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We undertake an exploration of recurrent patterns in the antisymmetric subspace of the one-dimensional
Kuramoto-Sivashinsky system. For a small but already rather “turbulent” system, the long-time dynamics takes
place on a low-dimensional invariant manifold. A set of equilibria offers a coarse geometrical partition of this
manifold. The Newton descent method enables us to determine numerically a large number of unstable spa-
tiotemporally periodic solutions. The attracting set appears surprisingly thin—its backbone consists of several
Smale horseshoe repellers, well approximated by intrinsic local one-dimensional return maps, each with an
approximate symbolic dynamics. The dynamics appears decomposable into chaotic dynamics within such local
repellers, interspersed by rapid jumps between them.
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INTRODUCTION

Statistical approaches to the study of turbulence �1� rely
on assumptions that break down in the presence of large-
scale coherent structures typical of fluid motions �2�. De-
scription of such coherent structures requires a detailed un-
derstanding of the dynamics of underlying equations of
motion. In Hopf’s dynamical systems vision �3�, turbulence
explores a repertoire of distinguishable patterns; as we watch
a turbulent system evolve, every so often we catch a glimpse
of a familiar whorl. At any instant and a given finite spatial
resolution the system approximately tracks for a finite time a
pattern belonging to a finite alphabet of admissible patterns,
and the dynamics can be thought of as a walk through the
space of such patterns, just as chaotic dynamics with a low-
dimensional attractor can be thought of as a succession of
nearly periodic �but unstable� motions.

Exploration of Hopf’s program close to the onset of spa-
tiotemporal chaos was initiated in Ref. �4�, which was the
first to extend the periodic orbit theory to a partial differen-
tial equation �PDE�, the one-spatial-dimension Kuramoto-
Sivashinsky �5,6� system, a flow embedded in an infinite-
dimensional state space. Many recurrent patterns were
determined numerically and the recurrent-pattern theory pre-
dictions tested for several parameter values. Continuous
symmetries of the full periodic domain problem led to new
important features of dynamics—such as relative periodic
orbits—that merit study on their own �7�. For that reason,
both in Ref. �4� and in this paper, we found it advantageous
to focus on the dynamics confined to the antisymmetric sub-
space, the space for which periodic orbits characterize “tur-
bulent” dynamics. In what follows we shall often refer to
such periodic orbit solutions of the truncated Kuramoto-
Sivashinsky equation as “recurrent patterns” in order to em-
phasize their spatiotemporal periodicity. In this paper �and,

in much greater detail, in Ref. �8��, we venture into a
Kuramoto-Sivashinsky system bigger than the one studied in
Ref. �4�, just large enough to exhibit turbulent dynamics aris-
ing through competition of several unstable coherent struc-
tures.

Basic properties of the Kuramoto-Sivashinsky equation
are reviewed in Sec. I. The determination of equilibria and
periodic orbits in high-dimensional state spaces opens new
challenges, and in Sec. II we sketch the Newton descent
method that we have developed and deployed in our searches
for recurrent patterns. Informed by the topology of the flow,
the method can determine even very long periodic orbits,
such as the orbit of Fig. 6�c�. Equilibria, which play a key
role in organizing the global topology of state space dynam-
ics, are investigated in Sec. III. We then fix the size of the
Kuramoto-Sivashinsky system in order to illustrate our meth-
odology on a concrete example. Not all equilibria influence
the dynamics equally, and in Sec. III A we show how to
gauge the relative importance of an equilibrium by its prox-
imity to the most recurrent state space regions. For this small
Kuramoto-Sivashinsky system the dynamics is shaped by the
competition between “center” and “side” equilibria. In Sec.
IV A we turn this observation into a dynamical description
of the flow by constructing local, equilibrium-centered
Poincaré sections. In Sec. IV B we show that with intrinsic
curvilinear coordinates built along unstable manifolds of
equilibria and short periodic orbits �the key observation of
Ref. �4��, the dynamics can be reduced to iteration of low-
dimensional Poincaré return maps. The long road from an
infinite-dimensional PDE to essentially one-dimensional it-
eration is now completed, its crowning achievement the bi-
modal return map of Fig. 8�e�. Such return maps enable us to
construct a symbolic dynamics, and initiate a systematic
search for periodic orbits that build up local Smale horseshoe
repellers, as many as desired. The periodic points so deter-
mined are overlaid over the return map in Fig. 8�f�. Interest-
ingly, this systematic parsing of state space leads to a discov-
ery of a nontrivial attracting periodic orbit of short period, an
orbit highly unlikely to show up in random initial condition
simulations of Kuramoto-Sivashinsky dynamics. The hierar-
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chy of periodic orbits so determined can then be used to
predict long-time dynamical averages via periodic orbit
theory. Our results are summarized the last section.

I. KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky system �2,5,6�

ut = �u2�x − uxx − �uxxxx �1�

arises as an amplitude equation for interfacial instabilities in
a variety of physical contexts �6,9,10�. We shall study u�x , t�
on a periodic domain x� �0,L�, u�x , t�=u�x+L , t�. In the
Fourier space,

u�x,t� = i �
k=−�

+�

ak�t�eikqx, q = 2�/L , �2�

the Kuramoto-Sivashinsky PDE is represented by an infinite
ladder of coupled ordinary differenential equations �ODEs�
for complex Fourier coefficients,

ȧk = �kq�2�1 − ��kq�2�ak − kq �
m=−�

+�

amak−m. �3�

In this paper we restrict our investigation to the subspace of
odd solutions u�x , t�=−u�−x , t� for which the ak’s are real.
The a0 mode is conserved since ȧ0=0 and a0=�dx u=0 since
u has odd parity. The linear term controls the stability of the
u�x , t�=0 equilibrium, with each Fourier mode ak an eigen-
vector of the linearized equation, with eigenvalue ��kq�
= �kq�2�1−��kq�2�. If all eigenvalues are nonpositive, the
equilibrium u�x , t�=0 is globally stable. In general, the long-
est wavelengths are unstable, while the higher k contract rap-
idly, restricting the dynamics to a finite-dimensional inertial
manifold �11,12�. The peak of the ��kq� stability curve iden-
tifies the maximally unstable mode at kq�1 /�2� and sets
the typical wavelength of the large-system-size spatiotempo-
ral patterns of the Kuramoto-Sivashinsky equation.

Rescaling t→�t, ak→�−1/2ak, L=2��1/2L̃ results in

ȧk = �k/L̃�2�1 − �k/L̃�2�ak − �k/L̃� �
m=−�

+�

amak−m, �4�

where we trade in the “hyperviscosity” � and the system size
L for a single dimensionless length parameter

L̃ = L/�2���� , �5�

which plays the role of a “Reynolds number” for the
Kuramoto-Sivashinsky system. In the literature sometimes L
is used as the control parameter, with � fixed to 1, and at
other times � is varied with L fixed. In what follows we find
it most convenient to set �=1 and compare different calcu-

lations in terms of either L̃ or L.

For small L̃, the dynamics and bifurcation sequences are

investigated in Refs. �2,13–16�. For L̃�1 the equilibrium

u=0 is the global attractor. As the system size L̃ is increased,
the “flame front” becomes increasingly unstable and turbu-

lent. While for L̃ sufficiently large the existence of many
coexisting attractors is an open possibility �17�, in numerical
studies most initial conditions settle down in the same region
of state space, the attractor with the largest basin of attrac-

tion. This is illustrated by Fig. 1 for system size L=38.5, L̃
=6.12. . ., which we shall focus on in this paper.

In the antisymmetric subspace the translational invariance
of the full system reduces to invariance under discrete trans-
lation by x→x+L /2. In the Fourier representation �4�, the
corresponding solution is obtained by reflection

a2m → a2m, a2m+1 → − a2m+1. �6�
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FIG. 1. �Color online� Long-time evolution of a typical “sus-
tained turbulence” trajectory for L=38.5. �a� Space-time represen-
tation of u�x , t� in the �x , t� plane, x� �0,L /2� horizontally, t
� �0,7600�, in vertical segments. The color �gray scale� represents
the magnitude of u�x , t�. �b� �a1 ,a2� Fourier mode projection, �c�
�a3 ,a4� projection. The typical time scale is set by the shortest
periods of the unstable periodic orbits embedded in the central,
“wobbly” and side, “traveling wave” patterns of order T=20–25
�see Fig. 5�, so this is a very long simulation, over 300 “turnover”
times. The goal of this paper is to describe the characteristic un-
stable wobble and traveling wave patterns in terms of a hierarchy of
invariant periodic orbit solutions.
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II. METHOD OF NEWTON DESCENT

We will investigate the properties of the Kuramoto-
Sivashinsky equation in a weakly turbulent �or chaotic� re-
gime from the perspective of periodic orbit theory �18�, and
refer to the application of this theory to PDEs as the
recurrent-pattern program since here the coordination of
spatial degrees of freedom plays a major role.

Christiansen et al. �4� proposed in 1997 that the periodic
orbit theory be applied to spatiotemporally chaotic systems,
using the Kuramoto-Sivashinsky system as a laboratory for
exploring viability of the program. They examined its dy-
namics with periodic boundary condition, antisymmetric

subspace, for system size L̃�5.8, close to the onset of chaos,
where a truncation of expansion �4� to 16 Fourier modes
already yields accurate results. The main result was that the
high-dimensional �16–64 dimensions� dynamics of this dis-
sipative flow could be reduced to an approximately one-
dimensinonal �1D� Poincaré return map, by constructing an
invariant unstable-manifold-based curvilinear coordinate
passing close to all unstable periodic orbits embedded within
the strange attractor. A binary symbolic dynamics arising
from this surprisingly simple return map made possible a
systematic determination of all nearby unstable periodic or-
bits up to a given number of Poincaré section returns.

The essential limitations on the numerical studies under-
taken in Ref. �4� were computational constraints: in trunca-
tion of high modes in the expansion �4�, sufficiently many
have to be retained to ensure that the dynamics is accurately
represented; on the other hand, recurrent patterns have to be
located in this high-dimensional state space. High-wave-
number modes have large negative coefficients in the linear
term of �4�, making the system stiff and the integration slow.
Basic difficulties also exist in the application of commonly
used cycle-searching techniques �8,18�, due to the intricate
orbit structure induced by strong nonlinearity. The integra-
tion of the associated Jacobian matrix can also be expensive
due to the high dimensionality.

The “Newton descent” method for determining unstable
spatiotemporally periodic solutions of extended systems has
been formulated and explored numerically in Refs. �19,20�.
The idea of the method is to make a rough but informed
guess of what the desired pattern looks like globally, and
then use a variational method to drive the initial guess to-
ward the exact solution, by minimizing a cost function com-
puted from the deviation of the approximate flow from the
true flow �Fig. 2�a��.

We initiate our searches by a long-time numerical run of
the dynamics, in order to identify the frequently visited re-
gions of the state space �natural measure�, and then search
for close recurrences �21�. An initial loop guess L�0� is
crafted by taking a nearly recurring segment of the orbit,
smoothed and made periodic by a fast Fourier transform
�FFT� into the wave number representation, dropping the
high-frequency components, and making a FFT back to the
state space. In a loop discretization each point has to be
specified in all d dimensions. A typical initial loop guess is
displayed in Figs. 2�b� and 2�c�, along with the periodic orbit
found by the Newton descent method in Fig. 2�d�.

III. EQUILIBRIA OF THE KURAMOTO-SIVASHINSKY
EQUATION

Equilibria �or steady solutions� are the simplest invariant
objects in the state space. Some of them are dynamically
important as they, together with their unstable or stable mani-
folds, partition the state space into qualitatively different re-
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FIG. 2. �Color online� �a� The orientation of a tangent ṽ�x̃� of
the guess loop L��� does not coincide with the orientation of the
velocity field v�x̃�; for a periodic orbit p it does so at every x�p.
The Newton descent method aligns the closed loop tangent to the
given vector field by driving the loop to a periodic orbit. Newton
descent at work for a Kuramoto-Sivashinsky system: �b� a near
return extracted from a long-time orbit, �c� initial guess loop crafted
from it, and �d� the periodic orbit p reached by the Newton descent.
N=512 points representation of the loop, �a1 ,a2� Fourier mode
projection.
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gions and offer a first, coarse description of typical state
space recurrent coherent structures. As we shall show here,
each such region owns its own local Smale horseshoe hier-
archy of unstable periodic orbits, and there are orbits com-
municating between different regions.

The equilibria of the Kuramoto-Sivashinsky equation
�KSE� �1� satisfy

�u2�x − uxx − uxxxx = 0.

Integrating once, we get

u2 − ux − uxxx = E , �7�

where E is an integration constant �22�. Written as a 3D
ODE, with spatial coordinate x playing the role of “time,”
this is a dynamical system �23�,

ux = v, vx = w, wx = u2 − v − E , �8�

with the “time reversal” symmetry

x → − x, u → − u, v → v, w → − w .

Rewriting �8� as

�u + w�x = u2 − E ,

we see that, for E�0, u+w increases without bound as x
→�, and every solution escapes to infinity. If E=0, the ori-
gin �0,0,0� is the only bounded solution, a marginally stable
center with eigenvalues �0, i ,−i�.

For E�0 there is rich E-dependent dynamics, with fractal
sets of bounded solutions. The solutions of �8� are them-
selves in turn organized by its own equilibria and the con-
nections between them �23�. For E�0 the equilibrium points
of �8� are c+= ��E ,0 ,0� and c−= �−�E ,0 ,0�. Linearization of
the flow around c+ shows that c+ has a 1D unstable manifold
and a 2D stable manifold along which solutions spiral in. By
the x→−x time reversal symmetry, the invariant manifolds
of c− have reversed stability properties. Most orbits escape
quickly even if initiated close to the nonwandering set, and
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FIG. 3. Equilibria in Michelson �u ,ux� representation �23�, and as u�x� spatially periodic profiles: �a�,�b� C1; �c�,�d� C2; �e�,�f� R1; �g�,�h�
R2; �i�,�j� T. L=38.5, antisymmetric subspace.
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that renders the numerical calculations difficult �24–27�. The
Newton descent method �19,20� that we employ appears
more robust and effective than the earlier approaches.

For a fixed spatial size L with periodic boundary condi-
tions, the only equilibria are those with spatial periodicity L.
In Fourier representation an equilibrium satisfies the infinite
set of algebraic equations ȧk=0. In numerical computations
these are truncated to a finite set of polynomial equations. In
analogy with Hamiltonian dynamics, we can say that we are
looking for solutions of �1� of a given spatial period L, on
any E shell, rather than looking for solutions of the arbitrary
period for a fixed E shell.

In the antisymmetric subspace considered here, the invari-
ance �6� under discrete translation by x→x+L /2 implies that
every equilibrium solution is either invariant under a half-
cell shift, or has a half-cell translated partner.

A. Search for dynamically important equilibria

For small system sizes L the number of equilibria is small
and concentrated on the low-wave-number end of the Fourier
spectrum. In a high-dimensional state space not all equilibria
influence dynamics significantly, so we need to classify them
according to their importance in shaping the long-time dy-
namics of �1�. We gauge the relative importance of an equi-
librium by its proximity to the most recurrent state space
regions. Empirically, an equilibrium plays at least two roles.
The larger the sum of the positive real parts of its stability
exponents, and/or the more unstable eigendirections it has
�for example, the u=0 solution�, the more unlikely it is that
an orbit will recur in its neighborhood: thus a highly unstable
equilibrium can help elucidate the topology of an asymptotic
attracting set by the “hole” that it cuts in the natural measure.
On the other hand, the asymptotic dynamics can spend a
large fraction of time in neighborhoods of a few “least un-
stable” equilibria, equilibria with only a few unstable eigen-
directions. Unstable manifolds of a set of such equilibria tile
state space with a set of regions explored by the asymptotic
dynamics.

We pick any point on a typical orbit of �4�. It corresponds
to a loop in the 3D state space of �8� and so can be used to
initialize the search for a u�x� profile periodic in �0,L�. For
L=38.5, �=1 we found in this way several dozen equilibria
of �4�.

Next we reinitialize the search by taking the average of an
orbit segment of �4�, with the hope that the typical orbit will
pass through the neighborhood of important equilibria often.
In this way, the number of dynamically important equilibria
is greatly reduced: we find ten solutions, five of which be-
long to the antisymmetric subspace �see Fig. 3�. The corre-
sponding E values and leading linear stability eigenvalues
are listed in Table I. No other equilibria seem to be dynami-
cally important for this system size.

Three dynamically different regions of state space are de-
marcated in Fig. 1�b� by a1� 	0.15. In Table I C refers to
the center in Fig. 1�b� and R to the right. The left equilibria
L are omitted, as they are symmetry partners of R. The C1

TABLE I. Dynamically important equilibria in the antisymmet-
ric subspace, periodic boundary conditions: value of the integration
constant E, as defined in �7�, and the first few least unstable stability
exponents.

E 
1	 i�1 
2	 i�2 
3	 i�3

C1 0.43646 0.044 −0.255 −0.347

	i0.261 	i0.431 	i0.463

C2 0.25784 0.33053 0.097 −0.101

	i0.243 	i0.233

R1 0.36602 0.011 −0.215 −0.358

	i0.796 	i0.549 	i0.262

R2 0.34442 0.33223 −0.001 −0.281

	i0.703 	i0.399

T 0.40194 0.25480 −0.07 −0.264

	i0.645
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FIG. 4. Spatial profile of u�x , t� at an instant t when a typical trajectory passes �a�,�b� SC, �c�,�d� or SR, �e�,�f� or equilibrium T, the
transition region between the central SC and side regions SR. Compare with Fig. 3.
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equilibrium is self-dual with respect to the reflection �6�, and
the rest come in pairs.

The topology of equilibria is organized relative to the sta-
tionary points c+, c− near the unstable spiral-in manifold of
c+ and the stable spiral-out manifold of c−. In Figs. 3�a� and
3�c�, the equilibrium profiles circle the pair c+, c− as a whole,
and u has four peaks on �0,L� �see Figs. 3�b� and 3�d��. In
Figs. 3�e�, 3�g�, and 3�i�, the profiles encircle both equilibria
as well as each separately. The circulation around the two
equilibria �“of equilibria”� may be used to classify the solu-
tions. Each circulation gives a peak in the u profile in �0,L�,
with big circulations corresponding to large oscillations and
small ones to the secondary oscillations.

B. Equilibria and the dynamics

Empirically, the nonwandering set appears to consist of
three regions: the left part �SL�, the center part �SC�, and the
right part �SR�. By the inversion symmetry �6�, SL and SR are
mirror images of each other, so only one of them needs to be
considered, say SR. Within each region the dynamics takes
place on a chaotic repeller, with an orbit occasionally escap-
ing a region and landing in the next region. Such rapid tran-
sitions show up as “defects” in the spatiotemporal evolution
in Fig. 1�a�.

Judged by recurrences in the long-time dynamics, the
weakly unstable C1 and R1 appear to be the most important
equilibria, with typical return times Ti=2� /�i of TC1

=24.0
and TR1

=7.89. In contrast, the dynamics appears to steer
clear of C2, equilibrium unstable in three eigendirections.
The T equilibrium appears to mediate transitions between the
side and the center regions. After checking all projections of
a typical long orbit onto all �ai ,aj� planes, we found that the
dynamics frequents only the neighborhoods of the equilibria
listed in Table I.

Segments of a typical orbit in the nonwandering set bear
close resemblance to the equilibria listed in Fig. 3. The
�u ,ux� representations and the spatial profiles of three typical
instants in the long-time evolution of Fig. 4 resemble the
equilibria shown in Fig. 3: Fig. 4�c� is similar to Fig. 3�c�
and Fig. 4�a� is similar to Fig. 3�a�. The state in Fig. 4�e�,
which lies along the transition from SR to SC, has no clear
equilibrium counterpart. So, at this stage, equilibria partition
the state space at the coarsest level into the alphabet
	SL ,SC ,SR
.

IV. RECURRENT PATTERNS

In this section we investigate the recurrent patterns in the
KSE dynamics by constructing the unstable manifolds of dy-
namically important invariant sets. We define intrinsic curvi-
linear coordinates along unstable manifolds and then deduce
return maps and construct approximate symbolic dynamics,
which greatly facilitates the search for unstable periodic or-
bits. This program is quite successful for the “center” SC
part, but less so for the “side” SR part.

All numerical work presented here is for system size L
=38.5, �=1, chosen large enough to exhibit spatially non-
trivial competition between various chaotic patterns. We find

that the 16-Fourier-mode truncation is sufficient for our pur-
poses �2,16�; the equilibria and periodic orbits change by a
few percent if the number of modes is doubled. The transla-
tional invariance of �1� in the full state space implies that
relative equilibria and periodic orbits could play important
roles �28�. The restriction to the antisymmetric subspace ex-
cludes this type of solution.

A. Poincaré sections

We initialize our periodic orbit searches by checking for
the nearly recurrent orbit segments. Motivated by Fig. 1�b�,
we choose the hyperplane a1=0 as our Poincaré section for
searches within SC. The shortest unstable periodic orbits re-
siding in SC are displayed in Fig. 5. Each of them has a
partner related by the reflection symmetry �6�, except for the
symmetric one, Fig. 5�a�, which is self-dual under the reflec-
tion. The Poincaré section for SR is chosen as a4=−0.122.
The shortest unstable periodic orbits residing in SR are de-
picted in Figs. 6�a� and 6�b�. Each of them has a symmetry
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FIG. 5. �a1 ,a2� Fourier mode projection of several shortest pe-
riodic orbits in SC. The periods are T= �a� 25.6095; �b� 25.6356; �c�
36.7235; �d� 37.4083.
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partner in SL. The one in Fig. 6�a� is seen to mediate the
transition from SR to SC, and the one in Fig. 6�b� will be used
to build a symbolic dynamics in SR. All periodic orbits that
we have found have only one unstable eigendirection, en-
abling us to construct a 1D map to model the state space
dynamics on some chosen Poincaré section.

Figures 6�c� and 6�d� show a long, period T=355.34, pe-
riodic orbit that communicates between SC and SR. We ini-
tialize the search for this orbit by choosing a segment of
long-time orbit that communicates between SC and SR. Sev-
eral of such long communicating periodic orbits are found
with similar or longer periods.

The unstable manifolds of all periodic orbits found so far
rarely have more than two unstable eigendirections. This is
consistent with the estimated linear growth of the Hausdorff
dimension of the nonwandering set with the system size �29�.
In general, there exist many unstable periodic orbits with
many unstable directions, but they do not appear to partici-
pate in the asymptotic dynamics. Although more than 50

unstable periodic orbits were found in our preliminary
search, we have no criterion that would preclude the possi-
bility of more important ones yet to be detected.

In the preliminary search, we chose the Poincaré section
by examining Fig. 1. A good Poincaré section is essential to
the success of all subsequent steps. It should cut all the orbits
in the nonwandering set transversely and should be numeri-
cally convenient; all our Poincaré sections are hyperplanes.
After a Poincaré section is chosen, we determine the sym-
bolic dynamics by examining the return map defined on the
Poincaré section. In our case, the unstable manifold of the
shortest orbit is nearly one dimensional and the dynamics
can be approximated by maps defined on 1D line segments.

According to Table I, the least unstable equilibria C1 and
R1 have 2D spiral-out unstable manifolds. In the neighbor-
hood of C1 and R1 the unstable manifolds are well approxi-
mated by the corresponding eigenplanes determined by their
complex eigenvalue pairs. The projections to the eigenplanes
of nearby long-time orbit segments in Fig. 1�b� are displayed
in Fig. 7. Figure 7�a� shows a projection onto the eigenplane
e1-e2 of the center equilibrium C1 �origin in the figure�,
where e1 is the real part of the eigenvector and e2 is then
taken normal to e1; the orbit is circling and avoiding C1. At
the left and the right bounds, there are extra orbit rotations
which have a rotation plane roughly perpendicular to the
e1-e2 eigenplane. It turns out that this rotation is related to
the transition equilibrium T. Thus, the dynamics of the cen-
tral part is controlled by C1 and T �and T*, the symmetric
image of T� with the orbit spending most of the time around
C1. An obvious choice of the Poincaré section is PC: â1=0,
where â1= �a−a�C1�� ·e1 is the projection of the state space
point a relative to the equilibrium C1 along the e1 direction.
Figure 7�b� shows the projection onto the eigenplane e1-e2 of
the right-side equilibrium R1 �at the origin �0,0� in the fig-
ure�. We see that most of the time the orbit circles around R1.
There are many small oscillations near the bottom, in this
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FIG. 6. �a� Shortest periodic orbit pR2 in SR, T=12.0798, �a3 ,a4�
Fourier mode projection. �b� Second shortest periodic orbit pR1 in
SR, T=20.0228, �a3 ,a4� projection. �c� �a1 ,a2� projection and �d�
�a3 ,a4� projection of a long periodic orbit connecting SC and SR,
T=355.34.
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FIG. 7. �Color online� Projection of a typical state space trajec-
tory segment onto the linearized stability eigenplanes of equilibria
C1 and R1. The projection of part of �a� the center orbit to the
eigenplane �e1 ,e2� of C1, and �b� the right-sided orbit to the eigen-
plane �e1 ,e2� of R1.
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projection partially masked by the dense band. In the follow-
ing, PR: â1=0 �different from the center one� is taken to be
the Poincaré section. This is not a perfect choice as the oc-
casional tangent passage of the orbit to PR can cause trouble.

B. Curvilinear coordinates, center repeller

By construction, the section PC contains C1 and the ei-
genvector e2 and is perpendicular to the e1-e2 expanding
eigenplane of C1. We compute the intersection of the
Poincaré section PC with the two-dimensional unstable
manifold of C1 by iterating �30� a set of initial points on the
	e2 eigenvector, infinitesimally close to C1. At nearest turn-
back points the unstable manifold bends back sharply and
then nearly retraces itself �see Figs. 8�a� and 8�b��. Denote by
LC the “base segment” of the unstable manifold between the
two nearest turn-back points that bracket C1. Turn-back
points are points on the unstable manifold for which the local
unstable manifold curvature diverges for forward iterates of
the map, i.e., points at which the manifold folds back onto
itself arbitrarily sharply �31–33�. For our purpose, approxi-
mate turn backs suffice. Figure 8�c� shows the first iterate of
LC: finer structures do develop, but on the whole they lie
close to LC and should be well described by the intrinsic
curvilinear coordinate that we now define �4�.

Assign to each d-dimensional point â�LC a coordinate
s=s�â� whose value is the Euclidean arclength to C1 mea-
sured along the one-dimensional PC section of the C1 un-
stable manifold. Next, for a nearby point â0�LC determine
the point â1�LC which minimizes the Euclidean distance
�â0− â1�2, and assign arclength coordinate value s0=s�â1� to
â0. In this way, an approximate one-dimensional intrinsic
coordinate system is built along the unstable manifold. This

parametrization is useful if the nonwandering set is suffi-
ciently thin that its perpendicular extent can be neglected,
with every point on the nonwandering set assigned the near-
est point on the base segment LC.

Armed with this intrinsic curvilinear coordinate param-
etrization, we are now in a position to construct a one-
dimensional model of the dynamics on the nonwandering set.
If ân is the nth Poincaré section of a trajectory in the neigh-
borhood of C1, and sn is the corresponding curvilinear coor-
dinate, then sn+1= f�sn� models the full state space dynamics
ân→ ân+1. We define f�sn� as a smooth, continuous one-
dimensional map f: LC→LC by taking ân�LC, and assigning
to ân+1 the nearest base segment point sn+1=s�ân+1�.

This Poincaré return map is multimodal and, due to the
discrete symmetry �6�, antisymmetric under the s→−s re-
flection. This discrete symmetry �6� can be profitably used to
simplify the symbolic dynamics �18�. Defining the s�0 seg-
ment as the fundamental domain, the return map for the fun-
damental domain is partitioned by two points 	0.2825,
0.6905
 into a three-letter alphabet 	0,1,2
 �see Fig. 8�e��.
The chaos generating mechanism—stretching and
folding—is clearly illustrated by this return map. The dy-
namics can now be approximated by a subshift of finite type
in the space of symbol sequences built from these three let-
ters �18,34�.

The distribution of the points on the return map is highly
nonuniform. This is consistent with the Poincaré section Fig.
8�c� for which the vertical segments in the middle contain
fewer representative points than other segments. Our studies
indicate that the dynamics in this region of state space is
controlled by the “transition” equilibrium T. T has a much
stronger repulsion rate �
T�0.2548� than the C1 equilibrium
�
C1

�0.044 22; see Table I�. A line segment is strongly
stretched by a close passage to T, and its representative
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FIG. 8. �a�–�d� Fourier mode projection of the unstable manifold segment LC of C1 on the Poincaré section PC. �a� �a1, a2� projection of
the unstable manifold on PC. �b� �a3, a4� projection �LC is represented by 564 points�. �c� Projection of the first iteration of LC. �d� Projection
of all computed unstable periodic orbits of the full domain topological length up to n=8. �e�,�f� Poincaré return map on PC, the intrinsic
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. � marks the
position of C1 and � mark the turn-back points. �f� Periodic points in the fundamental domain, overlaid over the return map �e�.
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points get very sparse upon one Poincaré iteration. This in-
dicates that the dynamics in the center region of state space
is coarsely organized by the two equilibria C1 and T.

The return map f�s� leads to approximate finite Markov
diagrams and the associated symbolic dynamics, enabling us
to search for unstable periodic orbits in a systematic fashion.
Up to length 4, the pruning rule implied by Fig. 8�e� pre-
cludes symbol sequences 	21,22,202,2010
. We find all un-
stable periodic orbits of period n within SC by first determin-
ing the zeros of the one-dimensional map fn�s� �i.e., the
n-periodic points of f�s��, and then initiating the Newton
descent by the corresponding points in the full state space.
Whenever the 1D model map is a good representation of the
full state space dynamics, this approach yields a periodic
orbit for every admissible itinerary, of arbitrary period.

For the center region SC the return map of Figs. 8�e� and
8�f� appears to be a good description of the full state space
dynamics. We found all admissible orbits up to length 8, and
list the orbits of fundamental domain periods up to 4 in Table
II. The cycles with n odd are symmetric under the reflection
�6�, while the cycles with n even are either self-dual or have
a symmetry partner. A few examples are plotted in Fig. 9.

All unstable periodic orbits we found in SC have one un-
stable eigendirection, with other eigendirections highly con-
tracting, which partially justifies the 1D description of the
dynamics. Figure 8�d� shows the PC periodic points of peri-
ods up to 8; the set agrees well with the unstable manifold
section of Fig. 8�c�. Figure 8�f� displays the return map in the
fundamental domain reconstructed from these periodic
points. It matches well the map Fig. 8�e�, with the exception
of an “outlier” cycle, denoted 0001* in Table II, which shares

the symbol sequence with cycle 	0001
. The same outlier is
visible in the center of the lower left quadrant of Fig. 8�d�.
This point lies on another branch of the attractor, defined by
a different turn-back point. Cycles depicted in Figs. 5�a�,
5�c�, 5�d�, 9�c�, and 9�d� also belong to other branches, and
are not listed in Table II. There are infinitely many turning
points and unstable manifold folds; our description accounts
for only one important part of SC.

To summarize: the approximate one-dimensional dynam-
ics based on the closest turn-back pair interval bracketing the
C1 equilibrium unstable manifold suffices to establish the
existence of a Smale horseshoe in this neighborhood. A more
accurate description would require inclusion of further turn
backs �35,36�.

C. Side repeller

The dynamics within the side repeller SR appears more
complicated than the one discussed above for the center SC.
In this case our local Poincaré return map captures only a
small �though important� subset of the SR nonwandering set.
For the SR case, we utilize the unstable manifold of the n
=1 cycle shown in Fig. 6�b� and listed in Table II as cycle 0.
The unstable manifold has two intersections with the
Poincaré section PR; we take the upper one �along e2� as the
origin from which to measure arclength s. The 1D unstable
eigenvector of the 0 cycle fundamental matrix is then used to
construct the one-dimensional, arclength-parametrized base
segment of the unstable manifold LR, as in the preceding
section and Ref. �30�. We represent it numerically by 82

TABLE II. Cycles up to topological length 4 for the center repeller in the fundamental domain; cycles up to topological length 8 for the
side repeller. Listed are the topological lengths, the itineraries p, the largest Lyapunov exponents 
p=ln��p,1� /Tp, periods Tp, and the first
three �four� stability eigenvalues �to save space, complex eigenvalue pairs are labeled by a single index�. Our approximate symbolic
dynamics fails to resolve cycles 0001 and 0001*.

p 
p Tp �1 �3 �4

Center periodic orbits

1 1 0.0946 12.8047 −3.3581 0.20299 0.008861

2 01 0.07363 25.6356 −6.6028 0.004697 −0.0003854

3 001 0.05814 38.7241 −9.5000 0.0001186 3.687817783�10−5

011 0.0698 38.4520 14.6402 5.0398�10−5 0.00029158

002 0.04558 37.8160 8.6967 1.01538�10−4 5.1672�10−5

4 0001 0.04647 52.5998 −11.5219 1.3912�10−5 −3.4661�10−7

0001* 0.05511 57.7721 −24.1326 4.1012�10−5 −6.6332�10−5

0011 0.05736 51.8915 19.6194 −7.5089�10−5 2.3526	 i2.4938�10−8

0111 0.07977 51.2393 −59.5683 0.0001284 −1.0469�10−8

0002 0.047 57.3329 14.802 7.8781�10−6 −5.0674�10−7

0012 0.05103 58.0857 −19.3765 −6.9811�10−5 −3.5525�10−8

Side periodic orbits

1 0 0.02747 20.0228 −1.7333 −0.433 0.001158	 i0.0002633

2 01 −0.006163 40.0565 −0.5569	 i0.5479 1.4892�10−6 1.2363�10−6

6 000001 0.01113 120.1658 −3.8073 −0.05628 −4.03�10−10

7 0000101 0.02363 140.196 −27.4733 −0.006032 −6�10−12

8 00001001 0.03375 160.2561 223.2796 0.0005662 −1.202�10−9
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points. Figures 10�a� and 10�b� show the �a1,a2� and �a3 a4�
Fourier mode projections of LR.

Figure 10�c� shows the first iterate of LR, with a clear
indication of a turn back. Figure 10�d� indicates a second
turn back arising from the second iteration of LR. Higher
iterations show still finer turn-back structures. The approxi-
mate return map displayed in Fig. 10�e� is unimodal, with the
two symbols 	0,1
 representing the two monotone laps, par-
titioned by the critical point at s=0.034. The corresponding
pruning rules up to length 8 preclude the existence of se-
quences 	11,1001,10000
, so the set of admissible subse-
quences up to length 8 is 	0,01,0001,000101,00010101
.

The search based on this symbolic dynamics yields cycles
up to length n=8 listed in Table II. Note that the 01 cycle is
attractive, and thus not part of the repeller SR. This approxi-
mate symbolic dynamics predicts that all cycles of lengths
n=6,7 ,8 are pruned; nevertheless such cycles do exist. Fur-
thermore, the admissible sequences such as 0001 have no
corresponding unstable periodic orbits. Figure 10�f� shows
the unstable manifold return map superimposed on the one
constructed from the periodic points �diamonds�. The return
map here captures only the gross features of the overall dy-
namics of the unstable periodic orbits. All this indicates that
in this case our simple one-dimensional model dynamics is
not as good a description as that for SC.

To summarize, the Newton descent enables us to deter-
mine all symbolic dynamics admissible unstable periodic or-
bits on SC up to topological length n=8. The Poincaré return
map guided Newton descent searches for SR were not as
successful, yielding only the small set of unstable periodic
orbits listed in Table II.

However, even the partial knowledge of symbolic dynam-
ics implied by the approximate return map of Fig. 10�e� leads
to a very interesting discovery of the attracting periodic orbit
of period T=40.0565, Fig. 11�a�. A nearby unstable periodic
orbit of period T=60.1112 of similar appearance is shown in
Fig. 11�b�. In studies of turbulence in fluids the only known
stable solutions are the laminar equilibria, but, from the dy-
namical systems point of view, for higher-dimensional flows
any number of coexisting attractors can exist. The above
nontrivial stable state would never be observed in a long-
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FIG. 9. �a1,a2� Fourier mode projection of two cycles in SC

listed in Table II: �a� cycle 0011, �b� cycle 0012. Two short typical

cycles not listed in the table: �c� a symmetric unstable periodic orbit

in SC with the period T=77.4483, �d� an asymmetric unstable peri-

odic orbit in SC with the period T=81.3345.
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FIG. 10. Fourier mode projec-
tions of the unstable manifold LR

of 0 cycle on the Poincaré section
PR: �a� �a1,a2� and �b� �a3,a4� pro-
jection of the unstable manifold
on PR. Projection of �c� the first
iteration of LR and �d� the second
iteration of LR. �e�,�f� The
Poincaré return map on PR, intrin-
sic coordinate: �e� Unimodal re-
turn map, with alphabet 	0,1
. �f�
The return map reconstructed
from the periodic points �dia-
monds�. For comparison, the un-
stable manifold return map is in-
dicated by the dots.
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time, random initial conditions numerical simulation of the
flow, as its immediate basin of attraction is an exceedingly
small island embedded within the “sustained turbulence” re-
gion of state space.

SUMMARY

The recurrent-pattern program was first implemented in
detail �4� on the 1D Kuramoto-Sivashinsky system at the
onset of chaotic dynamics. For these specific parameter val-
ues, many recurrent patterns were determined numerically
and the periodic orbit theory predictions tested. In this paper
we venture into a large Kuramoto-Sivashinsky system, just
large enough to exhibit turbulent dynamics of topologically
richer structure, arising through competition of several un-
stable coherent structures. Both papers explore dynamics
confined to the antisymmetric subspace, a space for which
periodic orbits characterize turbulent dynamics. Reference

�7� studies the Kuramoto-Sivashinsky system in the full pe-
riodic domain, where relative periodic orbits due to the con-
tinuous translational symmetry play a key role, and Ref. �37�
applies the lessons learned to a full 3D Navier-Stokes flow.
In this context, Kawahara and Kida �38� have demonstrated
that the recurrent patterns can be determined in turbulent
hydrodynamic flows by explicitly computing several impor-
tant unstable spatiotemporally periodic solutions in the three-
dimensional plane Couette turbulence.

We have applied here the recurrent-pattern program to the
Kuramoto-Sivashinsky system in a periodic domain, anti-
symmetric subspace, in a larger domain size than explored
previously �4�. The state space nonwandering set for a sys-
tem of this particular size appears to consist of three repel-
ling Smale horseshoes and orbits communicating between
them. Each subregion is characterized by qualitatively differ-
ent spatial u profiles in the 1D physical space. The recurrent
patterns, identified in this investigation by nearby equilibria
and periodic orbits, capture well the state space geometry
and dynamics of the system. Both the equilibria and periodic
orbits are efficiently determined by the Newton descent
method. The equilibria so determined, together with their
unstable manifolds, provide the global frame for the nonwan-
dering set. We utilize these unstable manifolds to build 1D
curvilinear coordinates along which the infinite-dimensional
PDE dynamics is well approximated by one-dimensional re-
turn maps and the associated symbolic dynamics. In prin-
ciple, these simple models of dynamics enable us to system-
atically classify and search for recurrent patterns of arbitrary
periods. For the particular examples studied, the approach
works well for the central repeller but not so well for the side
repeller.

The above advances are a proof of principle, first steps in
the direction of implementing the recurrent-pattern program.
But there is a large conceptual gap to bridge between what
has been achieved, and what needs to be done: Even the
flame flutter has been probed only in its weakest-turbulence
regime, and it is an open question to what extent Hopf’s
vision remains viable as such spatiotemporal systems grow
larger and more turbulent.
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