���
���
���
���

���� ������

��
��
��
��

��
��
��
��

}
− λ + 1/2

2

{
��
��
��
��

����

��
��
��
��

−
����

��
��
��
��

��
��
��
��

}

+
λ

2
1
2

{
����

−
����

}
− γ ��

��
��
��

��
��
��
��

������

. (C.28)

The second term in the first bracket equals 0 by symmetry.

β2 − (λ +
1
2
)(1 − β) +

λ

2
− 2βγ = 0 . (C.29)

Replace γ by (C.27):

β2 − (λ +
1
2
)(1 − β) +

λ

2
− 2(λ +

1
2
)β = 0
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(β + 1
2)(β − 1 − λ) = 0 . (C.30)

Combine (C.27) with (C.25):
n − 7

2
λ = β +

1
2

. (C.31)

One of those miracles; now just have to check it out for the two solutions of
(C.30):

β = −1
2 = . Substitute into contraction:

PA =
(Q − λ1)A − (β − λ)

1/2 − λ
=

(Q − λ)A + (λ + 1/2)

1/2 − λ
(C.32)

dA =
1

1/2 − λ

{
− 1

2
− λ

n(n − 1)
2

+ (λ +
1
2
)
}

=
n

1/2 − λ

{
1 − λ

n(n − 3)
2

}
=

7
1/2 − λ

{
1 − λ · 14

}
(C.33)

N =
14(1 − 14λ)

1 − 2λ
. (C.34)

There are two subcases: n = 7, λ �= 0 ⇒ λ indeterminate which means that

↔ (C.35)

intertangle and

γ =
1
2

+ λ (C.36)

λ = 0 ⇒ γ = 1
2 ⇒

PA = =
Q
1/2

Pa = 2( − ) = 2 + (C.37)

N = − + = 2n . (C.38)

G2 is a solution.

The other solution to (C.30) gives
β = 1 + λ ⇒ (n − 7)λ = 3 + 2λ ⇒

λ =
3

n − 9

β =
n − 6
n − 9

. (C.39)
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G2@$G˙2$—)
C.3 Reps of G2

G2 is characterized by the fully antisymmetric cubic primitive invariant fabc.
Contracting with fabc, we are able to reduce any column higher than two boxes.
Hence, reps of G2 are specified by Young tableaux of form (qp00...). Patera
and Sankoff [277] have chosen to label the simple roots in such a way that the
correspondence is

Dynkin Young
labels tableaux
(pq) → (qp00 . . .)

defining (01) → d = 7
adjoint (10) → d = 14
symmetric (02) → d = 27
mixed (11) → d = 64

(C.40)

PC: draw Young tableaux!
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Appendix D

E8 calculations

PC: web version only
The general strategy for decomposition of higher tensor products is as follows; the
equation (??) reduces Q2 to Q, Pr weighted by the eigenvalues λ, λ∗. For higher
tensor products, we shall use the same result to decompose Kronecker products
of already known representations. We illustrate the technique by working out the
decomposition of Sym3A in sect. 17.2 and ⊗ in the next section.

The Diophantine analysis is given in sect. ??.

D.1 Decomposition of ⊗

The decomposition of A⊗A tensors has split the traceless symmetric subspace into
a pair of reps which we denoted by , ����

����
����

����
����
����. Now we turn to the decomposition of

⊗ ����
����
����

����
����
���� Kronecker product. We commence by identifying the A and A⊗A content

of the ⊗ ����
����
����
���� ∈ ⊗A3 Kronecker product. The , ����

����
����
���� and components of ⊗ ����

����
����
���� are

projected out by

P = K (D.1)

P = K
���
���
���
���

���
���
���
���

���
���
���
���

(D.2)

P = K ��
��
��
��

���
���
���
��� =

1
C

a (1 − P ) , (D.3)

where the ⊗ ����
����
����
���� vertex is given by (17.15), and is the not-adjoint antisymmetric

rep in (17.6). In this section double line denotes ����
����
����
���� rep, and Kα are normalization

factors given by ratios of dimensions and appropriate Dynkin indices (5.7) (or
3-j coefficients (5.6)). As we shall not need them here, we do not write them out
explicitly.

We shall use the invariant tensor

R = = 2 , (D.4)

291
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the restriction of the Q introduced in (17.25) to the ����
����
����
���� ⊗ space, to decompose

the remainder subspace

Pr = 1 −P − P − P . (D.5)

The eigenvalue of R on each of the above subspaces follows from invariance
conditions (4.37), the eigenvalue equation (3.53), QP = λP , and (17.5):AJ: PC, check labels, check

index on P.

RP = = (1 − λ)P (D.6)

RP = =
1
2
P (D.7)

RP =
���
���
���
���
���

���
���
���
���
���

a =
(

1
2
− λ

)
P . (D.8)

The characteristic equation for R projected to the remainder subspace (cf. (3.57))
is obtained by evaluating R2 and R3:

R2Pr = Pr = 2
{

+
}

Pr

=
{

1
12

R̂ − 2λλ∗1 + 2
}

Pr (D.9)

R3Pr =
1
12

R̂2 − 4λλ∗R̂ + 4(λ + λ∗) Pr (D.10)

We have used (17.10) and invariance conditions (4.37). Eliminating the extra
invariant tensor in (D.10) by (D.9) we find that R satisfies a cubic equation
symmetric under interchange λ ↔ λ∗

0 = (R − 1
6
1)(R − 2λ1)(R − 2λ∗1)Pr , (D.11)

so the eigenvalues of R on the six subspaces of ⊗ ����
����
����
���� are

{λ , λ , λ , λ5, λ , λ
���
���
���
���} = {1 − λ, 1/2, 1/2 − λ, 1/6, 2λ, 2λ∗}.

As in the preceding section, this leads to decomposition of the remainder subspace
Pr into three subspaces:

P5 = − 1
(λ − λ∗)2

(R − 2λ1)(R − 2λ∗1)Pr (D.12)

P =
1

2(λ − λ∗)2
(R − 1

6
1)(R − 2λ∗1)Pr (D.13)

P
���
���
���
��� =

1
2(λ − λ∗)2

(R − 1
6
1)(R − 2λ1)Pr (D.14)

Dimension formulas of appendix A require that we evaluate

tr1 = Nd , tr R = = 0
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E8@$E˙8$—)

trR2 = = 2
{

−
}

= 2(1 − λ)d (D.15)

Substituting into (A.8) we obtain the dimensions of the three reps

d5 =
27(m− 15)(2m − 15)(m − 8)(2m − 9)(5m − 24)(5m− 36)

m2(m + 3)(m + 12)
(D.16)

d =
5(m − 5)(2m − 15)(m − 6)2(m − 8)(5m− 36)

m3(m + 3)(m + 6)
(36 − m) (D.17)

d
���
���
���
��� =

5120(m− 5)(2m − 15)(m − 6)2(m − 9)(2m − 9)
m3(m + 6)(m + 12)

. (D.18)

We see that nothing significant is gained beyond the decomposition of Sym3A AJ: “Repeat of (17.35)?”

PC: d6 is probably the con-
jugate one? (m − 15) in
(D.16) should probably be
(m − 5).

of sect. 17.2; we have recovered reps (17.39) and (17.40). Rep P
���
���
���
��� from (D.14),

(D.18) is new, but yields no new Diophantine condition.
If we consider reduction of ⊗ Kronecker product instead, the only dif-

ference is that (D.15) changes to 2(1 − λ∗)d , and we obtain 2 conjugate reps
corresponding to m/6 ↔ 6/m exchange. DG: table 17.3 needs to be

rechecked. part with ’iden-
tified’ at bottom of p. E8-
11 not typed, need more in-
structions

PUP copyeditor version 8.7, September 27, 2007, printed October 14, 2007P. Cvitanović, Group Theory, appendE8, last edited June 28, 2003
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,
,

,
���
���

,
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

⊗
=

+
+

•
+

+

248
2

=
27000

+
30380

+
1

+
248

+
3875

���
���
���
���

���
��

�
���
��

�

,
�� ���� ��

�� ���� ��
���
���
���
���
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���
���

���
���
���
���
���
���

���
���
���
���
���
���

,
,

���
���
���
���

�� ���� �� ����

���
���
���
���

⊗
=

+
+

+
�����
�����
�����

�����
�����
�����

+

248·3875
=

248
+

3875
+

30380
+

779247
+

147250

,
���
���
���
���

���
���
���
���

,
,

���
���
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���
���

���
���
���
���
���
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���
���
���
���

,

⊗
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+
+

+
+

+
�����
�����
�����

�����
�����
�����
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+
4096000

+
248

+
27000

+
30380

+
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���
���
���

,
���
��

�
��

�
��

�

���
��

�
��

�
��

�

,
���
���

���
���
���
���
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+

1
+

27000
+
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+

2450240
+
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+

6696000+
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+
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+
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T
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D
.1:

E
xam
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E
8

C
lebsch-G

ordan
series
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w
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associated
invariant

tensors
and

the
generalized

Y
oung

tableaux
[355].
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P. Cvitanović: Group Theory, appendG2, last edited July 1, 2007 printed October 14, 2007



Bibliography

PC: remember: transfer
text from PRD14 refs.[1] A. Abdesselam, “A physicist’s proof of the Lagrange-Good multivariable inversion

formula,” J. Phys. A 36, 9471 (2002); math.CO/0208174.

[2] A. Abdesselam, “The Jacobian conjecture as a problem of perturbative quantum
field theory,” Ann. Inst. Henri Poincaré 4, 199 (2003); math.CO/0208173.
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P. Cvitanović: Group Theory, refs.tex October 6, 2007 printed October 14, 2007

http://birdtracks.eu/refs


BIBLIOGRAPHY 301
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http://birdtracks.eu
http://arXiv.org/abs/chao-dyn/9811003
http://arXiv.org/abs/nlin.CD/0001034
http://arXiv.org/abs/physics/9706006
http://arXiv.org/abs/math-ph/0006013
http://arXiv.org/abs/math-ph/0006026
http://birdtracks.eu/extras/reviews.html


302 BIBLIOGRAPHY

[96] P. A. Dirac, “The quantum theory of electron,” Proc. Roy. Soc. Lond. A 117, 610
(1928). 11PC: recheck their numerics

[97] P. Dorey, A. Pocklington, and R. Tateo, “Integrable aspects of the scaling q-state
Potts models I: Bound states and bootstrap closure,” Nucl. Phys. B 661, 425 (2003);
hep-th/0208111. 21.2

[98] P. Dittner, Commun. Math. Phys. 22, 238 (1971); 27, 44 (1972).

[99] J. M. Drouffe, “Transitions and duality in gauge lattice systems,” Phys. Rev. D 18,
1174 (1978).

[100] V. Del Duca, L. J. Dixon, and F. Maltoni, “New color decompositions for gauge
amplitudes at tree and loop level,” Nucl. Phys. B 571, 51 (2000); hep-ph/9910563.
3.4

[101] R. Dundarer, F. Gursey, and C. Tze, “Selfduality and octonionic analyticity of S(7)
valued antisymmetric fields in eight-dimensions,” Nucl. Phys. B 266, 440 (1986).

[102] R. Dundarer, F. Gursey, and C. Tze, “Generalized vector products, duality and
octonionic identities in D = 8 geometry,” J. Math. Phys. 25, 1496 (1984).

[103] G. V. Dunne, “Negative-dimensional groups in quantum physics,” J. Phys. A 22,
1719 (1989). 13.2, 14, 14.3
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nelles,” Indag. Math. 28, 223 (1966); Math. Reviews 36, 2658 (1966). 16.6, 16.6,
19.50, 21.2

[329] J. Tits, Lecture Notes in Mathematics 40 (Springer-Verlag, New York 1967).

[330] L. Tyburski, Phys. Rev. D 13, 1107 (1976).
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Flotsam - random text

In 1979 I went to Paris to visit them and gave what turned out to be my first
and last seminar (for the next twenty years) on the Magic Triangle and its murky
relevance to extended supergravities.

—————————————————————-
and H1(x, ȳ), H2(x, y, z, . . .), . . . the set of all invariants, i.e. invariant rela-

tions between vectors in V and V̄ .
—————————————————————-
From chapter 17:
The ratio of the two eigenvalues can be written as

120λ−/λ+ + 122 + N =
√

(N + 122)2 − 4 · 602 (D.19)
PC: rewrite, improve

The eigenvalues λ± must be rational, as otherwise the dimensions of the associ-
ated spaces would be irrational. This implies that 120λ−/λ+ is a negative even
integer:

λ−/λ+ = −k/60 (D.20)

Substituting back into (D.19) we obtain the equation relating the parameter k to
the dimension of the adjoint representation:

k2 − (N + 122)k + 602 = 0 (D.21)

For any integer k,
√

(N + 2)(N + 242) is, by construction, an integer. In addi-
tion, the dimension of the adjoint representation must be an integer, so (D.21)
restricts k to be any product of subfactors of 602 = 24 · 32 · 52:

N = −122 + k +
602

k
(D.22)

(note that N is symmetric under k ↔ 602/k). The last coefficient in (??) corre-
sponds to −λ+λ−, so the eigenvalues can also be expressed in terms of k:

λ+ =
10

60 − K
, λ− = −1

6
k

60 − k
(D.23)

Substituting (D.23) yields

d� =
(60 − k)2(72 − k)(45 − k)

2k(k + 60)

d|??||??| =
27(60 − k)2(k − 50)(k − 80)

k2(k + 60)
(D.24)
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SUn@$SU(n)$!characters
character!SUn@$SU(n)$ d± = tr P± =

2 + N

2
(1 − N)λ± − 1

λ± − λ∓
; d+ ≡ d� , d− ≡ d|??||??| (D.25)

—————————————————————-
Now that we have explicit Young projection operators we should be able to

compute any SU(n) invariant scalar. As an example, we will evaluate several
characters (introduced in sect. 8.2) for SU(n).

Given an irreducible rep, we have the corresponding Young tableau k-standard
arrangement Y, which enable us to calculate the character χY(M) = trY M ,
where M is a unitary [n × n] matrix.

Diagrammatically we shall denote M as M j
i = j i. Then

χY(M) =

...Y
P . (D.26)

Expanding the symmetry operators and collecting terms, we find

χY(M) =
k∑

m=0

cm(tr M)m tr Mk−m , (D.27)

where k is the number of boxes in Y, and the cm’s are coefficients of the expansion.
—————————————————————-

Decomposition of |??| ⊗ |??||??|∗

(from old version chapter 17):
The decomposition of ⊗A2 tensors has yielded a pair of representations in

the symmetric subspace (dimension d|??||??| = 3875 for E8), which we denote by
|??||??|, |??||??|∗. Now we turn to the decomposition of |??| ⊗ |??||??| Kronecker
product. We commence by identifying the A and ⊗A2 content of the |??| ⊗
|??||??| ∈ ⊗A3 Kronecker product. The |??|⊗|??||??| → A component is projected
out by

P1 =
N

birdTrack (D.28)

P|??| =
N

d|??|
birdTrack (D.29)

P|??||??| = birdTrack =
1
C
birdTrack(1 − P|??|) (D.30)

The first projector operator is constructed from the generators in |??| represen-PC: |??||??| should be verti-
cal
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tation (use (?!)):

birdTrack = 2birdTracknote: this fixes the sign and arrow convention
birdTrack = 4birdTrack

d� =
1

2(1 − λ∗)
(D.31)

The second uses the Clebsch-Gordan coefficients from the |??| ⊗ |??| → |??|
projection operator refeq17.8. The third projection operator projects onto the
antisymmetric Pa subspace in (17.7). The normalization is evaluated by substi-
tuting refeq17.8 into

birdTrackPa = −1
2

λ∗

λ − λ∗Pa = cPa (D.32)

We denote the projector on the remainder of |??| ⊗ � by

Pr = 1 − P� − P|??| − P|??||??| (D.33)

There are two invariants which can be used to decompose this subspace:

Q = birdTrackPr = −birdTrackPr

R = birdTrackPr (D.34)

The characteristic equation for R is obtained by substituting (??) into

R2 = birdTrackPr =
1

λ − λ∗ {birdTrack− λ∗birdTrack}Pr

m + 6
3

R2 = (m − 6)Q + R + Pr (D.35)

In order to eliminate Q, we evaluate

RQ = birdTrackPr = {birdTrack+ birdTrack}Pr

= λR +
1
2
Q (D.36)

Multiplying (D.35) by R we can use (D.36) to eliminate Q. The result is a cubic
characteristic equation for R (here we have replaced λ, λ∗ by (D.28)).

(R − 1) (R + 1/2)
(
R − 3

m + 6

)
Pr = 0 (D.37)

The corresponding projection operators (?!,?!) are

P1 =
(R + 1

2)(R − 3
m+6)

(1 + 1
2)(1 − 3

m+6)
Pr

=
1

m + 3

{
2(m − 6)Q +

m + 6
3

R + 1
}

Pr (D.38)
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P2 =
(R − 1)(R − 3

m+6 )

(−1
2 − 1)(−1

2 − 3
m+6 )

Pr

=
4

m + 12

{
(m − 6)Q − m + 6

3
R + 2

}
Pr (D.39)

P3 =
(R − 1)(R + 1

2)
( 3

m+6 − 1)( 3
m+6 + 1

2)
Pr

=
m + 6

(m + 3)(m + 12)
{−6(m − 6)Q + mR + m}Pr . (D.40)

In order to compute the dimensions of the three subspaces, we need to evaluate
tr Pp, trR, tr(R2).

tr Pp = tr(1 − P|??| − P� − P?) = (N − 1)
(

d� − N

2

)
(D.41)

The remaining traces require evaluation of various 6j coefficients: substituting
(D.33) into (D.34) yields

tr R = birdTrack−
∑

λ

dλ

birdTrack
birdTrack

= d� −
∑

λ

dλ

birdTrack
birdTrack (D.42)

tr Q = 0 −
∑

λ

dλ

birdTrack
birdTrack (D.43)

The required 6j coefficients are

birdTrack =
1

λ − λ∗

{
birdTrack− λ∗birdTrack− 1 − λ∗

N
birdTrack

}
birdTrack = − d�

2(λ − λ∗)

{
(λ + λ∗) +

2(1 − λ∗)
N

}
(D.44)

birdTrack = −d�(1 − λ) (D.45)

birdTrack =
1
c
birdTrack− 1

c
birdTrack (D.46)

=
d�
2λ∗

{
λ2 [1 − 2(λ + λ∗) + 2(1 + N)λ∗] + (λ − λ∗) + λλ∗}

birdTrack =
1
2

= d�(1 − λ) (D.47)

birdTrack =
1
2

= d�(1 − λ) (D.48)

birdTrack = −d�(1 − λ)
λ − λ∗

2λ∗ (1 − 4λ2) (D.49)

Substituting the 6j’s into (D.42), (D.43):PC: (D.46)=23870 for E8
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trQ = −
d|??|
2

+ (1 − λ)

[
(λ − λ∗)d|??|(1 − 4λ2)

2λ∗ − N

]

trR =
3d|??|

2
+

N

2(λ − λ∗)

{
λ + λ∗ +

2
N

(1 − λ∗)
}
− birdTrack (D.50)

Finally, the dimensions of the three subspaces follow by tracing the projection
operators (D.38)-(D.40).

d1 =
5(m − 5)(2m − 15)(m − 6)2(m − 8)(5m − 36)

m3(m + 3)(m + 6)
(36 − m) (D.51)

d2 =
5120(m − 5)(2m − 15)(m − 6)2(m − 9)(2m − 9)

m3(m + 6)(m + 12)
(D.52)

d3 =
27(m − 15)(2m − 15)(m − 8)(2m − 9)(5m − 24)(5m − 36)

m2(m + 3)(m + 12)
(D.53)

—————————————————————-
Also, the coloring algorithm does indeed give the n-dependence of dY, because

the coloring argument is equivalent to method for calculating fY(n). In some
sense the coloring algorithm can be considered a more fundamental method, be-
cause the (index)lines may be thought of as quark lines with one single attribute:
Color!

—————————————————————-

Ya dYa PYa

1 32
n(n+1)(n+2)

6

2
3
1 n(n2−1)

3

4
3

1
2

3 n(n2−1)
3

4
3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

—————————————————————-

Ya dYa PYa

2 3 41
n(n+1)(n+2)(n+3)

24

1
4

2 3 (n−1)n(n+1)(n+2)
8

3
2

1 42
3

(n−1)n(n+1)(n+2)
8

3
2

1 4
2

3 (n−1)n(n+1)(n+2)
8

3
2
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2
4

1
3

n2(n2−1)
12

4
3

1 3
42

n2(n2−1)
12

4
3

1

4

2
3

(n−1)n(n+1)(n+2)
8

3
2

1
2
4

3 (n−2)(n−1)n(n+1)
8

3
2

1

3

4
2

(n−2)(n−1)n(n+1)
8

3
2

4

1

3
2 (n−2)(n−1)n(n+1)

8

1 ⊗ 2 ⊗ 3 ⊗ 4 n3

—————————————————————-
made obsolete by (9.28):
Of the various published formulae for the dimensions of SU(n) representa-

tions, we find the rule given in Lichtenberg [218] the most convenient. The rule
is easiest to state by drawing an example

d =

n
n

n n+2 n
n
n
n

n+1

+3

-1

-3

-2

+1

47 3 1
2 1

1
2
5

(D.54)

The numerator is the product of the numbers entered in the boxes, and the
denominator a symmetric group factor computed as in (9.4.3). For example

d =

n
n-1

n
n

+1

3
1
2

2

=
n2(n2 − 1)

12
, (D.55)

in agreement with table 7.5.
—————————————————————-

→ (D.56)

(has been replaced by birdtracks of (9.47))
—————————————————————-
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inner product!space
space!inner product
scalar!product
product!scalar

REMOVED THIS WHILE DEFINING DUAL SPACE (Feb 2 2004):

Definition. A complex vector space V is an inner product space if, with every
pair of elements x, y ∈ V , there is associated a unique inner (or scalar) product
(x, y) ∈ C, such that

(x, y) = (y, x)∗

(ax, by) = a∗b(x, y) , a, b ∈ C

(z, ax + by) = a(z, x) + b(z, y) ,

where * denotes complex conjugation.
Without any noteworthy loss of generality, we shall here define the scalar

product of two elements of V by

(x, y) =
n∑

j=1

x∗
jyj . (D.57)

—————————————————————-
This is (19.18) before simplification:

= +

=
1
2

− 1
2

−1
2

+
2α

n + 2
+

2α2

n + 2
1
2

=
α

4
n − 2
n + 2

+
α

n + 2
+

α2

n + 2

0 = A

(
Q2 − 1

2
n − 6
n + 2

Q − 2
n + 2

)
. (D.58)

—————————————————————-

D.2 Two-index adjoint tensors for F4

The two-index adjoint tensors decomposition proceeds in what, by now, is a
routine: One first notes that A⊗A always decomposes into at least four reps
(17.6). The invariant tensor

R = (D.59)

V ⊗V symmetric V ⊗V intermediate states (19.4) resolve the symmetric A⊗A
space into:

− 1
N = n + d3

3

3 + P15 ,

= P13 + P14 + P15 .

(D.60)
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characteristic
equation!e8@$E˙8$ Here, the first projection operator P13 is defined by (19.31)

= ���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� . (D.61)

By (19.34) it vanishes for n = 26. The P14 is defined by

3 = − 1
α

− 1
N

, (D.62)

By now the (very gifted) reader has the hang of it, and can complete the calcu-
lation on her own: if so, the author would be grateful to see it. Some of these
calculations are carried out in ref. [74], sects. 15, 20 and appendix, p. 97.PC: complete this?

DG: PC: formler .41 og .42 Consider next the V ⊗V ⊗V intermediate states induced by the invariant

Q = . (D.63)

It is easily checked that due to the invariance condition (19.12), the only in-
teresting mapping induced by Q is the antisymmetric A⊗A → antisymmetric
V ⊗V ⊗V

PaQ =
{

− 1
CA

}
= Pa (D.64)

PC: recheck this
—————————————————————- On the traceless symmetricPC: earlier version of E8

derivation subspace, this implies that Q2Ps satisfies a relationship of form

0 =
{

+ p + q

}{
− 1

N

}
= (Q2 + pQ + q1)Ps . (D.65)

The coefficients p, q now follow from symmetry considerations and the Jacobi
relation (17.2). Rotate each term in the above equation by 90o, and then project
onto the traceless symmetric subspace;

0 =
{

+ p + q − 1 + p + q

N

}
Ps

=
{

+ − p +
(

q − 2
1 + p + q

N

) }
Ps .

Jacobi relation (17.2) relates the second term to the first:

=
{

2 −
(

1
2

+ p

)
+
(

q − 2
1 + p + q

N

) }
Ps

0 =
{
Q2 − 1 + 2p

4
Q +

(
q

2
− 1 + p + q

N

)
1
}

Ps . (D.66)

Comparing the coefficients in (??) and (??),

p = 1/6 = λ + λ∗ , q = −5/3(N + 2) = λλ∗ , (D.67)

we obtain the characteristic equation for QPC: Marcos Marino (2001):
a misprint table D.2 SU(N)
quartic casimirs: last en-
try missing, the results are
shifted, so most of do not
match with the diagram... I
checked it with the table in
the Nordita version, p. 154.

PC: reduce F4 in table 6.3,
got 1

12
another time

PC: complete table D.2, ta-
ble D.3
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SU(n):
��
��
��
��

���
���
���
���

����������

=
{

��
��
��
��

+ ��
��
��
��

}
+ 2

{
+ +

}
SO(n): = (n − 8) ��

��
��
��

+
��
��
��
��

��
��
��
��

+ ���
���
���
���

��
��
��
�� + + +

Sp(n): = (n + 8) ��
��
��
��

+
��
��
��
��

��
��
��
��

+ ���
���
���
���

��
��
��
�� + + +

SO(3): = 1
4

{
+

}
G2:

F4: = 15
4

��
��
��
��

− 4
3

{
��
��
��
��

+ ����
����
����
����

}
+ 1

6

{
+ +

}
E6:

E7:

E8:

Table D.2: Expansions of the adjoint rep quartic casimirs in terms of the defining
rep for all simple Lie algebras. The normalization (7.38) is set to a = 1.
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SU(n): = 2n
��
��
��
��

+ 6

SO(n): = (n − 8)
��
��
��
��

+ 3

Sp(n): = (n + 8)
��
��
��
��

+ 3

G2: = 1
4

F4: = 5
12

E6: = 1
2

E7: =

E8: =

Table D.3: Reduction of adjoint quartic casimirs to the defining rep quartic
casimirs for all simple Lie algebras. The normalization (7.38) is set to a = 1.
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