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Abstract. Spatiotemporally chaotic dynamics of a Kuramoto–Sivashinsky system is described
by means of an infinite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic
parametrization of the corresponding invariant set serves as an accurate guide to the high-
dimensional dynamics, and the periodic orbit theory yields several global averages characterizing
the chaotic dynamics.

PACS numbers: 0230J, 0320, 0340, 0545

Introduction

In recent years unstable periodic orbits have been shown to be an effective tool in the
description of deterministic dynamical systems of low intrinsic dimension [1], in diagnosing
deterministic chaos in noisy biological systems [2], and many other applications. The
theory has been successfully applied to low-dimensional ordinary differential equations
(deterministic chaos) and linear partial differential equations (semiclassical quantization). It
is an open question whether the theory has anything to say about nonlinear partial differential
equations (hydrodynamics, field theory). In this paper we show that the periodic orbit
theory can be used to describe spatially extended systems by applying it to the Kuramoto–
Sivashinsky equation [3, 4].

In what follows we shall refer to a periodic solution as a ‘cycle’, and to the closure of
the union of all periodic solutions as the ‘invariant set’. Periodic solutions are important
because they form the skeleton of the invariant set [5, 6], with cycles ordered hierarchically;
short cycles give good approximations to the invariant set, longer cycles refinements. Errors
due to neglecting long cycles can be bounded, and for nice hyperbolic systems they fall off
exponentially or even superexponentially with the cut-off cycle length [7, 8]. Furthermore,
cycles are structurally robust as for smooth flows eigenvalues of short cycles vary slowly
with smooth parameter changes, short cycles can be accurately extracted from experimental
or numerical data, and global averages (such as correlation exponents, escape rates and
other ‘thermodynamic’ averages) can be efficiently computed from short cycles by means
of cycle expansions.
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While the role of periodic solutions in elucidating the asymptotics of ordinary differential
equations was already appreciated by Poincaré [9], allegedly Hopf [10] and, more
demonstrably, Spiegel and collaborators [11–13] have argued that the asymptotics of partial
differential equations should also be described in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system through a repertoire of
unstable patterns; as we watch a given ‘turbulent’ system evolve, every so often we
catch a glimpse of a familiar pattern. For any finite spatial resolution, the system follows
approximately for a finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such patterns,
just as chaotic dynamics with a low-dimensional attractor can be thought of as a succession
of nearly periodic (but unstable) motions.

1. Kuramoto–Sivashinsky system

We offer here a modest implementation of the above program on a prototype spatially
extended dynamical system defined by the Kuramoto–Sivashinsky equation [3, 4]

ut = (u2)x − uxx − νuxxxx (1)

which arises as a model amplitude equation for interfacial instabilities in a variety of
contexts—see e.g. [14]. Heret > 0 is the time,x ∈ [0, 2π ] is the space coordinate,
and ν is a fourth-order ‘viscosity’ damping parameter. The subscriptsx and t denote the
partial derivatives with respect tox and t . We take the Kuramoto–Sivashinsky system
because it is one of the simplest physically interesting spatially extended nonlinear systems,
but in the present context the interpretation of the equation, or the equation itself is not
the most important element; the approach should be applicable to a wide class of spatially
extended nonlinear systems. The salient feature of such partial differential equations is
that for any finite value ofν their asymptotics is in principle describable by afinite set of
‘inertial manifold’ ordinary differential equations [15].

The program of studying unstable solutions in this context was initiated by Goren,
Eckmann and Procaccia [16] who have used a two-unstable modes truncation of the
Kuramoto–Sivashinsky equation to study the dynamics connecting coexisting unstable
temporally stationarysolutions. We shall study here unstablespatiotemporally periodic
solutions of thefull Kuramoto–Sivashinsky system. Our main result is that in the limit of
weak turbulence or ‘spatiotemporal chaos’, we can determine hierarchically and exhaustively
cycles of longer and longer periods, and apply this data to the evaluation of global averages.

The functionu(x, t) = u(x + 2π, t) is assumed periodic on thex ∈ [0, 2π ] interval.
As u(x, t) has compact support, the standard strategy is to expand it in a discrete spatial
Fourier series:

u(x, t) =
+∞∑

k=−∞
bk(t)e

ikx . (2)

Sinceu(x, t) is real,bk = b∗
−k. Substituting (2) into (1) yields the infinite ladder of evolution

equations for the Fourier coefficientsbk:

ḃk = (k2 − νk4)bk + ik
∞∑

m=−∞
bmbk−m. (3)

As ḃ0 = 0, the average (the mean drift) of the solution is an integral of motion. In what
follows we shall assume that this average is zero,

∫
dx u(x, t) = 0.
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The coefficientsbk are in general complex functions of time. We can simplify the
system (3) further by assuming thatbk are pure imaginary,bk = iak, whereak are real. As
we shall see below, this picks out the subspace of odd solutionsu(x, t) = −u(−x, t), with
the evolution equations

ȧk = (k2 − νk4)ak − k

∞∑
m=−∞

amak−m. (4)

We shall determine the periodic solutions in the space of Fourier coefficients, and then
reconstitute from them the unstable spatiotemporally periodic solutions of (1).

The trivial solutionu(x, t) = 0 is a fixed point of (1). From (4) it follows that the
|k| < 1/

√
ν long wavelength modes of this fixed point are linearly unstable, and the

|k| > 1/
√

ν short wavelength modes are stable. Forν > 1, u(x, t) = 0 is the globally
attractive stable fixed point; starting withν = 1 the solutions go through a rich sequence
of bifurcations, studied e.g. in [14]. Detailed knowledge of the parameter dependence of
bifurcations sequences is not needed for our purposes; we shall take

√
ν sufficiently small

so that the dynamics can be spatiotemporally chaotic, but not so small that we would be
overwhelmed by too many short wavelength modes needed in order to accurately represent
the dynamics.

The growth of the unstable long wavelengths (low|k|) excites the short wavelengths
through the nonlinear term in (4). The excitations thus transferred are dissipated by the
strongly damped short wavelengths, and a sort of ‘chaotic equilibrium’ can emerge. The
very short wavelengths|k| � 1/

√
ν will remain small for all times, but the intermediate

wavelengths of order|k| ∼ 1/
√

ν will play an important role in maintaining the dynamical
equilibrium. As the damping parameter decreases, the solutions increasingly take on Burgers
type shock front character which is poorly represented by the Fourier basis, and many higher
harmonics need to be kept [14, 16] in truncations of (4). Hence, while one may truncate the
high modes in the expansion (4), care has to be exercised to ensure that no modes essential
to the dynamics are chopped away.

Before proceeding with the calculations, we take into account the symmetries of the
solutions and describe our criterion for reliable truncations of the infinite ladder of ordinary
differential equations (4).

2. Symmetry decomposition

As usual, the first step in analysis of such dynamical flows is to restrict the dynamics to
a Poincaŕe section. We shall fix the Poincaré section to be the hyperplanea1 = 0. We
integrate (4) with the initial conditionsa1 = 0, and arbitrary values of the coordinates
a2, . . . , aN , where N is the truncation order. Whena1 becomes 0 the next time, the
coordinatesa2, . . . , aN are mapped into(a′

2, . . . a
′
N) = P(a2, . . . , aN), where P is the

Poincaŕe map.P defines a mapping of a(N −1)-dimensional hyperplane into itself. Under
successive iterations ofP , any trajectory approaches the attractorA, which itself is an
invariant set underP .

A trajectory of (4) can cross the planea1 = 0 in two possible ways: either wheṅa1 > 0
(‘up’ intersection) or whenȧ1 < 0 (‘down’ intersection), with the ‘down’ and ‘up’ crossings
alternating. It then makes sense to define the Poincaré mapP as a transition between, say,
‘up’ and ‘up’ crossing. With Poincaré section defined as the ‘up–up’ transition, it is natural
to define a ‘down–up’ transition map2. Since2 describes the transition from down to up
(or up to down) state, the map22 describes the transition up–down–up, that is22 = P .
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Consider the spatial flip and shift symmetry operationsRu(x) = u(−x), Su(x) = u(x+
π). The latter symmetry reflects the invariance under the shiftu(x, t) → u(x+π, t), and is a
particular case of the translational invariance of the Kuramoto–Sivashinsky equation (1). In
the Fourier modes decomposition (4) this symmetry acts asS : a2k → a2k, a2k+1 → −a2k+1.
RelationsR2 = S2 = 1 induce decomposition of the space of solutions into four invariant
subspaces [14]; the above restriction tobk = iak amounts to specializing to a subspace of
odd solutionsu(x, t) = −u(−x, t).

Now, with the help of the symmetryS the whole attractorAtot can be decomposed
into two pieces: Atot = A0 ∪ SA0 for some setA0. It can happen that the setA0

(the symmetrically decomposed attractor) can be decomposed even further by the action
of the map 2. In this case the attractor will consist of four disjoint sets:Atot =
A ∪ SA ∪ 2A ∪ 2SA. As we shall see, this decomposition is not always possible, since
sometimesA overlaps with2SA (in this case2A will also overlap withSA). We shall
carry out our calculations in the regime where the decomposition into four disjoint pieces
is possible. In this case the setA can be taken as the fundamental domain of the Poincaré
map, withSA, 2A and2SA its images under theS and2 mappings.

This reduction of the dynamics to the fundamental domain is particularly useful in
periodic orbit calculations, as it simplifies symbolic dynamics and improves the convergence
of cycle expansions [17].

3. Fourier modes truncations

When we simulate the equation (4) on a computer, we have to truncate the ladder of
equations to a finite lengthN , i.e. setak = 0 for k > N . N has to be sufficiently large that
no harmonicsak important for the dynamics withk > N are truncated. On the other hand,
computation time increases dramatically with the increase ofN : since we will be evaluating
the stability matrices for the flow, the computation time will grow at least byN2.

Adding an extra dimension to a truncation of the system (4) introduces a small
perturbation, and this can (and often will) throw the system into a totally different asymptotic
state. A chaotic attractor forN = 15 can become a period-3 window forN = 16, and so
on. If we compute, for example, the Lyapunov exponentλ(ν, N) for the strange attractor
of the system (4), there is no reason to expectλ(ν, N) to smoothly converge to the limit
value λ(ν, ∞) as N → ∞. The situation is different in the periodic windows, where the
system is structurally stable, and it makes sense to compute Lyapunov exponents, escape
rates, etc for therepeller, i.e. the closure of the set of allunstableperiodic orbits. Here
the power of cycle expansions comes in: to compute quantities on the repeller by direct
averaging methods is generally more difficult, because the motion quickly collapses to the
stable cycle.

We have found that the minimum value ofN to get any chaotic behaviour at all was
N = 9. However, the dynamics for theN = 9 truncated system is rather different from
the full system dynamics, and therefore we have performed our numerical calculations for
N = 15, N = 16 andN = 17. Figure 1 is a representative plot of the Feigenbaum tree
for the Poincaŕe mapP . To obtain this figure, we took a random initial point, iterated it
for a some time to let it settle on the attractor and then plotted thea6 coordinate of the
next 1000 intersections with the Poincaré section. Repeating this for different values of the
damping parameterν, one can obtain a picture of the attractor as a function ofν. For an
intermediate range of values ofν, the dynamics exhibits a rich variety of behaviours, such
as strange attractors, stable limit cycles, and so on. The Feigenbaum trees for different
values ofN resemble each other, but the precise values ofν corresponding the various
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Figure 1. Feigenbaum tree for coordinatea6, N = 16 Fourier modes truncation of (4). The
two upper arrows indicate the values of damping parameter that we use in our numerical
investigations;ν = 0.029 910 (chaotic) andν = 0.029 924 (period-3 window). The lower
arrow indicates the kink where the invariant setA starts to overlap with2SA. Truncation
to N = 17 modes yields a similar figure, with values for specific bifurcation points shifted
by ∼ 10−5 with respect to theN = 16 values. The choice of the coordinatea6 is arbitrary;
projected down to any coordinate, the tree is qualitatively the same.

bifurcations depend on the order of truncationN .
Based on the observed numerical similarity between the Feigenbaum trees forN = 16

and N = 17 (cf. figure 1), we chooseN = 16 as a reasonable cut-off and will use only
this truncation throughout the remainder of this paper. We will examine two values of the
damping parameter:ν = 0.029 910, for which the system is chaotic, andν = 0.029 924,
for which the system has a stable period-3 cycle. In our numerical work we use both
the pseudospectral [18] and the fourth order variable-step Runge–Kutta integration routines
[19]; their results are in satisfactory agreement. As will be seen below, the good control
of symbolic dynamics guarantees that we do not miss any short periodic orbits generated
by the bifurcation sequence indicated by the Feigenbaum tree of figure 1. However, even
though we are fairly sure that for this parameter value we have all short periodic orbits, the
possibility that other sets of periodic solutions exist somewhere else in the phase space has
not been excluded.

The problem with such high-dimensional truncations of (4) is that the dynamics is
difficult to visualize. We can examine its projections onto any three axesai, aj , ak, as
in figure 2 or, alternatively, study a return map for a given coordinateak → a′

k =
Pk(a2, . . . , aN) as the one plotted in figure 3. The full return map is(N − 1)-dimensional
a → P (a2, . . . , aN) = a′ and single-valued, and for the values ofν used here the attractor
is essentially one-dimensional, but its projection into the{ak, Pk(a2, . . . , aN)} plane can be
multi-valued and self-intersecting. One can imagine a situation where no ‘good’ projection
is possible, that is, any projection onto any two-dimensional plane is a multiple-valued
function. The question is how to treat such a map?
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Figure 2. Projections of a typical 16-dimensional trajectory onto different three-dimensional
subspaces, coordinates (a) {a1, a2, a3}, (b) {a1, a2, a4}. N = 16 Fourier modes truncation with
ν = 0.029 910.

Figure 3. The attractor of the system (4), plotted as thea6 component of thea1 = 0 Poincaŕe
section return map, 10 000 Poincaré section returns of a typical trajectory. Indicated are the
periodic points0, 1 and01; as this is an arbitrary projection of the invariant set, they exhibit no
good spatial ordering.N = 16 Fourier modes truncation withν = 0.029 910.

4. One-dimensional visualization of the dynamics

We now describe an approach which simplifies matters a lot by reducing the map to an
approximate one-dimensional map. The multiple-valuedness in figure 3 arises from the
fact that the return map is a two-dimensional projection of a convoluted one-dimensional
curve embedded into a high-dimensional space. We shall show that it is possible to find
an intrinsic parametrizations along the unstable manifold, such that the maps → f (s)

induced by the fulld-dimensional flow is approximatelyone-dimensional. Strictly speaking,
the attractor on figure 3 has a certain thickness transverse to it, but the contraction in the
transverse directions is so strong that the invariant set is effectively one-dimensional.
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Suppose we already have determined some of the shorter cycles for our system, i.e.
the fixed points of the Poincaré map and its iterates. This is accomplished relatively easily
by checking a trajectory of a random initial point for close returns and then using these as
initial guesses for a cycle search algorithm. We now assume that the invariant set can be
approximated by a curve passing close to all periodic points, and determine the order of
periodic points along such curve. This is done in the following way: there exists a fixed
point which is not connected to the attractor (the point0 in figure 3)—we choose this fixed
point as the starting point and assign it number 1. Point number 2 is the periodic point
in the sample which is closest (in the full space) to this fixed point, and thenth point is
determined as the point which has the minimum distance from the point numbern − 1
among all the periodic points which have not yet been enumerated. Proceeding this way,
we order all the periodic points that we have found so far.

Since all periodic points belong to cycles, their images are known and are simply the
successive periodic points along the cycle. We use this fact to recursively construct a one-
dimensional mappingsi → f (si) (see figure 4). We approximate parametrization lengths

along the invariant set by computing the Euclidean inter-distances between the successive
periodic points in the full dynamical space,s1 = 0, s2 = ‖a2−a1‖, si −si−1 = ‖ai −ai−1‖.
The ith cycle pointsi is mapped onto its imagesσ i = f (si), whereσ i denotes the label
of the next periodic point in the cycle. We can now find longer periodic orbits of the one-
dimensional mapf by standard methods such as inverse iteration, and guess the location
of the corresponding points in the fullN -dimensional space by interpolating between the
nearest known periodic points. These will not be exact periodic orbits of the full system, but
are very useful as good starting guesses in a search for the exact periodic orbits. Iteratively,
more and more periodic orbits can be computed. While it only pays to refine the one-
dimensional parametrization until the density of the periodic points become so high that the
width of the attractor becomes noticeable, the one-dimensional map continues to provide
good initial guesses to longer periodic orbits. More sophisticated methods are needed only if
high accuracy around the folding region off (s) is required in order to distinguish between
long cycles.

For the values ofν we are working with, the attractor consists of four disjoint sets, the
fundamental domainA and its images under the mapsS and2. In this case the approximate
return maps → f (s) is unimodal. The corresponding map on the symmetric part of the
attractor,S2A, is likewise unimodal, and turned 180 degrees around the origin. For the
values ofν we work with the two maps ensuring they do not interact and their domains
are separate. However, if the value of the damping parameterν is decreased sufficiently,
the domains of the maps join and together they form a connected invariant set described by
a bimodal map [20]. This joining of the fundamental domainA and its symmetric image
2SA is visible in figure 1 atν ' 0.0299, where the range of thea6 coordinate increases
discontinuously.

We use the unimodal maps → f (s) to construct binary symbolic dynamics for the
system in the usual way: assign the symbol ‘0’ to points to the left of the maximum, ‘1’
to the points to the right. In the period-3 window with the stable cycle001, the pruning
rules are very easy: except for the stable001 cycle and the0 fixed point (both disjoint from
the invariant set) two zeros in a row are forbidden. In this case it is convenient to redefine
the alphabet by denoting the symbol pair 01 bya and the symbol 1 byb. This renders
the symbolic dynamics of the points on the repeller complete binary: all sequences of the
lettersa andb are admissible.

A flow in N dimensions can be reduced to a(N − 1)-dimensional return map by
suspension on a Poincaré section provided that the Poincaré return map is supplemented
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Figure 4. The return mapsn+1 = f (sn) constructed from the images of periodic points. The
diamonds were obtained by using 34 periodic points, the dots were obtained by using 240
periodic points. We have indicated the periodic points0, 1 and01. Note that the transverse
fractal structure of the map shows when the number of points is increased.N = 16 Fourier
modes truncation withν = 0.029 910.

by a ‘time ceiling function’ [21] which accounts for a variation in the section return times.
Hence we also determine the return timeT (si) for each periodic pointi, and use those to
construct recursively the periodic orbit approximations to the time ceiling function, figure 5.
The mean Poincaré section return time is of orderT ≈ 0.88.

4.1. Numerical results

We have found all cycles up to topological length 10 (the redefined topological length in
the case of the period-3 window), 92 cycles in the chaotic regime and 228 in the period-
3 window, by using the one-dimensional parametrizationf (s) to find initial guesses for
periodic points of the fullN = 16 Fourier modes truncation and then determining the
cycles by a multi-shooting Newton routine. It is worth noting that the effectiveness of
using the one-dimensionalf (s) approximation to the dynamics to determine initial guesses
is such that for a typical cycle it takes only 2–3 Newton iterations to find the cycle with an
accuracy of 10−10.

In table 1 we list the periodic orbits to topological length 5 found by our method. The
value of32 serves as an indication of the accuracy of our numerics, as32 corresponds to
the marginal eigenvalue along the periodic orbit, strictly equal to 1. All cycles seem to have
real eigenvalues (to within the numerical accuracy) except for the0-cycle which has a pair
of complex eigenvalues,33 and34. We therefore do not list the corresponding imaginary
parts of the eigenvalues. To illustrate the rapid contraction in the nonleading eigendirections
we plot all the eigenvalues of the1-cycle in figure 6. As the length of the orbit increases, the
magnitude of contracting eigenvalues falls quickly below the attainable numerical numerical
accuracy≈ 10−16 and our numerical results for3k are not meaningful fork > 8.
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Figure 5. The return timeT (s) as a function of the parameters, evaluated on the periodic
points, as in figure 4, with the diamonds obtained by 34 periodic points and the dots by 240
periodic points. The fine structure is due to the fractal structure of the attractor.

Figure 6. Lyapunov exponentsλk versusk for the periodic orbit1 compared with the stability
eigenvalues of theu(x, t) = 0 stationary solutionk2−νk4. λk for k > 8 fall below the numerical
accuracy of integration and are not meaningful.N = 16 Fourier modes,ν = 0.029 924, chaotic
regime.
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Table 1. All cycles up to topological length five for theN = 16 Fourier modes truncation of the
Kuramoto–Sivashinsky equation (4), damping parameterν = 0.029 910 (chaotic attractor) and
ν = 0.029 924 (period-3 window), their itineraries, periods, the first four stability eigenvalues.
For the chaotic attractor pruning shows up at the topological length 4;0001 and0011 cycles
are pruned. The deviation from unity of32, the eigenvalue along the flow, is an indication of
the accuracy of the numerical integration. For the period-3 window we also give the itineraries
in the redefined alphabet wherea = 1 andb = 10.

p Tp 31 32 − 1 33 34

Chaotic,ν = 0.029 910
0 0.897 653 3.298 183 5× 10−12 −2.793 085× 10−3 −2.793 085× 10−3

1 0.870 729 −2.014 326 −5 × 10−12 6.579 608× 10−3 −3.653 655× 10−4

10 1.751 810 −3.801 854 8× 10−12 −3.892 045× 10−5 2.576 621× 10−7

100 2.639 954 −4.852 486 1× 10−11 3.044 730× 10−7 −3.297 996× 10−10

110 2.632 544 6.062 332 2× 10−11 −2.721 273× 10−7 −1.961 928× 10−10

1000 — — — — —
1100 — — — — —
1110 3.497 622 −14.767 56 2× 10−11 −1.629 532× 10−9 6.041 192× 10−14

10100 4.393 973 19.643 97 2× 10−11 −1.083 266× 10−11 3.796 396× 10−15

11100 4.391 976 −18.939 79 2× 10−11 1.162 713× 10−11 −1.247 149× 10−14

11010 4.380 100 −26.116 26 2× 10−11 1.005 397× 10−11 8.161 650× 10−15

11110 4.370 895 28.531 33 2× 10−11 1.706 568× 10−11 1.706 568× 10−14

Period-3 window,ν = 0.029 924
0 0.897 809 3.185 997 7× 10−13 −2.772 435× 10−3 −2.772 435× 10−3

1 a 0.871 737 −1.914 257 5× 10−13 6.913 449× 10−3 −3.676 167× 10−4

10 b 1.752 821 −3.250 080 1× 10−12 −4.563 478× 10−5 2.468 647× 10−7

100 2.638 794 −0.315 134 −4 × 10−13 4.821 809× 10−6 −2.576 341× 10−10

110 ab 2.636 903 2.263 744 3× 10−12 −6.923 648× 10−7 −2.251 226× 10−10

1110 aab 3.500 743 −10.871 03 2× 10−12 −2.198 314× 10−9 3.302 367× 10−14

11010 abb 4.382 927 −15.841 02 2× 10−12 1.656 690× 10−11 1.388 232× 10−14

11110 aaab 4.375 712 18.527 66 3× 10−12 −1.604 898× 10−11 2.831 886× 10−14

Having determined the periodic solutionsp in the Fourier modes space, we now
go back to the configuration space and plot the corresponding spatiotemporally periodic
solutionsup(x, t): they are the repertoire of the recurrent spatiotemporal patterns that Hopf
wanted to see in turbulent dynamics. Different spatiotemporally periodic solutions are
qualitatively extremely alike but still different, as a closer inspection reveals. In figure 7
we plot u0(x, t) corresponding to the Fourier space0-cycle. Other solutions, plotted in the
configuration space, exhibit the same overall gross structure. For this reason we find it more
informative to plot the differenceu0(x, t ′T0) − up(x, t ′′Tp/np) rather thanup(x, t) itself.
Here p labels a given prime (non-repeating) cycle,np is the topological cycle length,Tp

its period, and the time is rescaled to make this difference periodic in time:t ′ = t/T0 and
t ′′ = npt/Tp, so thatt ′′ ranges from 0 tonp. u0(x, t ′T0) − u1(x, t ′′T1) is given in figure 8,
andu0(x, t ′T0) − u01(x, t ′′T01/2) in figure 9.

5. Global averaging: periodic orbits in action

The above investigation of the Kuramoto–Sivashinsky system demonstrates that it is possible
to construct recursively and exhaustively a hierarchy of spatiotemporally periodic unstable
solutions of a spatially extended nonlinear system.

Now we turn to the central issue of this paper; qualitatively, these solutions are indeed an
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Figure 7. Spatiotemporally periodic solutionu0(x, t). We have dividedx by π and plotted
only thex > 0 part, since we work in the subspace of the odd solutions,u(x, t) = −u(−x, t).
N = 16 Fourier modes truncation withν = 0.029 910.

Figure 8. The difference between the two shortest period spatiotemporally periodic solutions
u0(x, t ′T0) andu1(x, t ′′T1).

Figure 9. The difference between solutionu0(x, t ′T0) repeated twice and thenp = 2 period
spatiotemporally periodic solutionu01(x, t ′′T01/2).

implementation of Hopf’s program, but how is this information to be used quantitatively?
This is precisely what the periodic orbit theory is about; it offers machinery that puts
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together the topological and the quantitative information about individual solutions, such
as their periods and stabilities, into predictions about measurable global averages, such as
the Lyapunov exponents, correlation functions, and so on. The proper tool for computing
such global characterizations of the dynamics are the trace and determinant formulae of the
periodic orbit theory.

We shall briefly summarize the aspects of the periodic orbit theory relevant to the present
application; for a complete exposition of the theory the reader is referred to [22]. The key
idea is to replace a time average8t(x)/t of an ‘observable’φ measured along a dynamical
trajectoryx(t) = f t (x)

8t(x) =
∫ t

0
dτ φ(x(τ))

by the spatial average〈eβ8t 〉 of the quantity eβ8t (x). Here β is a dummy variable, used
to recover the desired expectation value〈φ〉 = limt→∞〈8t/t〉 by taking d

dβ
derivatives of

〈eβ8t 〉 and then settingβ = 0. For larget the average〈eβ8t 〉 behaves as the trace

tr Lt =
∑
p

Tp

∞∑
r=1

erβ8p

| det(1 − J r
p)|δ(t − rTp) (5)

of the evolution operator

Lt (x, y) = δ(y − f t (x))eβ8t (x)

and is dominated by its largest eigenvalue ets(β).
The trace formula (5) has an intuitive geometrical interpretation. The sums in (5) are

over prime periodic orbitsp and their repeatsr, Tp are their periods, andJp are their
stability matrices. Prime cycles partition the dynamical space into closed tubes of length
Tp and thickness| det(1 − Jp)|−1, and the trace picks up a periodic orbit contribution only
when the timet equals a prime period or its repeat, hence the time delta functionδ(t − rTp).
Finally, eβ8p is the mean value of eβ8t (x) evaluated on this part of dynamical space, so the
trace formula is the average of〈eβ8t 〉 expressed as a partition of the space of solutions
into a repertoire of spatiotemporally periodic solutions, each weighted by its stability, i.e.
likelihood of its occurrence in a long time evolution of the system.

In applications of the periodic orbit theory the related Fredholm determinant

F(β, s) = exp

(
−

∑
p

∞∑
r=1

znpr er(β8p−sTp)

r| det(1 − J r
p)|

)
(6)

has better convergence as a function of the maximal cycle length truncation, so that is the
function whose leading zeroF(β, s(β)) = 0 we determine here in order to evaluate the
leading eigenvalues(β).

The dummy variablez in (6) keeps track of the topological lengthsnp (number of the
Poincaŕe section crossings), and is used to expandF as a series inz. If we know all cycles
up to topological lengthl we truncateF to lth order polynomial:

F(β, s) = 1 −
l∑
1

ckz
k + (remainder) (7)

and setz = 1. The general theory [7, 8, 23] then guarantees that for a hyperbolic dynamical
system the coefficientsck fall off in magnitude exponentially or faster with increasingk.
We now calculate the leading eigenvalues(β) by determining the smallest zero ofF(β, s),
and check the convergence of this estimate by studying it as a function of the maximal cycle
length truncationl. If the flow conserves all trajectories, the leading eigenvalue must satisfy
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s(0) = 0; if the invariant set is repelling, the leading eigenvalue yieldsγ = −s(0), the
escape rate from the repeller. Once the leading eigenvalue is determined we can calculate
the desired average〈φ〉 using formula [6]:

〈φ〉 = − ∂s

∂β

∣∣∣∣
β=0

= −∂F

∂β

/
∂F

∂s

∣∣∣∣ β=0
s=s(0)

. (8)

For example, if we take log|3t
1(x)| as our ‘observable’, the largest eigenvalue of the

linearized stability of the flow,8p will be log |31,p| where31,p is the largest eigenvalue
of stability matrix of the cyclep, and the above formula yields the Lyapunov exponent〈λ〉.

Both the numerator and the denominator in (8) have a cycle expansion analogous to (7)
(cf. [22]), and the same periodic orbit data suffices for their evaluation.

Conceptually the most important lesson of the periodic orbit theory is that the
spatiotemporally periodic solutions arenot to be thought of as eigenmodes to be used
as a linear basis for expressing solutions of the equations of motion—as the equations
are nonlinear, the periodic solutions are in no sense additive. Nevertheless, the trace
formulae and determinants of the periodic orbit theory give a precise prescription for how
to systematically explore the repertoire of admissible spatiotemporal patterns, and how to
put them together in order to predict measurable observables.

5.1. Numerical results

One of the objectives of a theory of turbulence is to predict measurable global averages over
turbulent flows, such as velocity–velocity correlations and transport coefficients. While in
principle the periodic orbit averaging formulae should be applicable to such averages, with
the present parameter values we are far from any strongly turbulent regime, and here we
shall restrict ourselves to the simplest tests of chaotic dynamics: we shall test the theory by
evaluating Lyapunov exponents and escape rates.

We compute the periodic orbits, escape rates and Lyapunov exponents both for the
period-3 window and a chaotic regime. In the case of period-3 window the complete
symbolics dynamics and grammar rules are known and good convergence of cycle
expansions is expected both for the escape rate from the repeller and the Lyapunov exponent.
Parenthetically, the stable period-3 orbit is separated from the rest of the invariant set by
its immediate basin of attraction window, and its eigenvalues bear no immediate relation to
the escape rate and the Lyapunov exponent of the repelling set.

In the case of a generic ‘strange attractor’, the convergence is not expected to be nearly
as good, since in this case there exist no finite description of the symbolic dynamics.
For closed systems (no escape)γ = 0 and F(0, 0) = 0. The discrepancy of the value
F(0, 0) from 0 for a closed system allows us to estimate the accuracy of finite cycle length
approximations to the Fredholm determinant.

The analytic properties of the Fredholm determinant are illustrated by the decay rate of
the coefficientsck as a function ofk in the expansion (7). If the complete symbolic dynamics
is known and the system is hyperbolic, the decay ofck should be superexponential [7]. This
is illustrated in figure 10, where we plot the coefficientsck for the 16-dimensional system
for the chaotic case and for the period-3 window. We can clearly see the superexponential
decay for the period-3 window case and at best exponential decay for the chaotic case.

Our results are presented in table 2. One observes that when the symbolic dynamics
is known (period-3 window), the convergence is much better than in the generic case, in
accordance with the periodic orbit theory expectations.
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Figure 10. log10 of the coefficients|ck | in the cycle expansion (7) ofF(0, 0) versusk for
the period-3 window case (crosses) and the chaotic case (diamonds).N = 16 Fourier modes
truncation.

Table 2. The escape rateγ and the leading Lyapunov exponent as a function of the
cycle expansion truncationnmax for the N = 16 Fourier modes truncation, chaotic regime
(ν = 0.029 910) and period-3 window(ν = 0.029 924). In the period-3 window the Fredholm
determinant starts converging only fornmax > 4; for nmax = 4 it has no real zero at all. A
numerical simulation estimate for the Lyapunov exponent in the chaotic regime is given in the
last line; for this parameter value the escape rate,γ , should strictly equal zero.

Chaotic Period-3 window

nmax γ λ1 γ λ1

1 0.428 143 0.703 010
2 0.441 948 0.981 267−0.187 882 0.430 485
3 0.080 117 0.765 050−0.049 325 0.469 350
4 0.148 583 0.703 072
5 0.068 513 0.727 498 1.072 468 0.585 506
6 0.027 724 0.699 907 0.078 008 0.547 005
7 0.035 137 0.693 852 0.088 132 0.598 977
8 0.007 104 0.675 529 0.090 425 0.631 551
9 0.021 066 0.673 144 0.090 101 0.618 160
10 0.007 367 0.646 233 0.090 065 0.621 271
Numer. 0.629

6. Summary

Hopf’s proposal for a theory of turbulence was, as we understand it, to think of turbulence as
a sequence of near recurrences of a repertoire of unstable spatiotemporal patterns. Hopf’s
proposal is in its spirit very different from most ideas that animate current turbulence
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research. It is distinct from the Landau quasiperiodic picture of turbulence as a sum of
infinite number of incommensurate frequencies, with dynamics taking place on a large-
dimensional torus. It is not the Kolmogorov’s 1941 homogeneous turbulence with no
coherent structures fixing the length scale, here all the action is in specific coherent
structures. It is emphaticallynot universal; spatiotemporally periodic solutions are specific
to the particular set of equations and boundary conditions. And it isnot probabilistic;
everything is fixed by the deterministic dynamics with no probabilistic assumptions on the
velocity distributions or external stochastic forcing.

Our investigation of the Kuramoto–Sivashinsky system is a step in the direction of
implementing Hopf’s program. We have constructed a complete and exhaustive hierarchy
of spatiotemporally periodic solutions of spatially extended nonlinear system and applied
the periodic orbit theory to evaluation of global averages for such system. Conceptually the
most important lesson of this theory is that the unstable spatiotemporally periodic solutions
serve to explore systematically the repertoire of admissible spatiotemporal patterns, with
the trace and determinant formulae and their cycle expansions being the proper tools for
extraction of quantitative predictions from the periodic orbits data.

We have applied the theory to a low-dimensional attractor, not larger than the Lorenz’s
original strange attractor [24]. As our aim was to solve the given equations accurately, we
were forced to work with a high-dimensional Fourier modes truncations, and we succeeded
in determining the periodic orbits for flows of much higher dimension than in previous
applications of the periodic orbit theory. As something new, we have developed an intrinsic
parametrization of the invariant set that provided the key to finding the periodic orbits.

In practice, the method of averaging by means of periodic orbits produced best results
when the complete symbolic dynamics was known. For generic parameter values we cannot
claim that the periodic orbit approach is computationally superior to a direct numerical
simulation. A program to find periodic orbits up to length 10 for one value of the damping
parameterν requires a day of CPU on a fast workstation, much longer than the time used
in the direct numerical simulations.

The parameterν values that we work with correspond to the weakest nontrivial
‘turbulence’, and it is an open question to what extent the approach remains implementable
as the system goes more turbulent. Our hope is that the unstable structures captured so
far can be adiabatically tracked to the ‘intermediate turbulence’ regime, and still remain
sufficiently representative of the space of admissible patterns to allow meaningful estimates
of global averages. As long as no effective method for constructing intrinsic coordinates for
the ‘inertial manifold’ exists and we rely on the spatial Fourier decomposition, the present
approach is bound to fail in the ‘strong turbulence’ν → 0 limit, where the dominant
structures are Burgers-type shocks and truncations of the spatial Fourier modes expansions
are increasingly uncontrollable.
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