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We survey equilibria and traveling waves of plane Couette flow in small periodic cells
at moderate Reynolds number Re, adding in the process eight new equilibrium and two
new traveling-wave solutions to the four solutions previously known. Bifurcations un-
der changes of Re and spanwise period are examined. These non-trivial flow-invariant
unstable solutions can only be computed numerically, but they are ‘exact’ in the sense
that they converge to solutions of the Navier-Stokes equations as the numerical resolution
increases. We find two complementary visualizations particularly insightful. Suitably cho-
sen sections of their 3D-physical space velocity fields are helpful in developing physical
intuition about coherent structures observed in moderate Re turbulence. Projections of
these solutions and their unstable manifolds from ∞-dimensional state space onto suit-
ably chosen 2- or 3-dimensional subspaces reveal their interrelations and the role they
play in organizing turbulence in wall-bounded shear flows.

1. Introduction
In Gibson et al. (2008b) (henceforth referred to as GHC) we have utilized exact equilib-

rium solutions of the Navier-Stokes equations for plane Couette flow in order to illustrate
a visualization of moderate Re turbulent flows in an infinite-dimensional state space,
in terms of dynamically invariant, intrinsic, and representation independent coordinate
frames. The state space portraiture (figure 1) offers a visualization of numerical (or ex-
perimental) data of transitional turbulence in boundary shear flows, complementary to
3D visualizations of such flows (figure 2). Side-by-side animations of the two visualiza-
tions illustrate their complementary strengths (see Gibson (2008b) online simulations).
In these animations, 3D spatial visualization of instantaneous velocity fields helps elu-
cidate the physical processes underlying the formation of unstable coherent structures,
such as the Self-Sustained Process (SSP) theory of Waleffe (1990, 1995, 1997). Running
concurrently, the ∞-dimensional state space representation enables us to track unstable
manifolds of equilibria of the flow, the heteroclinic connections between them (Halcrow
et al. 2008), and gain new insights into the nonlinear state space geometry and dynamics
of moderate Re wall-bounded shear flows such as plane Couette flow.

Here we continue our investigation of exact equilibrium and traveling-wave solutions
of Navier-Stokes equations, this time tracking them adiabatically as functions of Re and
periodic cell size [Lx, 2, Lz] and, in the process, uncovering new invariant solutions, and
determining new relationships between them.

The history of experimental and theoretical advances is reviewed in GHC, Sect. 2;
here we cite only the work on equilibria and traveling waves directly related to this
investigation. Nagata (1990) found the first pair of nontrivial equilibria, as well as the
first traveling wave in plane Couette flow (Nagata 1997). Waleffe (1998, 2003) computed
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Figure 1. A 3-dimensional projection of the ∞-dimensional state space of plane Couette flow
in the periodic cell ΩW03 at Re = 400, showing all equilibria and traveling waves discussed in
§ 4. Equilibria are marked: � EQ0, ◦ EQ1, • EQ2, � EQ3, � EQ4, ♦ EQ5, / EQ7, F EQ9,
O EQ10, H EQ11. Traveling waves trace out closed orbits: the spanwise-traveling TW1 (blue
loops), streamwise TW2 (green lines), and TW3 (red lines). In this projection the latter two
streamwise traveling waves appear as line segments. The EQ1 → EQ0 heteroclinic connections
and the S-invariant portion of EQ1 and EQ2 unstable manifolds are shown with black lines.
The cloud of dots are temporally equispaced points on a long transiently turbulent trajectory,
indicating the natural measure. The projection is onto the translational basis (3.13) constructed
from equilibrium EQ2.

Nagata and other equilibria guided by the SSP theory. Other traveling waves were com-
puted by Viswanath (2008) and Jiménez et al. (2005). Schmiegel (1999) computed and
investigated a large number of equilibria. His 1999 Ph.D. provides a wealth of ideas and
information on solutions to plane Couette flow, and in many regards the published lit-
erature is still catching up this work. GHC added the dynamically important ‘newbie’
uNB equilibrium (labeled EQ4 in this paper) to the stable.

We review plane Couette flow in § 2 and its symmetries in § 3. The main advance
reported in this paper is the determination of a number of new moderate-Re plane
Couette flow equilibria and traveling waves (§ 4), as well as explorations of the Re (§ 5)
and spanwise cell aspect dependence (§ 6) of these solutions. Outstanding challenges are
discussed in § 7. Detailed numerical results such as stability eigenvalues and symmetries
of corresponding eigenfunctions are given in Halcrow (2008), while the complete data
sets for the invariant solutions can be downloaded from channelflow.org.

2. Plane Couette flow – a review
Plane Couette flow is comprised of an incompressible viscous fluid confined between

two infinite parallel plates moving in opposite directions at constant and equal velocities,
with no-slip boundary conditions imposed at the walls. The plates move along in the
streamwise or x direction, the wall-normal direction is y, and the spanwise direction is
z. The fluid velocity field is u(x) = [u, v, w](x, y, z). We define the Reynolds number as
Re = Uh/ν, where U is half the relative velocity of the plates, h is half the distance
between the plates, and ν is the kinematic viscosity. After non-dimensionalization, the
plates are positioned at y = ±1 and move with velocities u = ±1 x̂, and the Navier-Stokes

http://channelflow.org
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Figure 2. A snapshot of a typical turbulent state in a large aspect cell [Lx, 2, Lz] = [15, 2, 15],
Re = 400. The walls at y = ±1 move away/towards the viewer at equal and opposite velocities
U = ±1. The color indicates the streamwise (u, or x direction) velocity of the fluid: red shows
fluid moving at u = +1, blue, at u = −1. The colormap as a function of u is indicated by the
laminar equilibrium in figure 4. Arrows indicate in-plane velocity in the respective planes: [v, w]
in (y, z) planes, etc. The top half of the fluid is cut away to show the [u,w] velocity in the y = 0
midplane. See Gibson (2008b) for movies of the time evolution of such states.

equations are
∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u , ∇ · u = 0 . (2.1)

We seek spatially periodic equilibrium and traveling-wave solutions to (2.1) for the do-
main Ω = [0, Lx]×[−1, 1]×[0, Lz] (or Ω = [Lx, 2, Lz]), with periodic boundary conditions
in x and z. Equivalently, the periodicity of solutions can be specified in terms of their
fundamental wavenumbers α and γ. A given solution is compatible with a given domain
if α = mLx/2π and γ = nLz/2π for integer m,n. In this study the spatial mean of the
pressure gradient is held fixed at zero.

Most of this study is conducted at Re = 400 in one of the two small aspect-ratio cells:

ΩW03 = [2π/1.14, 2, 2π/2.5] ≈ [5.51, 2, 2.51] ≈ [190, 68, 86] wall units
ΩHKW = [2π/1.14, 2, 2π/1.67] ≈ [5.51, 2, 3.76] ≈ [190, 68, 128] wall units (2.2)

where the wall units are in relation to a mean shear rate of 〈∂u/∂y〉 = 2.9 in non-
dimensionalized units computed for a large aspect ratio simulation at Re = 400. Em-
pirically, at this Reynolds number the ΩHKW cell sustains turbulence for arbitrarily long
times (Hamilton et al. 1995), whereas the ΩW03 cell (Waleffe 2003) exhibits only short-
lived transient turbulence (GHC). Unless stated otherwise, all calculations are carried
out for Re = 400 and the ΩW03 cell. In the notation of this paper, the Nagata (1990)
solutions have wavenumbers (α, γ) = (0.8, 1.5) and fit in the cell [2π/0.8, 2, 2π/1.5] ≈
[7.85, 2, 4.18].† Schmiegel (1999)’s study of plane Couette solutions and their bifurca-
tions was conducted in the cell of size Ω = [4π, 2, 2π] ≈ [12.57, 2, 6.28]. We were not able
to to obtain data for Schmiegel’s solutions to make direct comparisons.

Although the cell aspect ratios studied in this paper are small, the 3D states explored
by equilibria and their unstable manifolds explored here are strikingly similar to typical
states in larger aspect cells, such as figure 2. Kim et al. (1971) observed that stream-
wise instabilities give rise to pairwise counter-rotating rolls whose spanwise separation is

† Note also that Reynolds number in Nagata (1990) is based on the full wall separation and
the relative wall velocity, making it a factor of four larger than the Reynolds number used in
this paper.
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approximately 100 wall units. These rolls, in turn, generate streamwise streaks of high
and low speed fluid, by convecting fluid alternately away from and towards the walls.
The streaks have streamwise instabilities whose length scale is roughly twice the roll
separation. These ‘coherent structures’ are prominent in numerical and experimental
observations (see figure 2 and Gibson (2008b) animations), and they motivate our inves-
tigation of how equilibrium and traveling-wave solutions of Navier-Stokes change with
Re and cell size.

Fluid states are characterized by their energy E = 1
2‖u‖

2 and energy dissipation rate
D = ‖∇ × u‖2, defined in terms of the inner product and norm

(u,v) =
1
V

∫
Ω

dx u · v , ‖u‖2 = (u,u) . (2.3)

The rate of energy input is I = 1/(LxLz)
∫
dxdz ∂u/∂y, where the integral is taken over

the upper and lower walls at y = ±1. Normalization of these quantities is set so that
I = D = 1 for laminar flow and Ė = I−D. In some cases it is convenient to consider fields
as differences from the laminar flow. We indicate such differences with hats: û = u− yx̂.

3. Symmetries and isotropy subgroups
In an infinite domain and in the absence of boundary conditions, the Navier-Stokes

equations are equivariant under any 3D translation, 3D rotation, and x→ −x, u→ −u
inversion through the origin (Frisch 1996). In plane Couette flow, the counter-moving
walls restrict the rotation symmetry to rotation by π about the z-axis. We denote this
rotation by σx and inversion through the origin by σxz. The σxz and σx symmetries
generate a discrete dihedral group D1 ×D1 = {e, σx, σz, σxz} of order 4, where

σx [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z)
σz [u, v, w](x, y, z) = [u, v,−w](x, y,−z) (3.1)
σxz [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z) .

The subscripts on the σ symmetries thus indicate which of x, z change sign. The walls also
restrict the translation symmetry to 2D in-plane translations. With periodic boundary
conditions, these translations become the SO(2)x × SO(2)z continuous two-parameter
group of streamwise-spanwise translations

τ(`x, `z)[u, v, w](x, y, z) = [u, v, w](x+ `x, y, z + `z) . (3.2)

The equations of plane Couette flow are thus equivariant under the group Γ = O(2)x ×
O(2)z = D1,x n SO(2)x × D1,z n SO(2)z, where n stands for a semi-direct product, x
subscripts indicate streamwise translations and sign changes in x, y, and z subscripts
indicate spanwise translations and sign changes in z.

The solutions of an equivariant system can satisfy all of the system’s symmetries, a
proper subgroup of them, or have no symmetry at all. For a given solution u, the subgroup
that contains all symmetries that fix u (that satisfy su = u) is called the isotropy (or
stabilizer) subgroup of u. (Hoyle 2006; Marsden & Ratiu 1999; Golubitsky & Stewart
2002; Gilmore & Letellier 2007). For example, a typical turbulent trajectory u(x, t) has
no symmetry beyond the identity, so its isotropy group is {e}. At the other extreme is
the laminar equilibrium, whose isotropy group is the full plane Couette symmetry group
Γ.

In between, the isotropy subgroup of the Nagata equilibria and most of the equilibria
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reported here is S = {e, s1, s2, s3}, where

s1 [u, v, w](x, y, z) = [u, v,−w](x+ Lx/2, y,−z)
s2 [u, v, w](x, y, z) = [−u,−v, w](−x+ Lx/2,−y, z + Lz/2) (3.3)
s3 [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z + Lz/2) .

These particular combinations of flips and shifts match the symmetries of instabilities of
streamwise-constant streaky flow (Waleffe 1997, 2003) and are well suited to the wavy
streamwise streaks observable in figure 2, with suitable choice of Lx and Lz. But S is
one choice among a number of intermediate isotropy groups of Γ, and other subgroups
might also play an important role in the turbulent dynamics. In this section we provide a
partial classification of the isotropy groups of Γ, sufficient to classify all currently known
invariant solutions and to guide the search for new solutions with other symmetries. We
focus on isotropy groups involving at most half-cell shifts. The main result is that among
these, up to conjugacy in spatial translation, there are only five isotropy groups in which
we should expect to find equilibria.

3.1. Flips and half-shifts
A few observations will be useful in what follows. First, we note the key role played by
the inversion and rotation symmetries σx and σz (3.1) in the classification of solutions
and their isotropy groups. The equivariance of plane Couette flow under continuous
translations allows for traveling-wave solutions, i.e., solutions that are steady in a frame
moving with a constant velocity in [x, z]. In state space, traveling waves either trace
out circles or wind around tori, and these sets are both continuous-translation and time
invariant. The sign changes under σx, σz, and σxz, however, imply particular centers of
symmetry in x, z, and both x and z, respectively, and thus fix the translational phases
of fields that are fixed by these symmetries. Thus the presence of σx or σz in an isotropy
group prohibits traveling waves in x or z, and the presence of σxz prohibits any form
of traveling wave. Guided by this observation, we will seek equilibria only for isotropy
subgroups that contain the σxz inversion symmetry.

Second, the periodic boundary conditions impose discrete translation symmetries of
τ(Lx, 0) and τ(0, Lz) on velocity fields. In addition to this full-period translation sym-
metry, a solution can also be fixed under a rational translation, such as τ(mLx/n, 0) or a
continuous translation τ(`x, 0). If a field is fixed under continuous translation, it is con-
stant along the given spatial variable. If it is fixed under rational translation τ(mLx/n, 0),
it is fixed under τ(mLx/n, 0) for m ∈ [1, n− 1] as well, provided that m and n are rela-
tively prime. For this reason the subgroups of the continuous translation SO(2)x consist
of the discrete cyclic groups Cn,x for n = 2, 3, 4, . . . together with the trivial subgroup
{e} and the full group SO(2)x itself, and similarly for z. For rational shifts `x/Lx = m/n
we simplify the notation a bit by rewriting (3.2) as

τm/n
x = τ(mLx/n, 0) , τm/n

z = τ(0,mLz/n) . (3.4)

Since m/n = 1/2 will loom large in what follows, we omit exponents of 1/2:

τx = τ1/2
x , τz = τ1/2

z , τxz = τxτz . (3.5)

If a field u is fixed under a rational shift τ(Lx/n), it is periodic on the smaller spatial
domain x ∈ [0, Lx/n]. For this reason we can exclude from our searches all equilibrium
whose isotropy subgroups contain rational translations in favor of equilibria computed on
smaller domains. However, as we need to study bifurcations into states with wavelengths
longer than the initial state, the linear stability computations need to be carried out



6 J. Halcrow, J. F. Gibson, and P. Cvitanović

in the full [Lx, 2, Lz] cell. For example, if EQ is an equilibrium solution in the Ω1/3 =
[Lx/3, 2, Lz] cell, we refer to the same solution repeated thrice in Ω = [Lx, 2, Lz] as
“spanwise-tripled” or 3 × EQ. Such solution is by construction fixed under the C3,x =
{e, τ1/3

x , τ
2/3
x } subgroup.

Third, some isotropy groups are conjugate to each other under symmetries of the full
group Γ. Subgroup S′ is conjugate to S if there is an s ∈ Γ for which S′ = s−1Ss.
In spatial terms, two conjugate isotropy groups are equivalent to each other under a
coordinate transformation. A set of conjugate isotropy groups forms a conjugacy class.
It is necessary to consider only a single representative of each conjugacy class; solutions
belonging to conjugate isotropy groups can be generated by applying the symmetry
operation of the conjugacy.

In the present case conjugacies under spatial translation symmetries are particularly
important. Note that O(2) is not an abelian group, since reflections σ and translations
τ along the same axis do not commute (Harter 1993). Instead we have στ = τ−1σ.
Rewriting this relation as στ2 = τ−1στ , we note that

σxτx(`x, 0) = τ−1(`x/2, 0)σx τ(`x/2, 0) . (3.6)

The right-hand side of (3.6) is a similarity transformation that translates the origin of
coordinate system. For `x = Lx/2 we have

τ−1/4
x σx τ

1/4
x = σxτx , (3.7)

and similarly for the spanwise shifts / reflections. Thus for each isotropy group containing
the shift-reflect σxτx symmetry, there is a simpler conjugate isotropy group in which σxτx
is replaced by σx (and similarly for σzτz and σz). We choose as the representative of each
conjugacy class the simplest isotropy group, in which all such reductions have been made.
However, if an isotropy group contains both σx and σxτx, it cannot be simplified this
way, since the conjugacy simply interchanges the elements.

Fourth, for `x = Lx, we have τ−1
x σx τx = σx , so that, in the special case of half-cell

shifts, σx and τx commute. For the same reason, σz and τz commute, so the order-16
isotropy subgroup

G = D1,x × C2,x ×D1,z × C2,z ⊂ Γ (3.8)
is abelian.

3.2. The 67-fold path
We now undertake a partial classification of the lattice of isotropy subgroups of plane
Couette flow. We focus on isotropy groups involving at most half-cell shifts, with SO(2)x×
SO(2)z translations restricted to order 4 subgroup of spanwise-streamwise translations
(3.5) of half the cell length,

T = C2,x × C2,z = {e, τx, τz, τxz} . (3.9)

All such isotropy subgroups of Γ are contained in the subgroup G (3.8). Within G, we
look for the simplest representative of each conjugacy class, as described above.

Let us first enumerate all subgroups H ⊂ G. The subgroups can be of order |H| =
{1, 2, 4, 8, 16}. A subgroup is generated by multiplication of a set of generator elements,
with the choice of generator elements unique up to a permutation of subgroup elements.
A subgroup of order |H| = 2 has only one generator, since every group element is its own
inverse. There are 15 non-identity elements in G to choose from, so there are 15 subgroups
of order 2. Subgroups of order 4 are generated by multiplication of two group elements.
There are 15 choices for the first and 14 choices for the second. However, each order-4
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subgroup can be generated by 3 · 2 different choices of generators. For example, any two
of τx, τz, τxz in any order generate the same group T . Thus there are (15 ·14)/(3 ·2) = 35
subgroups of order 4.

Subgroups of order 8 have three generators. There are 15 choices for the first generator,
14 for the second, and 12 for the third. There are 12 choices for the third generator and
not 13, since if it were chosen to be the product of the first two generators, we would
get a subgroup of order 4. Each order-8 subgroup can be generated by 7 · 6 · 4 different
choices of three generators, so there are (15 · 14 · 12)/(7 · 6 · 4) = 15 subgroups of order
8. In summary: there is the group G itself, of order 16, 15 subgroups of order 8, 35 of
order 4, 15 of order 2, and 1 (the identity) of order 1, or 67 subgroups in all (Halcrow
2008). This is whole lot of isotropy subgroups to juggle; fortunately, the observations of
§ 3.1 show that there are only 5 distinct conjugacy classes in which we can expect to find
equilibria.

The 15 order-2 groups fall into 8 distinct conjugacy classes, under conjugacies between
σxτx and σx and σzτz and σz. These conjugacy classes are represented by the 8 isotropy
groups generated individually by the 8 generators σx, σz, σxz, σxτz, σzτx, τx, τz, and
τxz. Of these, the latter three imply periodicity on smaller domains. Of the remaining
five, σx and σxτz allow traveling waves in z, σz and σzτx allow traveling waves in x. Only
a single conjugacy class, represented by the isotropy group

{e, σxz} , (3.10)

breaks both continuous translation symmetries. Thus, of all order-2 isotropy groups, we
expect only this group to have equilibria. EQ9, EQ10, and EQ11 described below are
examples of equilibria with isotropy group {e, σxz}.

Of the 35 subgroups of order 4, we need to identify those that contain σxz and thus
support equilibria. We choose as the simplest representative of each conjugacy class the
isotropy group in which σxz appears in isolation. Four isotropy subgroups of order 4
are generated by picking σxz as the first generator, and σz, σzτx, σzτz, or σzτxz as the
second generator (R for reflect-rotate):

R = {e, σx, σz, σxz} = {e, σxz} × {e, σz}
Rx = {e, σxτx, σzτx, σxz} = {e, σxz} × {e, σxτx} (3.11)
Rz = {e, σxτz, σzτz, σxz} = {e, σxz} × {e, σzτz}
Rxz = {e, σxτxz, σzτxz, σxz} = {e, σxz} × {e, σzτxz} ' S .

These are the only isotropy groups of order 4 containing σxz and no isolated translation
elements. Together with {e, σxz}, these 5 isotropy subgroups represent the 5 conjugacy
classes in which expect to find equilibria.

The Rxz isotropy subgroup is particularly important, as the Nagata (1990) equilibria
belong to this conjugacy class (Waleffe 1997; Clever & Busse 1997; Waleffe 2003), as do
most of the solutions reported here. The NBC isotropy subgroup of Schmiegel (1999) and
S of Gibson et al. (2008b) are conjugate to Rxz under quarter-cell coordinate transfor-
mations. In keeping with previous literature, we often represent this conjugacy class with
S = {e, s1, s2, s3} = {e, σzτx, σxτxz, σxzτz} rather than the simpler conjugate group Rxz.
Schmiegel’s I isotropy group is conjugate to our Rz; Schmiegel (1999) contains many
examples of Rz-isotropic equilibria. R-isotropic equilibria were found by Tuckerman &
Barkley (2002) for plane Couette flow in which the translation symmetries were broken
by a streamwise ribbon. We have not searched for Rx-isotropic solutions, and are not
aware of any published in the literature.

The remaining subgroups of orders 4 and 8 all involve {e, τi} factors and thus involve
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states that are periodic on half-domains. For example, the isotropy subgroup of EQ7 and
EQ8 studied below is S × {e, τxz} ' R × {e, τxz}, and thus these are doubled states of
solutions on half-domains. For the detailed count of all 67 subgroups, see Halcrow (2008).

3.3. State-space visualization
GHC presents a method for visualizing low-dimensional projections of trajectories in the
infinite-dimensional state space of the Navier-Stokes equations. Briefly, we construct an
orthonormal basis {e1, e2, · · · , en} that spans a set of physically important fluid states
ûA, ûB , . . . , such as equilibrium states and their eigenvectors, and we project the evolv-
ing fluid state û(t) = u − yx̂ onto this basis using the L2 inner product (2.3). It is
convenient to use differences from laminar flow, since û forms a vector space with the
laminar equilibrium at the origin, closed under addition. This produces a low-dimensional
projection

a(t) = (a1, a2, · · · , an, · · · )(t) , an(t) = (û(t), en) , (3.12)

which can be viewed in 2d planes {em, en} or in 3d perspective views {e`, em, en}. The
state-space portraits are dynamically intrinsic, since the projections are defined in terms
of intrinsic solutions of the equations of motion, and representation independent, since
the inner product (2.3) projection is independent of the numerical or experimental repre-
sentation of the fluid state data. Such bases are effective because moderate-Re turbulence
explores a small repertoire of unstable coherent structures (rolls, streaks, their mergers),
so that the trajectory a(t) does not stray far from the subspace spanned by the key
structures.

There is no a priori prescription for picking a ‘good’ set of basis fluid states, and
construction of {en} set requires some experimentation. Let the S-invariant subspace be
the flow-invariant subspace of states u that are fixed under S; this consists of all states
whose isotropy group is S or contains S as a subgroup. The plane Couette system at
hand has a total of 29 known equilibria within the S-invariant subspace four translated
copies each of EQ1 - EQ6, two translated copies of EQ7 (which have an additional τxz

symmetry), plus the laminar equilibrium EQ0 at the origin. As shown in GHC, the
dynamics of different regions of state space can be elucidated by projections onto basis
sets constructed from combinations of equilibria and their eigenvectors.

In this paper we present global views of all invariant solutions in terms of the or-
thonormal ‘translational basis’ constructed in GHC from the four translated copies of
EQ2:

τx τz τxz

e1 = c1(1 + τx + τz + τxz) ûEQ2 + + +
e2 = c2(1 + τx − τz − τxz) ûEQ2 + − − (3.13)
e3 = c3(1− τx + τz − τxz) ûEQ2 − + −
e4 = c4(1− τx − τz + τxz) ûEQ2 − − + ,

where cn is a normalization constant determined by ‖en‖ = 1. The last 3 columns indicate
the symmetry of the basis vector under half-cell translations; e.g. ±1 in the τx column
implies τxej = ±ej .

4. Equilibria and traveling waves of plane Couette flow
We seek equilibrium solutions to (2.1) of the form u(x, t) = uEQ(x) and traveling-wave

or relative equilibrium solutions of the form u(x, t) = uTW(x − ct) with c = (cx, 0, cz).
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Figure 3. Four projections of equilibria, traveling waves and their half-cell shifts onto trans-
lational basis (3.13) constructed from equilibrium EQ4. Equilibria are marked � EQ0, ◦ EQ1,
• EQ2, � EQ3, � EQ4, ♦ EQ5, / EQ7, F EQ9, O EQ10, and H EQ11. Traveling waves trace
out closed loops. In some projections the loops appear as line segments or points. TW1(blue)
is a spanwise-traveling, symmetry-breaking bifurcation off EQ1, so it passes close to different
translational phases of ◦ EQ1. Similarly, TW3 (red) bifurcates off � EQ3 and so passes near
its translations. TW2 (green) was not discovered through bifurcation (see § 4); it appears as the
shorter, isolated line segment in (a1, a4) and (a2, a4). The EQ1 → EQ0 relaminarizing hetero-
clinic connections are marked by dashed lines. A long-lived transiently turbulent trajectory is
plotted with a dotted line. The EQ4-translational basis was chosen here since it displays the
shape of traveling waves more clearly than the projection on the EQ2-translational basis of
figure 1.

Let FNS(u) represent the Navier-Stokes equations (2.1) for the given geometry, boundary
conditions, and Reynolds number, and f t

NS its time-t forward map

∂u
∂t

= FNS(u) , f t
NS(u) = u +

∫ t

0

dτ FNS(u) . (4.1)

Then for any fixed T > 0, equilibria satisfy fT (u) − u = 0 and traveling waves satisfy
fT (u)− τ u = 0, where τ = τ(cxT, czT ). When u is approximated with a finite spectral
expansion and f t with CFD algorithm, these equations become set of nonlinear equations
in the expansion coefficients for u and, in the case of traveling waves, the wave velocities
(cx, 0, cz).

Viswanath (2007) presents an algorithm for computing solutions to these equations
based on Newton search, Krylov subspace methods, and an adaptive ‘hookstep’ trust-
region limitation to the Newton steps. This algorithm can provide highly accurate so-
lutions from even poor initial guesses. The high accuracy stems from the use of Krylov
subspace methods, which can be efficient with 105 or more spectral expansion coeffi-
cients. The robustness with respect to initial guess stems from the hookstep algorithm.
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The hookstep limitation restricts steps to a radius r of estimated validity for the local
linear approximation to the Newton equations. As r increases from zero, the hookstep
varies smoothly from the Krylov-subspace gradient direction to the Newton step, so that
the hookstep algorithm behaves as a gradient descent when far away from a solution
and as the Newton method when near, thus greatly increasing the algorithm’s region
of convergence around solutions, compared to the Newton method (J.E. Dennis, Jr., &
Schnabel 1996).

The choice of initial guesses for the search algorithm is one of the main differences
between this study and previous calculations of equilibria and traveling waves of shear
flows. Prior studies have used homotopy, that is, starting from a solution to a closely
related problem and following it through small steps in parameter space to the problem of
interest. Equilibria for plane Couette flow have been continued from Taylor-Couette flow
(Nagata 1990), Rayleigh-Bénard flow (Clever & Busse 1997), and from plane Couette with
imposed body forces (Waleffe 1997). Equilibria and traveling waves have also been found
using “edge-tracking” algorithms, that is, by adjusting the magnitude of a perturbation of
the laminar flow until it neither decays to laminar nor grows to turbulence, but instead
converges toward a nearby weakly unstable solution (Skufca et al. (2006); Viswanath
(2008); Schneider et al. (2008)). In this study, we take as initial guesses samples of
velocity fields generated by long-time simulations of turbulent dynamics. The intent is to
find the dynamically most important solutions, by sampling the turbulent flow’s natural
measure.

We discretize u with a spectral expansion of the form

u(x) =
J∑

j=−J

K∑
k=−K

L∑
`=0

3∑
m=1

ujkl T`(y) e2πi(jx/Lx+kz/Lz) , (4.2)

where the T` are Chebyshev polynomials. Time integration of f t is performed with a
primitive-variables Chebyshev-tau algorithm with tau correction, influence-matrix en-
forcement of boundary conditions, and third-order backwards differentiation time step-
ping, and dealiasing in x and z (Kleiser & Schuman (1980); Canuto et al. (1988); Peyret
(2002)). We eliminate from the search space the linearly dependent spectral coefficients
of u that arise from incompressibility, boundary conditions, and complex conjugacies
that arise from the real-valuedness of velocity fields. Our Navier-Stokes integrator, im-
plementation of the Newton-hookstep search algorithm, and all solutions described in
this paper are available for download from channelflow.org website (Gibson 2008a).
For further details on the numerical methods see GHC and Halcrow (2008).

Solutions presented in this paper use spatial discretization (4.2) with (J,K,L) =
(15, 15, 32) (or 32×33×32 gridpoints) and roughly 60k expansion coefficients. The esti-
mated accuracy of each solution is listed in table 1. As is clear from Schmiegel (1999)
Ph.D. thesis, ours is almost certainly an incomplete inventory; while for any finite Re,
finite-aspect ratio cell the number of distinct equilibrium and traveling wave solutions
is finite, we know of no way of determining or bounding this number. It is difficult to
compare our solutions directly to those of Schmiegel since those solutions were computed
in a [4π, 2, 2π] cell (roughly twice our cell size in both span and streamwise directions)
and with lower spatial resolution (2212 independent expansion functions versus our 60k
for a cell of one-fourth the volume). We expect that many of Schmiegel’s equilibria could
be continued to higher resolution and smaller cells.

http://channelflow.org
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4.1. Equilibrium solutions

Our primary focus is on the S-invariant subspace (3.3) of the ΩW03 cell at Re = 400. We
initiated 28 equilibrium searches at evenly spaced intervals ∆t = 25 along a trajectory in
the unstable manifold of EQ4 that exhibited turbulent dynamics for 800 nondimension-
alized time units after leaving the neighborhood of EQ4 and before decaying to laminar
flow. The solutions are numbered in order of discovery, adjusted so that lower, upper
branch solutions are labeled with consecutive numbers. EQ0 is the laminar equilibrium,
EQ1 and EQ2 are the Nagata lower and upper branch, and EQ4 is the uNB solution
reported in GHC. The rest are new. Only one of the 28 searches failed to converge onto
an equilibrium; the successful searches converged to equilibria with frequencies listed in
table 1. The higher frequency of occurrence of EQ1 and EQ4 suggests that these are
the dynamically most important equilibria in the S-invariant subspace for the ΩW03 cell
at Re = 400. Stability eigenvalues of known equilibria are plotted in figure 7. Tables of
stability eigenvalues and other properties of these solutions are given in Halcrow (2008),
while the images, movies and full data sets are available online at channelflow.org. All
equilibrium solutions have zero spatial-mean pressure gradient, which was imposed in
the flow conditions, and, due to their symmetry, zero mean velocity.

EQ1, EQ2 equilibria. This pair of solutions was discovered by Nagata (1990), recom-
puted by different methods by Clever & Busse (1997) and Waleffe (1998, 2003), and found
multiple times in randomly initiated searches as described above. The lower branch EQ1

and the upper branch EQ2 are born together in a saddle-node bifurcation at Re ≈ 218.5.
Just above bifurcation, the two equilibria are connected by a EQ1 → EQ2 heteroclinic
connection, see Halcrow et al. (2008). However, at higher values of Re there appears to
be no such simple connection. The lower branch EQ1 equilibrium is discussed in detail
in Wang et al. (2007). This equilibrium has a 1-dimensional unstable manifold for a wide
range of parameters. Its stable manifold appears to provide a partial barrier between
the basin of attraction of the laminar state and turbulent states (Schneider et al. 2008).
The upper branch EQ2 has an 8-dimensional unstable manifold and a dissipation rate
that is higher than the turbulent mean, see figure 8 (a). However, within the S-invariant
subspace EQ2 has just one pair of unstable complex eigenvalues. The two-dimensional S-
invariant section of its unstable manifold was explored in some detail in GHC. It appears
to bracket the upper end of turbulence in state space, as illustrated by figure 1.

EQ3, EQ4 equilibria. EQ4 was found in GHC and is called uNB there. Its lower-branch
partner EQ3 was found by continuing EQ4 downwards in Re and also by independent
searches from samples of turbulent data. EQ4 is, with EQ1, the most frequently found
equilibrium, which attests to its importance in turbulent dynamics. Like EQ1, EQ4 serves
as a gatekeeper between turbulent flow and the laminar basin of attraction. As shown
in GHC, there is a heteroclinic connection from EQ4 to EQ1 resulting from a complex
instability of EQ4. Trajectories on one side of the heteroclinic connection decay rapidly
to laminar flow; those one the other side take excursion towards turbulence.

EQ5, EQ6 equilibria. EQ5 was found only once in our random searches, and its
upper-branch partner EQ6 only by continuation in Reynolds number. We were only able
to continue EQ6 up to Re = 330. At this value it is highly unstable, with a 19 dimensional
unstable manifold, and it is far more dissipative than a typical turbulent trajectory.

EQ7, EQ8 equilibria. EQ7 and EQ8 appear together in a saddle node bifurcation
in Re (see § 5). EQ7 / EQ8 might be the same as Schmiegel (1999)’s ‘σ solutions’. The
x-average velocity field plots appear very similar, as do the D versus Re bifurcation dia-
grams. We were not able to obtain Schmiegel’s data in order to make a direct comparison.
In this cell, we were not able to continue EQ8 past Re = 270. EQ7 is both the closest

http://channelflow.org
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EQ0 EQ1 EQ2

EQ3 EQ4 EQ5

EQ6 EQ7 EQ8

EQ9 EQ10 EQ11

Figure 4. Equilibria EQ0 (laminar solution) through EQ11 in ΩW03 cell. Plotting conventions
are the same as figure 2. Re = 400 except for EQ6, Re = 330, and EQ8, Re = 270.

state to laminar in terms of disturbance energy and the lowest in terms of drag. It has
one strongly unstable real eigenvalue within the S-invariant subspace and two weakly
unstable eigenvalues with {s1, s3} and {s2, s3} antisymmetries, respectively. In this re-
gard, the EQ7 unstable manifold might, like the unstable manifold of EQ1, form part
of the boundary between the laminar basin of attraction and turbulence. EQ7 and EQ8

are unique among the equilibria determined here in that they have the order-8 isotropy
subgroup S×{e, τxz} (see § 3.2). The action of the quotient group G/(S×{e, τxz}) yields
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EQ2 EQ4 EQ6

EQ1 EQ3 EQ5

Figure 5. x-average of û(y, z) for equilibria EQ1-EQ6 in ΩW03 cell. Arrows indicate [v̂, ŵ],
and the colormap indicates û: red/blue is û = ±1, green is û = 0. All figures have the same
scaling between arrow length and magnitude of [v̂, ŵ]. Lower and upper-branch pairs are grouped
together vertically, e.g. EQ1, EQ2 are a lower, upper branch pair. Re = 400 except for Re = 330
in EQ6.

EQ8 EQ11

EQ7 EQ9 EQ10

Figure 6. x-average of û(y, z) for equilibria EQ7-EQ11. Plotting conventions are the same as
in figure 5. Re = 400 except for Re = 270 in EQ8.

2 copies of each, plotted in figure 3. EQ7 and EQ8 are similar in appearance to EQ5 and
EQ6, except for the additional symmetry.

EQ9 equilibrium is a single lopsided roll-streak pair. It is produced by a pitchfork bi-
furcation from EQ4 at Re ≈ 370 as an {s1, s2}-antisymmetric eigenfunction goes through
marginal stability (the only pitchfork bifurcation we have yet found) and remains close
to EQ4 at Re = 400. Thus, it has {e, σxz} isotropy. Even though EQ9 is not S-isotropic,
we found it from a search initiated on a guess that was S-isotropic to single precision.
Such small asymmetries were enough to draw the Newton-hookstep out of the S-invariant
subspace.

EQ10 / EQ11 equilibria are produced in a saddle-node bifurcation at Re ≈ 348 as
a lower / upper branch pair, and they lie close to the center of mass of the turbulent
repeller, see figure 8 (a). They look visually similar to typical turbulent states for this cell
size. However, they are both highly unstable and unlikely to be revisited frequently by
a generic turbulent fluid state. Their isotropy subgroup {e, σxz} is order 2, so the action
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Figure 7. Eigenvalues of equilibria EQ3, EQ4 and EQ7, EQ8 in ΩW03 cell, Re = 400. Eigenvalues
are plotted according to their symmetries: • + + +, the S-invariant subspace, I + − −, J
−+−, and N −−+, where ± stand symmetric/antisymmetric in s1, s2, and s3 respectively. For
EQ1, EQ2 and EQ4 eigenvalues see GHC (there referred to as uLB, uUB and uNB, respectively).
For numerical values of all stability eigenvalues see Halcrow (2008) and channelflow.org.

of the quotient group G/{e, τxz} yields 8 copies of each, which appear as the 4 overlaid
pairs in projections onto the (3.13) basis set, see figure 1 and figure 3.

4.2. Traveling waves
The first two traveling-wave solutions reported in the literature were found by Nagata
(1997) by continuing EQ1 equilibrium to a combined Couette / Poiseuille channel flow,
and then continuing back to plane Couette flow. The result was a pair of streamwise trav-
eling waves arising from a saddle-node bifurcation. Viswanath (2008) found two traveling
waves, ‘D1’ and the same solution ‘D2,’ but at a higher Re = 1000, through an edge-
tracking algorithm (Skufca et al. (2006), see also § 4.1). Here we verify Viswanath’s
solution and present two new traveling-wave solutions computed as symmetry-breaking
bifurcations off equilibrium solutions. We were not able to compare these to Nagata’s
traveling waves since the data is not available. The traveling waves are shown as 3D
velocity fields in figure 9 and as closed orbits in state space in figure 3. Their kinetic
energies and dissipation rates are tabulated in table 1. Each traveling-wave solution has
a zero spatial-mean pressure gradient but non-zero mean velocity in the same direction
as the wave velocity. It is likely each solution could be continued to zero wave velocity
but non-zero spatial-mean pressure gradient.

TW1 traveling wave is s2-isotropic and hence spanwise traveling. At Re = 400 its
velocity is very small, c = 0.00655 ẑ, and it has a small but nonzero mean velocity,
also in the spanwise direction. This is a curious property: TW1 induces bulk transport
of fluid without a pressure gradient, and in a direction orthogonal to the motion of the

http://channelflow.org
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Figure 8. Rate of energy input at the walls I versus dissipation D, for the known equilibria
and traveling waves in (a) ΩW03 (b) ΩHKW cell at Re = 400. � EQ0is the laminar equilibrium
with D = I = 1. In (a), ◦ EQ1, � EQ3, � EQ4, / EQ7, F EQ9, . TW1, M TW2, and 4 TW3

are clustered in the range 1.25 < D= I < 1.55, and • EQ2, ♦ EQ5, O EQ10, and H EQ11 lie
in 2 < D= I < 4. In (b), the symbols are the same, and � EQ4, • EQ2 are clustered together
near D = I ≈ 2.47.

TW1 TW2 TW3

Figure 9. Spanwise TW1, streamwise TW2 and TW3 traveling waves in ΩW03 cell, Re = 400.

walls. TW1 was found as a pitchfork bifurcation from EQ1, and thus lies very close to it
in state space. It is weakly unstable, with a 3D unstable manifold with two eigenvalues
which are extremely close to marginal. In this sense TW1 unstable manifold is nearly
one-dimensional, and comparable to EQ1.

TW2 is a streamwise traveling wave found by Viswanath (2008) and called D1 there.
It is s1-isotropic, has a low dissipation rate, and a small but nonzero mean velocity in the
streamwise direction. Viswanath provided data for this solution; we verified it with an
independent numerical integrator and continued the solution to ΩW03 cell for comparison
with the other traveling waves. In this cell TW2 is fairly stable, with an eigenspectrum
similar to TW1’s, except with different symmetries.

TW3 is an s1-isotropic streamwise traveling wave with a relatively high wave velocity
c = 0.465 x̂ and a nonzero mean velocity in the streamwise direction. Its dissipation rate
and energy norm are close to those of TW1.
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Re ‖·‖ E D H dimWu dimWu
H acc. freq.

mean 0.2828 0.087 2.926

EQ0 0 0.1667 1 Γ 0 0 2
EQ1 0.2091 0.1363 1.429 S 1 1 10−6 7
EQ2 0.3858 0.0780 3.044 S 8 2 10−4 3
EQ3 0.1259 0.1382 1.318 S 4 2 10−4 2
EQ4 0.1681 0.1243 1.454 S 6 3 10−4 8
EQ5 0.2186 0.1073 2.020 S 11 4 10−3 1
EQ6 330 0.2751 0.0972 2.818 S 19 6 10−3

EQ7 0.0935 0.1469 1.252 S × {e, τxz} 3 1 10−4 3
EQ8 270 0.3466 0.0853 3.672 S × {e, τxz} 21 8 10−4

EQ9 0.1565 0.1290 1.404 {e, σxz} 5 10−4 1
EQ10 0.3285 0.1080 2.373 {e, σxz} 10 10−4

EQ11 0.4049 0.0803 3.432 {e, σxz} 13 10−4

Table 1. Properties of equilibrium solutions for ΩW03 cell, Re = 400, unless noted otherwise. The
mean values are ensemble and time averages over transient turbulence. ‖·‖ is the L2-norm of the
velocity deviation from laminar, E is the energy density (2.3), D is the dissipation rate, H is the
isotropy subgroup, dimWu is the dimension of the equilibrium’s unstable manifold or the number
of its unstable eigenvalues, and dimWu

H is the dimensionality of the unstable manifold within
the H-invariant subspace, or the number of unstable eigenvalues with the same symmetries
as the equilibrium. The accuracy acc. of the solution at a given resolution (a 32 × 33 × 32
grid) is estimated by the magnitude of the residual ‖(fT=1(u)− u)‖/‖u‖ when the solution is
interpolated and integrated at higher resolution (a 48×49×48 grid). The freq. column shows how
many times a solution was found among the 28 searches initiated with samples of the natural
measure within within the S-invariant subspace. See also figure 8 (a).

‖·‖ E D H dimWu dimWu
H c mean u

mean 0.2828 0.087 2.926
TW1 0.2214 0.1341 1.510 {e, σxτz} 3 2 0.00655 ẑ 0.00482 ẑ
TW2 0.1776 0.1533 1.306 {e, σzτx} 3 2 0.3959 x̂ 0.0879 x̂
TW3 0.2515 0.1520 1.534 {e, σzτx} 4 2 0.4646 x̂ 0.1532 x̂

Table 2. Properties of traveling-wave solutions for ΩW03 cell, Re = 400, defined as in table 1,
with wave velocity c and mean velocity. See also figure 8 (a).

5. Bifurcations under Re

The relations between the equilibrium and traveling-wave solutions can be clarified by
tracking their properties under changes in Re and cell size variations. Figure 10 shows
a bifurcation diagram for equilibria and traveling waves in the ΩW03 cell, with dissipa-
tion rate D plotted against Re as the bifurcation parameter. A number of independent
solution curves are shown in superposition. This is a 2-dimensional projection from the
∞-dimensional state space, thus, unless noted otherwise, the apparent intersections of
the solution curves do not represent bifurcations; rather, each curve is a family of so-
lutions with an upper and lower branch, beginning with a saddle-node bifurcation at a
critical Reynolds number.

The first saddle-node bifurcation gives birth to the Nagata lower branch EQ1 and upper
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Figure 10. (a) Dissipation rate as a function of Reynolds number for all equilibria in in the
ΩW03 cell. (b) Detail of (a). ◦ EQ1, • EQ2, � EQ3, � EQ4, ♦ EQ5, � EQ6, / EQ7, J EQ8, F
EQ9, O EQ10, H EQ11, . TW1, and 4 TW3.

branch EQ2 equilibria, at Re ≈ 218.5. EQ1 has a single S-isotropic unstable eigenvalue
(and additional subharmonic instabilities that break the S-isotropy of EQ1). Shortly after
bifurcation, EQ2 has an unstable complex eigenvalue pair within the S-invariant subspace
and two unstable real eigenvalues leading out of that space. As indicated by the gentle
slopes of their bifurcation curves, the Nagata (1990) solutions are robust with respect to
Reynolds number. The lower branch solution has been continued past Re = 10, 000 and
has a single unstable eigenvalue throughout this range (Wang et al. 2007).

EQ3 and EQ4 were discovered in independent Newton searches and subsequently found
by continuation to be lower and upper branches of a saddle-node bifurcation occurring
at Re ≈ 364. EQ3 has a leading unstable complex eigenvalue pair within the S-invariant
subspace. Its remaining two unstable eigen-directions are nearly marginal and lead out
of this space.

EQ6 was found by continuing EQ5 backwards in Re around the bifurcation point at
Re ≈ 326. We were not able to continue EQ6 past Re = 330. At this point it has a
nearly marginal stable pair of eigenvectors whose isotropy group is Γ, which rules out a
bifurcation to traveling waves along these modes. Just beyond Re = 330 the dynamics in
this region appears to be roughly periodic, suggesting that EQ6 undergoes a supercritical
Hopf bifurcation here. At Re ≈ 348, EQ10 / EQ11 are born in a saddle node bifurcation,
similar in character to the EQ1 / EQ2 bifurcation.

Figure 10( b) shows several symmetry-breaking bifurcations. At Re ≈ 250, TW1 bi-
furcates from EQ1 in a subcritical pitchfork as an s2-symmetric, s1, s3-antisymmetric
eigenfunction of EQ1 becomes unstable, resulting in a spanwise-moving traveling wave.
At Re ≈ 370, the EQ9 equilibrium bifurcates off EQ4 along an σxz-symmetric, s1, s2-
antisymmetric eigenfunction of EQ4. Since σxz symmetry fixes phase in both x and z,
this solution bifurcates off EQ4 as an equilibrium rather than a traveling wave.

6. Bifurcations under spanwise width Lz

In this section we examine changes in solutions under variation in spanwise periodicity.
In particular, we are interested in connecting the solutions for ΩW03 discussed in § 4, to
the wider ΩHKW cell of Hamilton et al. (1995), which empirically exhibits turbulence
for long time scales at Re = 400. Figure 11 shows dissipation as a function of Lz. Of
the equilibria discussed above, only EQ4, EQ7, and EQ9 could be continued from ΩW03

to ΩHKW at Re = 400. The other equilibria terminate in saddle-node bifurcations, or
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Figure 11. Dissipation rate D of equilibria for family of cells Ω(Lz) = [2π/1.14, 2, Lz] as
function of (a) the spanwise cell width Lz (b) wavenumber γ = 2π/Lz. The vertical dashed lines
represent the ΩW03 cell at Lz = 2.51, γ = 2.5, and the vertical dotted line marks the ΩHKW cell
at Lz = 3.76, γ = 1.67. ◦ EQ1, • EQ2, � EQ3, � EQ4, ♦ EQ5, / EQ7 F EQ9, O EQ10, H
EQ11. The repeated solution curves at doubled values of Lz indicate solutions of fundamental
periodicity Lz embedded in a cells with spanwise length 2Lz. (see figure 12). Equilibria � EQ6,
J EQ8 do not exist at Re = 400. We did not attempt to continue TW1, TW2, or TW3 in Lz.

EQ4 EQ7 EQ9

2× EQ1 2× EQ2

Figure 12. Equilibria in the ΩHKW cell of Hamilton et al. (1995), Re = 400. EQ4, EQ7, EQ9,
and the spanwise-doubled equilibrium solutions 2× EQ1 and 2× EQ2.

bifurcate into pairs of traveling waves in pitchfork bifurcations. EQ1 and EQ2 exist in
ΩHKW as spanwise doubled 2×EQ1 and 2×EQ2 in z. We insert 2 copies of the EQ1 / EQ2

solution for ΩW03, with Lz ≈ 2.51, into a cell with Lz ≈ 5.02, and then continue these
solutions down to the ΩHKW width Lz = 3.76. Figure 12 shows 3D velocity fields for all
of these equilibria in ΩHKW: EQ4, EQ7, and EQ9 and the spanwise doubled 2×EQ1 and
2× EQ2. Their properties are listed in table 6.

In the ΩHKW cell EQ4 is extremely unstable, with a 39 dimensional unstable manifold.
In physical space it has 4 distinct streaks, see figure 12. Owing to its near τz symmetry,
many of its eigenvalues appear in sets of two nearly identical complex pairs.

The low dissipation values of the ΩHKW equilibria figure 8 (b) suggest that they are not
involved in turbulent dynamics, except perhaps as gatekeepers to the laminar equilib-
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‖·‖ E D H dimWu dimWu
H

mean 0.40 0.15 3.0
EQ0 0 0.1667 1 Γ 0 0
2×EQ1 0.2458 0.1112 1.8122 S × {e, τz} 5 0
2×EQ2 0.3202 0.0905 2.4842 S × {e, τz} 6 0
EQ4 0.2853 0.0992 2.4625 S 40 13
EQ7 0.1261 0.1433 1.3630 S × {e, τxz} 6 2
EQ9 0.3159 0.1175 2.0900 {e, σxz} 11 0

Table 3. Properties of equilibrium and traveling wave solutions for ΩHKW cell, Re = 400,
defined as in table 1. See also figure 8 (b).

rium. We suspect that the equilibria as yet undiscovered, or the already known periodic
orbit solutions (Gibson et al. 2008a) do play a key role in organizing turbulent dynamics.
However, unlike the ΩW03 cell, we were not able to find any equilibria for ΩHKW cell from
initial guesses sampled from long-time turbulent trajectories within the S-invariant sub-
space. This is curious, contrasted to our success in finding equilibria from such guesses
in ΩW03, and suggests that the aspect ratios of the ΩHKW cell are the most incommen-
surate (fit the intrinsic widths of rolls least well) compared to the roll and streak scales
of spanwise-infinite domains, which are apparent (approximately) in the simulation of
figure 2.

7. Conclusion and perspectives
As a turbulent flow evolves, every so often we catch a glimpse of a familiar pattern.

For any finite spatial resolution, the flow approximately follows for a finite time a pattern
belonging to a finite alphabet of admissible fluid states, represented here by a set of exact
equilibrium and traveling wave solutions of Navier-Stokes. These are not the ‘modes’ of
the fluid, in the sense that they would offer a lower-dimensional basis set to represent
the flow with, and they are not a decomposition of the flow into a sum of different
wavelength scale components; each solution spans the whole range of physical scales of
the turbulent fluid, from the outer wall-to-wall scale, down to the Kolmogorov viscous
dissipation scale. Numerical computations have to be carried out in a DNS representation
of sufficient resolution to cover all of these scales, so no dimensional reduction is likely,
beyond the improvement of numerical codes. The role of exact invariant solutions of
Navier-Stokes is, instead, to partition the ∞-dimensional state space into a finite set of
neighborhoods visited by a typical long-time turbulent fluid state.

Motivated by the recent observations of recurrent coherent states in experiments and
numerical studies, we undertook here an exploration of the hierarchy of all known exact
equilibria and traveling waves of fully-resolved plane Couette flow in order to describe
the spatio-temporally chaotic dynamics of transitionally turbulent fluid flows. Turbulent
plane Couette dynamics visualized in state space appears pieced together from close
visitations to exact coherent states connected by transient interludes, as can be seen in
Gibson (2008b) animations of figure 2. The 3D fluid states explored by the small cell
aspect ratio equilibria and their unstable manifolds studied in this paper are strikingly
similar to states observed in larger aspect cells, such as figure 2.

For plane Couette flow equilibria, traveling waves and periodic solutions embody a
vision of turbulence as a repertoire of recurrent spatio-temporal patterns explored by
turbulent dynamics. The new equilibria and traveling waves that we present here form
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the backbone of this repertoire. Currently, a taxonomy of these myriad states eludes us,
but emboldened by successes in applying periodic orbit theory to the simpler, warm-
up Kuramoto-Sivashinsky problem (Christiansen et al. 1997; Lan & Cvitanović 2008;
Cvitanović et al. 2008), we are optimistic. Given a set of equilibria, the next step is to
understand how the dynamics interconnects the neighborhoods of the invariant solutions
discovered so far; a task that we address in Halcrow et al. (2008) which discusses their
heteroclinic inter-connections, and Gibson et al. (2008a) which discusses their periodic
orbit solutions.

The reader might rightfully wonder what the small-aspect periodic cells studied here
have to do with physical plane Couette flow and wall-bounded shear flows in general,
with large aspect ratios and physical spanwise-streamwise boundary conditions. Indeed,
the outstanding issue that must be addressed in future work is the small-aspect cell
periodicities imposed for computational efficiency. So far, most computations of invariant
solutions have focused on spanwise-streamwise (axial-streamwise in case of the pipe flow)
periodic cells barely large enough to allow for sustained turbulence. Such small cells
introduce dynamical artifacts such as lack of structural stability and cell-size dependence
of the sustained turbulence states. However, every solution that we find is also a solution
of the infinite aspect-ratio problem, i.e., a solution whose finite [Lx, 2, Lz] cell tiles the
infinite 3D plane Couette flow. As we saw in § 6, under a continuous variation of spanwise
length Lz such solutions come in continuous families whose fundamental wavelengths
reflect the roll and streak instability scales observed in large-aspect systems such as
figure 2. Here we can draw the inspiration from pattern-formation theory, where the most
unstable wavelengths from a continuum of unstable solutions set the scales observed in
simulations.
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