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Periodic orbits as the skeleton of classical and quantum chaos 
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Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (2), Denmark 

A description of a low-dimensional deterministic chaotic system in terms of unstable periodic orbits (cycles) is a powerful 
tool for theoretical and experimental analysis of both classical and quantum deterministic chaos, comparable to the familiar 
perturbation expansions for nearly integrable systems. The infinity of orbits characteristic of a chaotic dynamical system can 
be resummed and brought to a Selberg product form, dominated by the short cycles, and the eigenvalue spectrum of 
operators associated with the dynamical flow can then be evaluated in terms of unstable periodic orbits. Methods for 
implementing this computation for finite subshift dynamics are introduced. 

1. Introduction 

Non-linear physics presents us with a perplex­
ing variety of complicated fractal objects and 
strange sets. Notable examples include strange 
attractors for chaotic dynamical systems, regions 
of high vorticity in fully developed turbulence and 
fractal growth processes. This was already fully 
appreciated by Poincare, who, describing his dis­
covery of homoclinic tangles, mused that "the 
complexity of this figure will be striking, and I 
shall not even try to draw it" [1]. Today such 
drawings are cheap and plentiful; but Poincare 
went a step further and noting that hidden in this 
apparent chaos is a rigid skeleton, a tree of cycles 
(periodic orbits) of increasing lengths and self­
similar structure suggested that the cycles should 
be the key to chaotic dynamics: 

"Etant donnees des equations ... et une solu­
tion particuliere quelconque de ces equations, on 
peut toujours trouver une solution periodique 
(dont la periode peut, ii est vrai, etre tres longue), 
telle que la difference entre les deux solutions 
soit aussi petite qu'on le veut, pendant un temps 
aussi long qu'on le veut_ D'ailleurs, ce qui nous 
rend ces solutions periodiques si precieuses, c'est 
qu'elles sont, pour ansi dire, la seule breche par 

ou nous puissions esseyer de penetrer dans une 
place jusqu'ici reputee inabordable." 

Periodic orbits have been at core of much of 
the mathematical work on the theory of the clas­
sical and quantum [2-4] dynamical systems ever 
since. We refer the reader to the reprint selection 
in ref. [5] and to the classic text of Ruelle [6] for a 
summary and overview of some of that literature. 

Here we shall outline the general strategy of 
analyzing chaotic dynamical systems in terms of 
periodic orbits by working through a "generic" 
example, a repeller associated with the Henon­
type mappings_ The strategy is: (1) describe the 
topology of the dynamical system; (2) convert this 
topology into a convergent computation of dy­
namical averages. We refer the reader to refs. [7, 
8] for an introduction to the cycle expansions and 
their application to evaluation of entropies, di­
mensions, escape rates and other dynamical aver­
ages. Here we describe in more detail how a 
topology of a dynamical system is converted into 
symbolic dynamics and we introduce a new class 
of cycle expansions, Selberg product expansions, 
and discuss their convergence. 

The strategy outlined here is perhaps too labo­
rious if only a rough estimate of a dimension or a 
Lyapunov exponent is desired; a simple computer 
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generated average might suffice. However, the 
labor pays off if classical correlation or quantum 
resonance spectra are called for. We also hope 
that the high numerical precision attainable by 
cycle expansions might enable us to attack 
higher-dimensional problems where crude aver­
aging is computationally infeasible. 

The paper is organized as follows: in section 2 
we sketch the construction of "pruned" Smale 
horseshoes, and in section 3 we outline the finite 
automata method for converting this topology 
into a grammar of allowed symbol sequences. In 
section 4 we sketch the conversion of automata 
graphs into determinants and apply them to eval­
uation of the topological entropy. In section 5 we 
introduce the transfer operators associated with 
deterministic dynamics, and relate their eigenval­
ues to periodic orbit expansions. In section 6 we 
discuss the form the cycle expansions take for the 
Selberg products and in section 7 we discuss their 
convergence. 

2. Topology of hyperbolic flows 

That the crucial ingredient in description of 
chaotic (unstable, hyperbolic) flows is the topol­
ogy of the non-wandering set was clearly under­
stood by Smale [9], who has provided us with the 
simplest visualization of such sets as intersections 
of Smale horseshoes. 

Consider a three-dimensional invertible flow 
which returns an area of a Poincare section of the 
flow stretched and folded into a "horseshoe", 
such that the initial area is intersected at most 
twice (see fig. 1). Run backwards, the flow gener­
ates the backward horseshoe which intersects the 
forward horseshoe at most four times, and so 
forth. We shall call such maps (flows) with at 
most 2n transverse intersections the once-folding 
maps; they are the two-dimensional siblings of 
the unimodal maps in one dimension. The non­
wandering set - the set of all points that do not 
escape to infinity (in particular, the set of all 
periodic orbits) - is contained in the intersections 

Fig. 1. A Smale horseshoe. 

of the forward and backward folds (fig. 2a) and 
can be labelled in the obvious manner [10] by 
bi-infinite binary sequences ... s_ 3 s_ 2 s_ 1s0 s1s2 

s3 ••• , s; E {0, 1}. For better visualization of the 
non-wandering set, fatten the intersection regions 
until they completely cover a unit square, as in 
fig. 2b. This symbol plane [11, 12] is a topologi­
cally accurate representation of the non-wander­
ing set and serves as a street map for labelling its 
pieces. In the symbol plane, the dynamics is sim­
ply the decimal point shift; the _01.01_ square 
gets mapped into the _010.l_ rectangle (see fig. 
2), and so on. 

A generic once-folding map does not yield a 
complete horseshoe; some of the horseshoe pieces 
might be pruned, i.e. not realized by the particu­
lar mapping. In one dimension, the criterion for 
whether a symbolic sequence is allowed is easily 
formulated; symbolic sequences are topologically 
ordered by an "alternating binary" reordering of 
the binary symbols [13-15], and any orbit that 
strays to the right of the kneading sequence (the 
orbit of the critical point) is pruned [16, 17]. That 
does not mean that the symbolic dynamics is 
simple - as a matter of fact, already in one di­
mension its grammar can be arbitrarily compli­
cated [18]. However, the grammar is finite if the 
critical point is in the basin of attraction of an 
attractive periodic point [18]; for example, if the 
critical point is attracted to a stable three-cycle, 
the repeller consists of an isolated O fixed point 
and all orbits built from the two letters {1, 10}. 
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Fig. 2. (a) A complete Smale horseshoe twice iterated forwards and backwards in time and its (b) symbol plane representation (the 
intersections fattened into a unit square). In the symbol plane the dynamics maps rectangles into rectangles by a decimal point 
shift. 

The analogous situation can be attained for a 
two-dimensional once-folding map if the parame­
ters of the map adjusted so that the intersection 
of the backward and forward folds is still trans­
verse, but no longer complete, as in fig. 3a. In this 
particular example the intersections _10.l_, _11.l_ 

(a) 

have been lost, and consequently any trajectory 
containing substrings _101_, _111_ is pruned. We 
refer to the left border of this primary pruned 
region as the pruning front; an example of a 
pruning front is drawn in fig. 4. The topology puts 
two obvious constraints on the form of a pruning 

10.1 

II. I 

(bl 

Fig. 3. (a) An incomplete Smale horseshoe: the inner forward fold does not intersect the rightmost backward folds. The backward 
folding in this figure and in fig. 4a is only schematic - in invertible mappings there are further missing intersections, all obtained by 
the forward and backward iterations of the primary pruned region. (b) The primary pruned region in the symbol plane and the 
corresponding forbidden binary substrings. 
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010.01 

011.01 

Fig. 4. An incomplete Smale horseshoe which illustrates the monotonicity of the pruning front, i.e. the thick line which delineates 
the left border of the primary pruned region. 

front: 
(1) The pruning front is symmetric across the 

horizontal ½ line. 
(2) The pruning front is monotone across ei­

ther half of the symbol plane. 
This is a consequence of the deterministic foli­

ation; inner folds cannot pierce through the outer 
folds, and therefore have fewer transverse sec­
tions than the outer ones. The enumeration of all 
distinct allowed prunings is further considerably 
simplified by 

(3) The pruning front conjecture [19]#1: for 
once-folded maps the pruning front specifies 
completely the symbolic dynamics of the map, i.e. 
all pruned regions are obtained by forward and 
backward iterations of the primary pruned re­
gion, and there are no other independent pruning 
mechanisms. 

The pruning front is a two-dimensional gener­
alization of the one-dimensional kneading se­
quence; the location of each vertical step in the 
pruning front is the kneading sequence of the 
corresponding primary turnback of the unstable 
manifolds. If correct, the pruning front conjec­
ture is a complete description of the symbolic 
dynamics of once-folding maps in the same sense 
in which the kneading sequence defines the sym­
bolic dynamics of a one-dimensional unimodal 
map. The intuition behind this conjecture is that 

"'
1Some numerical evidence for the correctness of the prun­

ing front conjecture is given in refs. [12, 20). 

the folding induced by a single iteration is the 
primary folding, and all other folds (turnbacks, 
homoclinic tangencies) are images or preimages 
of the primary ones. 

3. Turning topology into symbolic dynamics 

The pruning front fixes the topology of a once­
folding map. If the pruning is a subshift of finite 
type (the symbolic dynamics can be presented as 
a finite alphabet together with a finite list of 
forbidden substrings), the topology can be con­
verted into symbolic dynamics by means of a 
Markov diagram or a finite automaton [22, 18)#2• 

For concreteness, take as an example the prun­
ing of fig. 4. The pruned rectangles correspond to 
finite forbidden substrings _100.10_, _10.L, 
_010.01_, _011.01_, _11.1_, _101.10_. Substrings 
_01101_, _10110_ contain the forbidden sub-block 
_101_, so they are redundant as pruning rules. 
Draw the pruning tree as a section of a binary 
tree with O and 1 branches and label each inter­
nal node by the sequence of O's, l's connecting it 
to the root of the tree (fig. Sa). These nodes are 
the potentially dangerous nodes - beginnings of 
substrings that might end up pruned. Add the 
side branches to those nodes (fig. Sb). As we 
continue down such branches we have to check 
whether the pruning tree imposes constraints on 

#2We follow here Mats Nordahl's exposition (21). 
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Fig. 5. Conversion of the pruning front of fig. 4 into a finite automaton graph. (a) Starting with the start node ".", delineate all 
pruned substrings on the binary tree. Full line stands for "1" and the dashed line for "O". Ends of forbidden strings are marked 
with X. Label all internal nodes by reading the bits connecting "." to the node. (b) Indicate all allowed starting substrings by 
arrows. (c) Drop recursively the leading bits in the allowed substrings; if the truncated string corresponds to an internal node in (a), 
connect them. (d) Delete all non-circulating nodes; all allowed sequences are generated as walks on this finite automaton graph. {e) 
Identify all distinct loops and construct the determinant (1). 
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the sequences so generated: we do this by knock­
ing off the leading bits and checking whether the 
shortened strings coincide with any of the inter­
nal pruning tree nodes: 00 - O; 110 - 10; 011 -
11; 011 - 101 (pruned); 1000 - 00 - 00 - O; 
10011 - 0011 - 011 - 11; 01000 - 0. 

Now connect the side branches into the corre­
sponding nodes (fig. Sc). Nodes"." and 1 can only 
serve as starting nodes; no sequence returns to 
them, and as we are here interested only in cycles 
(infinitely recurrent sequences), we delete them. 
The result is the finite automaton of fig. 5d; the 
allowed sequences are generated as all possible 
walks along the graph. Equivalently, such a graph 
can be replaced by an alphabet. For example, 
starting with node 0, all possible non-self-inter­
secting return paths are {0, 1000, ll00(llO0)k0; 
1100}, and any path can be composed of these 
"letters". As k = 0, 1, 2, 3, ... , the alphabet is in­
finite, but complete: any allowed string is a se­
quence of letters from the alphabet, with no 
further pruning rules. 

The procedure described above is one possible 
way of generating subshifts of finite type. One 
could have, for example, listed instead all non­
vanishing elements of a 2 4 X 2 4 transition matrix; 
this yields a larger, non-minimal Markov graph. 
The finite automaton approach is more compact, 
but it is still not entirely natural in the context of 
the present problem: the graphs constructed by 
the algorithm outlined here are not necessarily 
minimal, the graphs associated with time reversed 
dynamics do not reflect this symmetry, and so on. 
Be it as it may, the method requires only simple 
string shifts and matches, and is easily imple­
mented on a computer [23]. 

4. From diagrams to determinants 

A finite automaton like the one given in fig. 5d 
is a compact encoding of the transition or the 
Markov matrix for a given subshift. It is a sparse 
matrix, and the associated determinant can be 
written down by inspection [24]: it is the sum of 

all possible partitions of the graph into products 
of non-intersecting loops, with each loop carrying 
a minus sign: 

det(l - T) = 1 - t0 - t0011 - t0001 - t00011 

( 1) 

The simplest application of this determinant is to 
the evaluation of the topological entropy; if we 
set tP = znP, where nP is the length of the p-cycle, 
the smallest root of 

1 
0= - = 1-z-2z4 +z 8 

?top 
(2) 

yields the topological entropy h = - In z, z = 
0.658779 ... , h = 0.417367 .... 

In what follows we shall need all cycles up to 
length n, so it is handy to know their number. Nn, 
the number of periodic points of period n, is 
related to the topological polynomial 1/? by [7] 

In the above example 

'°' N n = z + 8z
4 

- 8z
8 

i.., nz 4 s· 1-z-2z +z n-1 

(3) 

This yields N 1 = N 2 = N3 = 1, Nn = 2n + 1 for 
n = 4,5,6, 7,8 and Nn =Nn-i + 2Nn_ 4 -Nn-s for 
n > 8. 

The number of prime cycles follows by Mobius 
inversion: 

Mn= n-l LJL( J )Nd, 
din 

where the Mobius function JL(l) = 1, JL(n) = 0 if 
n has a squared factor, and JL(p 1 p 2 ... pk)= 

( - l)k if all prime factors are different. In the 
above example M 1 = 1, M 2 = M3 = 0, M 4 = M5 = 
M 6 =M7 =2, M 8 =3, M 9 =5, .... 
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The determinant (1) is exact for the finite graph 
in fig. Se; for the associated (infinite dimensional) 
transfer operator, it is the beginning of the cycle 
expansion [7] of the corresponding dynamical zeta 
function [6]: 

1 
I =det(l - T) = l -to-too11 -tooo1 + too01too11 

-(t00011 - t 0 t0011 + ... curvatures) .... (4) 

The cycles 0, 0001 and 0011 are the fundamental 
cycles; they are not shadowed by any combina­
tions of shorter cycles, and are the basic building 
blocks of the Cantor set generated by iterating 
the pruned region of fig. 4. All other cycles ap­
pear together with their shadows (for example, 
t 00011 - t0 t0011 combination is of that type) and 
yield exponentially small corrections for hyper­
bolic systems. Parenthetically, the finite automa­
ton construction sketched here is not the minimal 
one; for example, the graph of fig. 5 does not 
generate only the fundamental cycles, but also 
some shadowed cycles, t 00011 in this example. 

5. Transfer operators 

In the section above we have developed an 
elementary application of symbolic dynamics of a 
dynamical system; from a finite automaton we 
have computed the topological entropy, i.e. the 
average growth rate of the number of allowed 
orbits with increase in the symbolic string length. 
This is a special case of a general scheme for 
computing dynamical system averages in terms of 
periodic orbits [6]; as these methods are discussed 
at length elsewhere (see refs. [7, 8, 25]), here we 
only state the main result. 

An average over a strange set, such as y, the 
rate of escape from a d-dimensional repeller [26], 
given by the fraction of the initial volume that has 

not escaped by the time n - oo, 

(5) 

can be extracted from the eigenvalue spectrum of 
the transfer operator 

:t"( y, x) = 8( Y -f(x)) (6) 

(or its generalizations appropriate to other aver­
ages). Physically this spectrum is the correlation 
[27-29], resonances [30], quantum energy [31-36] 
spectrum, and so on. The spectrum is given by 
the zeros of the Fredholm determinant [6, 7] 
det(l - z 2") expressed in terms of the traces 
tr .27n, i.e. the sums over all periodic points X; of 
period n: 

(n) 1 

= ~ jdet[1-J<nl(x;))I' 

where 

n-1 

J<n)( x;) = n J(f(j)( x;) ), 
j~O 

(7) 

( 8) 

is the i-cycle d x d Jacobian matrix, with eigen­
values A;, 1, A;,2, ... , A;,d• By factorizing the cycle 
determinants into products of expanding eigen­
values A;, 1, Ai,2, ... , A;,e and contracting eigen­
values Ai,e+ 1, ... , Ai,d- l• A;,d, 

U;,a =A;,a if IA;,al < 1, 

= 1/A;,a if IA;,al > 1, (9) 
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with A;= TT~A;,a the product of the expanding 
eigenvalues, det(l - z ..2") can be brought to a 
form of a generalized Selberg product 

det(l -z..2") =Z(z) 

( 

OO t' ) 
= TT exp - Lr/ 

P r=l p,r 

d 

dp,r = TT (1 - u;,a)· (10) 
a=l 

In the above, tP =znP/IAPI is a weight associated 
with a cycle, z is a formal parameter which keeps 
track of the topological cycle lengths, and the 
index p runs through all distinct prime cycles. A 
prime cycle is a single traversal of the orbit; its 
label is a non-repeating symbol string. In what 
follows we shall often absorb z into the transfer 
operator: z..2" --+..2", ZnPtP--+ tP. 

What is called the "Selberg product" here could 
probably equally well be called the "Fredholm 
determinant" throughout this text. A minor dis­
tinction from the mathematical literature is that 
we do not restrict the determinants to the ex­
panding eigendirections (as is done in refs. 
[37-39]#3) and that we do not take recourse to 
the Fredholm theory [40], but manipulate the 
Selberg products as formal cycle expansions. 

The simplest example of a Selberg product is 
associated with a 1D repelling map f(x ), mono­
tone on two non-overlapping intervals, 

f(x) = fo(x), x E I 0 , 

=fi(x), xEii, (11) 

with fixed points fo(x 0 )=x0 , flx 1)=x 1 and 
lf:(x)I > 1. For 1D repellers the Selberg product 

#
3 We are grateful to V. Baladi for explaining the distinc­

tion to us. 

(10) can be written as 

00 1 
Z(z)= CT-;:--(), 

k=O <::,k z 
(12) 

where, for the escape rate example, t P = z n p /IA PI . 

6. Cycle expansions 

In numerical applications of the Selberg prod­
ucts (10) usually only a finite number of prime 
cycles is available. We expand [41] Z(z) as a 
multinomial in prime cycle weights t P (the func­
tional form of the weight depends on the average 
under consideration; various particular cases are 
discussed in refs. [7, 8]): 

In the above we have defined 

00 

'Tpk1pkzpk3 = TT cpkitpk·'. 
l 2 3 • • • t I 

i= I 

(13) 

(14) 

The coefficients CPk can be evaluated by expand­
ing (10), Z(z) = TTPZP, where 

( 

00 

t' ) 1 ( 
00 

t' )
2 

z =1- L_P_ +- L_P_ 
P r=l rdp,r 2 r=l rdp,r 

Expanding and recollecting terms, and suppress­
ing the p cycle label for the moment, we obtain 

oo (-)kck 
zp = r~l Cktk, ck= Dk 

k d k 

Dk= TT d, = TT TT ( 1 - u:), (15) 
r=l a=l r=l 

where evaluation of ck requires a certain amount 
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of unilluminating algebra: 

etc. For example, for a general two-dimensional 
map we have 

( 16) 

The explicit form of the 1D and the Hamiltonian 
2D cycle expansions is given in section 7, where 
we also discuss the convergence of such cycle 
expansions. The striking aspect of this cycle ex­
pansion is its resemblance to the factorization of 
natural numbers into primes. This is somewhat 
unexpected, as the cycle weights (for example, the 
stability eigenvalues (8)) factorize exactly with 
respect to r repetitions of a prime orbit, tPP---P = 
t;, but only approximately (shadowing) with re­
spect to subdividing a string into prime sub­
strings, tP,P 2 ""' tP,tP 2• However, with Tpf'p~2 ... p~" 

defined as above, the prime factorization of sym­
bol strings is unique in the sense that each symbol 
string can be written as a unique concatenation of 
prime strings, up to a convention on ordering of 
primes. 

To be more explicit, we illustrate the above by 
expressing binary strings as concatenations of 

prime factors. We start by computing Nn, the 
number of terms in the expansion (13) of the total 
cycle length n. Setting C/AP) t; = Zn"k in (13), 
we obtain 

The generating function for the number of terms 
in the Selberg product is the topological zeta 
function [ 42]. For rhe complete binary dynamics 
we have [7] Nn = 2" contributing terms of length 
n: 

1 
1- 2z 

Hence the number of distinct terms in the expan­
sion (13) is the same as the number of binary 
strings, and conversely, the set of binary strings of 
length n suffices to label all terms of the total 
cycle length n in the expansion (13). 

Next we implement the factorization by decom­
posing recusively binary strings into concatena­
tions of prime strings. There are two strings of 
length 1, both prime: p 1 = 0, p 2 = l. There are 
four strings of length 2: 00, 01, 11, 10. The first 
three are ordered concatenations of primes: 00 = 
pf, 01 = p 1p 2 , 11 = Pi; by ordered concatenations 
we mean that p 1p 2 is legal, but p 2 p 1 is not. The 
remaining string is the only prime of length 2, 
p 3 = 10. Proceeding by discarding the strings 
which are concatenations of shorter primes 
P1'P~ 2 ••• p/;, with primes lexically ordered, we 
generate the standard list (table 1 of ref. [7]) of 
primes: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 
10001, 10010, 10011, 10110, 10111, 100000, 
100001, 100010, 100011, 100110, 100111, 101100, 
101110, 101111, .... This factorization is illus­
trated in table 1. 

How is this factorization used in practice? Sup­
pose we have computed (or perhaps even mea­
sured in an experiment) all prime orbits up to 
length n, i.e. we have a list of tP's and the 
corresponding Jacobian eigenvalues A p. 1, 
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Table 1 
Factorization of all binary strings up to length 5 into ordered 
concatenations p} 1p~ 2 ••• P!" of prime strings p1 = 0, p 2 = 1, 
P3 = 10, p4 = 100, .... 

Factors String Factors String 

P1 0 Pi 00000 

Pz 1 Pi.P2 00001 

Pf 00 Pf Pi 00011 

P1P2 01 PiP~ 00111 

Pi 11 P1Pi 01111 

P3 10 p~ 11111 

pf 000 pfp3 00010 

PiPz 001 PiPzP3 00110 

P1Pi 011 P1PiP3 01110 

P1 111 P1P3 11110 

P1P3 010 P1P5 01010 

P2P3 110 PzP5 11010 

P4 100 PfP4 00100 

Ps 101 P1P2P4 01100 

PiP4 11100 

P3P4 10100 

Pi 0000 Pf Ps 00101 

PfPz 0001 P1P2Ps 01101 

PiPi 0011 PiPs 11101 

P1P1 0111 P3Ps 10101 

Pi 1111 P1P6 01000 

PiP3 0010 P2P6 11000 

P1P2P3 0110 P1P1 01001 

PiP3 1110 P2P1 11001 

P5 1010 P1Ps 01011 

P1P4 0100 P2Ps 11011 

P2P4 1100 Pg 10000 

P1Ps 0101 P10 10001 

PzPs 1101 Pu 10010 

P6 1000 P12 10011 

P1 1001 P13 10110 

Ps 1011 P14 10111 

AP, 2 , ••. Ap,d· A cycle expansion of the Selberg 
product is obtained by generating all strings up to 
length n allowed by the symbolic dynamics and 
constructing the multinomial (13) 

n 

Z(z)= L L r,
1
,

2 
...• j+longercycles, (17) 

j=O •1•2···•j 

where E; range over the alphabet, in the present 
case {O, 1}. Factorizing every string <: 1<: 2 •.• Ej = 
pf 1p} 2 ••• p/j as in table 1, and substituting 
Tpfip~ 2 ... from (14) we obtain a multinomial ap-

proximation to Z( z ). For example, r 001001010101 = 
7"001001010101 = rooi2To1J, and 7"013, 7"0012 are known 
functionsof the corresponding cycle eigenvalues, 
given in section 7. The zeros of Z(z) can now be 
easily determined by standard numerical meth­
ods. 

The fact that as far as the symbolic dynamics is 
concerned, the cycle expansion of a Selberg prod­
uct is simply an average over all symbolic strings 
makes Selberg products rather pretty. However, 
compared with the cycle expansions of dynamical 
? functions, they have a small blemish; unlike the 
? functions (see for example (4)) they do not 
separate into a fundamental part and the (topo­
logically vanishing) curvature corrections. For the 
dynamical ? functions the curvature corrections 
are "shadowing" combinations, consisting of 
equal numbers of positive and negative terms [7]. 
The same counting for the Selberg product ex­
pansion (13) yields 

1- 2z 

1 - 2z 2 

Here Nn is the difference in the number of the 
positive and negative terms in the expansion (13); 
there is an excess in every order, and the terms 
cannot be arranged into shadowing combinations. 
That was the reason why we in ref. [7] concen­
trated on cycle expansions of the dynamical ? 
functions rather than Selberg products. However, 
as pointed out by Christiansen, Paladin and Rugh 
[29], the shadowing not only works for the Sel­
berg product expansions, but does so with 
vengeance - the convergence with cycle length is 
faster than exponential. The difference is mathe­
matically innocuous (for hyperbolic systems the 
Selberg products are entire functions; the dynam­
ical ? functions ratios of entire functions [38, 6)) 
but in numerical applications the difference is the 
difference between needing tens or thousands of 
cycles in order to attain the same accuracy [43]. 
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7. Convergence of Z(z) expansions 

A qualitative understanding of the spectrum of 
a transfer operator can be obtained by consider­
ing the simplest non-trivial example, a piecewise 
linear version of the two-branch repeller (11). In 
this case the curvatures [7] in the cycle expansion 
of each {k term in the product (12) vanish, 

and the eigenvalues (the zeros of the Selberg 
product) are simply 

(19) 

Asymptotically the spectrum is dominated by the 
lesser of the two fixed point slopes Ak z Ak /t 
(here A= 1 0 if IA 0 1 < IA 1 I, otherwise A= A,). 
In this approximation, the zeros of the Selberg 
product (12) are given by 

(20) 

and the eigenvalues Ak fall off exponentially as 
1/ Ak. The physical implication of the dominance 
of the smallest of the cycle eigenvalues is that the 
higher eigenvalues in the spectrum will be more 
sensitive to presence of almost stable orbits. In 
contexts such as the Henon map "strange attrac­
tors" and quasi-ergodic Hamiltonian systems such 
as the x 2 y 2 potential, this means that while lead­
ing eigenvalues might converge well (for example, 
in the computation of the Hausdorff dimension of 
a strange set), the distribution of high eigenvalues 
is in principle unknowable, as it depends on the 
(structurally unstable) homoclinic tangencies and 
presence of arbitrarily miniscule islands of stabil­
ity. From this point of view it is not at all clear 
that we should or can worry deeply about the 
asymptotic eigenvalue distributions, as is the pre-

vailing trend in studies of quantum chaos [4]. 
Indeed, from the vantage point of the Selberg 
product expansions our main concern is develop­
ment of accurate cycle expansions for the bottom 
of quantum spectra, and incorporation of correc­
tions to the semi-classical approximations to the 
spectrum. 

Physically interesting repellers are not piece­
wise linear, but the above two-slope approxima­
tion gives a rough sketch of the eigenvalue spec­
trum. Refinements are obtained by replacing the 
second iterate of the map by four linear seg­
ments, and so forth; that is precisely the meaning 
of the finite cycle length truncations of cycle 
expansions. The eigenvalues are either real or 
come in complex pairs - the main point is that for 
hyperbolic systems we expect them to be expo­
nentially spaced [38). 

An immediate consequence of the exponential 
spacing of the eigenvalues is that the convergence 
of the Selberg product expansion (13) as function 
of the topological cycle length, Z(z) = I:nCnzn, is 
faster than exponential. Consider a d-dimen­
sional map for which all Jacobian eigenvalues in 
(8) are equal: uP = AP, 1 = AP, 2 = ... = Ap,d· 
Clearly the stability eigenvalues are generally not 
isotropic; the goal here is to obtain qualitative 
bounds on the spectrum, by replacing all stability 
eigenvalues with the least expanding one. In this 
case the p-cycle contribution to the product (10) 
reduces to 

cc 

Il (1 + tpu;(\ 
k~O 

=(d-l+k)= (k+d-l)! 
mk d-l k!(d-1)! 

(21) 



P. Cvitanovic / Periodic orbits as the skeleton of chaos 149 

In one dimension the expansion can be given in 
closed form (44]: 

t t 2 u 
=1+--+------

1-u (1-u)(l-u 2
) 

oo Uk(k-1)/2 
:Etk k, lul<l, 

k=O (l-u) ... (1-u) 

and the coefficients Ck in (13) are given by 

(22) 

(23) 

By this estimate the coefficients in the Z(z) = 
I:nCnzn expansion of the Selberg product (12) 
should fall off faster than exponentially, as 
1Cn1::::: un<n-l)/Z_ In contrast, the cycle expansions 
[8] of dynamical zeta functions fall of "only" 
exponentially; in numerical applications, the dif­
ference is significant (43]. 

In higher dimensions the expansions are not 
quite as compact. The leading power of u and its 
coefficient are easily evaluated by use of binomial 
expansions (21) of the (1 + tukrk factors. More 
precisely, the leading un terms in tk coefficients 
are of the form [ 46] 

( d+m) 
= ... +(umd/(d+l)t) m + .. . 

::::: ... +uCv'd!/(d-l)!]n<d+l)/dtn + ... . 

Hence the coefficients in the Z(z) expansion fall 
ff f h "all nl+l/d . o aster t an exponentl y, as u , m agree-

ment with the estimates of Fried (39] for the 
Fredholm determinants of d-dimensional expand­
ing flows. The Selberg products are entire func-

tions in any dimension, provided that the 
symbolic dynamics is a finite subshift, and all 
cycle eigenvalues are bounded sufficiently away 
from 1. 

The case of particular interest are the 2D 
Hamiltonian mappings; their symplectic structure 
implies that uP=Ap,l = 1/Ap,2, and the Selberg 
product (10) is the two-dimensional case of (21), 

(24) 

In this case the expansion (16) is given by [41] 

00 n (1 + tuk/+1 
k=O 

l 2u 2 =l+---zt+ z zt 
(1 - u) (1 - u) (1 - u2 ) 

(25) 

Fk(u) is a polynomial in u, and the coefficients 
fall off asymptotically as Cn ::::: un

312
• 

The technology developed above for the classi­
cal Selberg products can be taken pretty much in 
toto over to the quantum Selberg products (32, 
31]. For the Hamiltonian flows, the quantum 
square root 1/ ✓ det( 1 - JP) weight for orbits 
leads to somewhat prettier Selberg products; for 
example, (24) is in the quantum case replaced by 

(26) 

For the low eigenvalues we expect the conver­
gence of cycle expansions to be as good as in the 
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classical case. However, unlike the classical prod­
uct (24), which is exact, the quantum Selberg 
product (26) is the leading term of a semiclassical 
approximation, and the size of corrections to it is 
not known. 

8. Homework assignment 

The above coarse approximations suffice for 
establishing the main result of this section, that 
the coefficients in the cycle expansions of Selberg 
products fall off faster than exponentially. The 
spectrum of .:? for the piecewise-linear approxi­
mate maps is only indicative of the spectrum for 
the exact non-linear map; the details are subtle 
and the reader is referred to refs. [38, 39] for 
more careful convergence estimates. In particu­
lar, our estimates depended on the assumption 
that the symbolic dynamics is a subshift of finite 
type, that the cycle weight is multiplicative along 
the flow, and that the flow is smooth, so that 
nearby trajectories have nearby weights. 

In the above we have reviewed the general 
properties of the cycle expansions; those have 
been developed at some length in ref. [7] and 
applied in ref. [8] to a series of examples of 
low-dimensional chaos: lD strange attractors, the 
period-doubling repeller [43], the Henon-type 
maps and the mode locking intervals for circle 
maps. The Selberg product expansion method 
[29] used here is superior to the method of locat­
ing zeros of finite products of dynamical { func­
tions [6] of refs. [7, 8], and in that sense the 
present note supercedes the above references. 
The cycle expansions have also been applied to 
the irrational windings set of critical circle maps 
[ 45], to the Hamiltonian period-doubling repeller 
[47], to a Hamiltonian three-disk pinball [35], to 
the three-disk quantum scattering resonances [34, 
36, 41] and to the extraction of correlation expo­
nents [29]. Feasibility of analysis of experimental 
strange sets in terms of cycles is discussed in ref. 
[48]. 

Elsewhere in this conference, Smale has given 
a list of ten outstanding problems of the dynami-

cal systems theory. As the ostensible topic of this 
conference is the non-linear science of the next 
decade (maybe wonderful, but unlikely to resem­
ble much the conjurings of today), I conclude 
cautiously with a homework assignment (due date 
May 22, 2000): 

1. Topology. Develop optimal sequences 
("continued fraction approximants") of finite sub­
shift approximations to generic dynamical sys­
tems. Apply to (a) the Henon map, (b) the Lorentz 
flow and (c) the Hamiltonian standard map. 

2. Non-hyperbolicity. Incorporate power-law 
(marginal stability orbits, "intermittency") correc­
tions into cycle expansions. Apply to long-time 
tails in the Hamiltonian diffusion problem. 

3. Phenomenology. Carry through a convincing 
analysis of a genuine experimentally extracted 
data set in terms of periodic orbits. 

4. Invariants. Prove that the scaling functions, 
or the cycles, or the spectrum of a transfer opera­
tor are the maximal set of invariants of an (physi­
cally interesting) dynamically generated strange 
set. 

5. Field theory. Develop a periodic orbit the­
ory of systems with many unstable degrees of 
freedom. Apply to (a) coupled lattices, (b) cellu­
lar automata, (c) neural networks. 

6. Tunneling. Add complex time orbits to 
quantum mechanical cycle expansions (WKB the­
ory for chaotic systems). 

7. Unitarity. Evaluate corrections to the 
Gutzwiller semiclassical periodic orbit sums. (a) 
Show that the zeros (energy eigenvalues) of the 
appropriate Selberg products are real. (b) Find 
physically realistic systems for which the "semi­
classical" period orbit expansions yield the exact 
quantization. 

8. Atomic spectra. Compute the helium spec­
trum from periodic orbit expansions. 

9. Symmetries. Include fermions, gauge fields 
into the periodic orbit theory. 
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JO. Quantum field theory. Develop quantum 
theory of systems with infinitely many classically 
unstable degrees of freedom. Apply to (a) quark 
confinement, (b) the early universe, (c) the brain. 
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