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Abstract
This study investigates the dynamics of an acoustically driven air bubble in
water. Depending on the values of external parameters, the radial oscillations
of the bubble can be either stable or chaotic. The necessary condition of
chaotic behaviour is identified to be the non-zero amplitude of the bubble’s
afterbounces at the beginning of the next acoustic cycle, which brings memory
into the system. We show that for some parameter values in the chaotic regime
the dynamics can be reduced to a unimodal map. At these parameter values the
periodic orbit theory is successfully applied to calculate averages of relevant
physical quantities, such as the air concentration at which the bubble is in
diffusive equilibrium with the surrounding liquid. Finally we investigate the
convergence of the calculated quantities.

Mathematics Subject Classification: 37C27, 37B10, 76B10

1. Introduction

A gas bubble levitated in a liquid by ultrasound is the subject of recent experimental and
theoretical studies in the field of single-bubble sonoluminescence (SBSL) [1–3]. At sufficiently
high amplitudes of the acoustic excitation the non-linear oscillations of the bubble can get so
violent, that in each period the bubble collapses to its van der Waals hard core radius. As a
result the gas inside the bubble compresses and heats up to the extent that light emission
occurs [4–9] while the bubble is at its minimum radius. In one of the first experiments
with single bubbles, Barber et al [10] found a remarkably stable dynamics, a synchronicity
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with the driving sound field (typically ≈27 kHz) on the order of 50 ps. Later Holt et al
[11] also reported period doubling, quasiperiodicity and chaos in the timing of successive
flashes and Jensen [12] observed period doubling in the light emission, but the underlying
mechanism responsible for the observed behaviour has not yet been identified. Previous
studies by Lauterborn and Suchla [13] investigated a particular bubble dynamical model in the
context of acoustic cavitation [14] and showed that the radial oscillations of a gas bubble can
undergo period-doubling bifurcations and become chaotic. Related theoretical works can also
be found in [15–17], and references therein. It was proposed in [11] that the same mechanism
could explain the observed period-doubling and chaotic behaviour in the SBSL measurements;
however the parameter space that was studied previously is far from that which is relevant for
SBSL or the studied models were oversimplified by the assumptions of ideal gas law, absence
of heat transfer, and negligence of surface tension effects. One of our aims is to elucidate this
question by performing extensive numerical simulations in a wide range of the parameters.
The main purpose of this study however is to show how periodic orbit theory can be used to
calculate the averages of physical quantities of interest for the case of chaotic radial oscillations.

2. The Rayleigh–Plesset equation

The equation of motion of the interface radius R(t) for a spherically oscillating gas bubble under
harmonic excitation is given by the Rayleigh–Plesset (RP) equation [18–20]. We consider
a particular form of the RP equation which has been investigated in recent theoretical and
experimental studies, namely

ρw

(
RR̈ +

3

2
Ṙ2

)
= Pg(R(t)) − Pf(t) − P0 +

R

cw

d

dt
[Pg(R(t)) − Pf(t)] − 4η

Ṙ

R
− 2σ

R
, (1)

where the left-hand side is the inertial term, and the terms on the right-hand side give the
various pressures acting on the interface. In particular P0 = 1 bar is the static ambient
pressure, Pf = −Pa sin(ωt) is the forcing pressure with angular frequency ω and acoustic
pressure amplitude Pa, and Pg is the uniform gas pressure inside the bubble, given by a van
der Waals equation of state,

Pg(R(t)) =
(

P0 +
2σ

R0

)
(R3

0 − a3)γ

(R(t)3 − a3)γ
, (2)

where R0 is the ambient radius (stationary radius under normal temperature and pressure),
a = R0/8.5 is the hard core van der Waals radius for air, and γ is the polytropic exponent,
which is 1 for an isothermic process, and greater than 1 for an adiabatic process, where the
actual value depends on the choice of the gas. It must be noted that the assumption of uniformity
is an approximation, but its validity is justified in most of the acoustic cycle [21]. The material
constants of water appearing in the RP equation are given in table 1. In order to solve the
RP equation numerically, it was transformed into the following set of first-order differential

Table 1. Notation and room temperature values of material constants in equation (1).

Density ρw 1000 kg m−3

Velocity of sound cw 1481 m s−1

Dynamic viscosity η 1 × 10−3 kg m−1 s−1

Surface tension σ 0.073 N m−1
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equations:

Ṙ = V,

V̇ = 1

ρwR
(Pg − Pf − P0 − Pη − Pσ + Ps) − 3

2R
V 2,

(3)

where the pressure terms are defined as

Pf = −Pa sin(ωt), Pη = 4ηV

R
, Pσ = 2σ

R
, Ps = R

cw

d

dt
(Pg − Pf). (4)

As a general remark it can be noted that the set of equations (3) describes a highly non-linear,
non-autonomous dynamical system in a two-dimensional phase space.

The adjustable parameters that were varied during the simulations are the amplitude of
the forcing Pa and the ambient radius R0, while the angular frequency ω was kept at the
constant value of ω = 2π · 27 kHz used in the experiment of Holt et al [11]. The numerical
simulations were performed by a fifth-order Runge–Kutta algorithm with adaptive stepsize
control [22]. If not otherwise mentioned, all the simulations used γ = 5/3, initial values of
R(t = 0) = R0, V (t = 0) = 0, and the values of the material constants from table 1.

3. Stability and chaos

Before the detailed investigation of the dynamics can take place, first we need to find the
regions in the (Pa, R0) parameter space, where the solutions of the RP equation are stable or
exhibit chaos. For this purpose equations (3) were solved for 100 acoustic periods in a wide
range of Pa and R0 and the values of the maximal radii Rmax were extracted for each pair of
the parameters. The condition∣∣∣∣∣R

(N−1)
max − R

(N)
max

R
(N−1)
max

∣∣∣∣∣ � αtr (5)

was used to identify parameter space points where the variations of Rmax after N cycles still
stayed above a chosen small threshold value αtr . Figure 1 shows the results for (a) N = 5,
(b) N = 100 with αtr = 0.001. It is apparent from these figures that non-steady radial
oscillations can be expected only for big enough bubbles (R0 � 7 µm) at rather high forcing
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Figure 1. Parameter space points (black region), where condition (5) is fulfilled for N = 5 (a),
N = 100 (b) and αtr = 0.001.
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(Pa � 0.8 bar), while in the whole parameter space of SBSL, which is restricted by shape
instability thresholds to R0 � 6–7 µm [23–28] (for this acoustic frequency), the dynamics is
stable. This observation suggests that the period-doubling and chaotic behaviour observed in
the measurements of Holt et al did not originate from pure RP dynamics. Nevertheless it is still
interesting to investigate the chaotic behaviour of the RP equation since it can be relevant in the
field of acoustic cavitation [14] or multibubble sonoluminescence. For instance, [29] reports
transient cavitation measurements at parameter values (ω ≈ 11 MHz, Pa ≈ 100 bar, R0 ≈
0.5 µm), where the solutions to the RP equation show period-doubled and chaotic behaviour.

In order to better understand the mechanism which leads to chaos in the particular
system, it is useful to compare the characteristics of the stable and chaotic solutions to
the RP equation. Figure 2 shows a stable solution over one acoustic period, at parameter
values (Pa = 1.36 bar, R0 = 3 µm, and ω/2π = 27 kHz) typical in SBSL experiments.
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Figure 2. The driving pressure (a), the radius of the bubble (b), and the velocity of its interface (c) as
a function of time for one acoustic cycle. The parameters are Pa = 1.36 bar, R0 = 3 µm, γ = 5/3,
and ω/2π = 27 kHz.
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The non-linear oscillations of such bubbles are characterized by a big variety of spatial and
temporal scales. Initially the radius is at its ambient value R0. Then during the negative part
of the sinusoidal driving the bubble slowly (texp ≈ 1/2Tp) expands to its maximum (≈10R0).
At this instant the pressure inside the bubble approaches vacuum. The increasing driving
pressure then makes the bubble collapse. The time to go from R0 to the minimum radius is
approximately given by [3]

tc ≈
√

6R
5/2
0

5R
3/2
max(P0/ρw)1/2

. (6)

For high forcing amplitudes the bubble at minimum reaches its hard core van der Waals radius
(R0/8.5), which results in enormous pressures and temperatures inside it (order of magnitudes:
104 bar and 104 K) and also in a flash of light. In the late stages of the collapse the interface
velocity can be even higher than the speed of sound in the liquid which results in an outgoing
shock wave in the water [30–32]. The main collapse is followed by a sequence of afterbounces
with decreasing amplitude, after which the whole process repeats itself in the next acoustic
cycle. The angular frequency of the afterbounces is approximately

ωb ≈
√

1

ρwR2
0

(
3γ

(
P0 +

2σ

R0

)
− 2σ

R0
− 4η2

ρwR2
0

)
(7)

(see for instance [12]). An important feature of figure 2, which is also the reason for the
stability of the cycle, is that the amplitude of the afterbounces dies away completely before
the beginning of the next cycle and thus the radius and the interface velocity at the end of the
cycle equal the initial values.

If the ambient radius is increased to R0 = 20 µm, the solution to the RP equation shifts
to the chaotic regime. Figure 3 shows the oscillations of such a bubble over eight acoustic
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Figure 3. Radius of the bubble over eight acoustic cycles. The parameters are Pa = 1.26 bar, R0 =
20 µm, γ = 5/3, and ω/2π = 27 kHz.
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periods. This regime differs from the stable solution in several aspects. Probably the most
important aspect is that due to the increased R0 the angular frequency of the afterbounces
is decreased. As a result there is not enough time for the afterbounces to be damped out
completely before the next expansion begins. Thus each new acoustic cycle will have the
‘memory’ of the undamped amplitude from the previous cycle, resulting in big variations in
the maximal radii. In particular, the ωb ≈ 7×ω in figure 3 is in good agreement with equation
(7). The attractor in the phase space (R, V ) for Pa = 1.255 bar is shown in figure 4. A
magnification of the attractor around the maximal radius shows that the trajectory fills up the
phase space between 60 and 80 µm.
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Figure 4. The chaotic attractor (a) and a region blown up around the maximal radius (b) for
100 cycles. The parameters are Pa = 1.255 bar, R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz.
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After chaos is found at a particular point in the parameter space (Pa, R0, ω/2π), it is
interesting to investigate how the system behaves upon changing these parameters. Since
mapping out numerically the whole parameter space is very time consuming, only the effect
of changing the driving amplitude Pa is presented here. Such an analysis is usually carried
out in a Poincaré section (P ) of the phase space, since it describes the dynamics just as well
(by constructing a Poincaré map), and allows one to draw the parametric dependence in a
plane. The choice of Poincaré section is arbitrary; the only necessary condition is that the
trajectory should cross the plane of the section once every acoustic cycle. For driven systems
one choice can be to get samples from a given part of each driving period. However a more
general method, namely to set one of the phase space coordinates to zero, can also be applied.
For this study the condition

P ≡ max
R

{(R, V ) : V = 0} (8)

was used, which gives the maximal radii from each acoustic period. Figure 5 shows the results
for R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz. At each value of Pa the RP equation was
solved for 500 cycles, and a Poincaré section was constructed by applying (8). Out of 500 cycles
only the last 200 are shown in the figure, thus cutting out the uninteresting initial transients.
For small enough forcing (Pa � 0.85 bar) the dynamics is regular. Then a jump occurs, and
the solution becomes chaotic after a period-doubling bifurcation sequence, showing the same
qualitative features as reported in [13]. Inside the chaotic region one can observe windows
of regular dynamics, stable three-period solutions, and so on, just as for the well-known
logistic map. Figure 6 shows the return maps at different driving levels covering dynamics
with (a) two-period, (b) four-period, chaos, and (f) inside the chaotic region a three-period
regime.
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Figure 6. Return maps of maximal radii at different values of Pa. The other parameters are
R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz.

Note the non-uniqueness and the increased complexity of the return maps with increased
driving amplitude. Qualitatively the same kind of maps have been observed if the transition
from regular dynamics to chaos is examined at driving levels around 0.88 and 0.96 bar.

In figure 7 another observable ξ is shown as a function of the driving level. It gives the
phase of the minimal radius in the acoustic period, and is defined as ξ = t/T , where t is
the elapsed time from the beginning of the cycle until the radius reached its minimum, and
T is the acoustic period. This elapsed time offers a better comparison between simulation
and experimental data obtained for instance by the Mie scattering technique [33, 34] (the
timing of the scattered light at the collapses can be measured with higher precision than its
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Figure 7. Bifurcation diagram of ξ for R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz.

amplitude). Also ξ is the key observable of a fitting technique [35] that can be used to obtain
the parameters of the bubble dynamics in measurements. The bifurcation diagram for ξ shows
the same qualitative features as the one obtained for the maximal radii. This is however not
surprising, since the topology of the bifurcation diagrams should not depend on the particular
choice of the Poincaré section, and the values of ξ were extracted from the minimal radii,
which by the condition

P ≡ min
R

{(R, V ) : V = 0} (9)

also define a Poincaré section.
Although conditions (8) and (9) are convenient for drawing bifurcation diagrams, and

comparisons with experiments, for the purpose of finding periodic orbits and their stability the
stroboscopic sampling method (sampling with the acoustic period) can be more fruitful. This
method produces return maps for both phase space coordinates (R, V ). Figures 8 and 9 show
the return maps for R and V respectively at different driving levels. The maps again get very
complicated with increasing Pa, but at least there are parameter values where the return map
of V is reminiscent of a horseshoe, suggesting that binary symbolic dynamics might suffice to
describe the system.

4. Detailed study of the system at chosen parameter values

In this section we find the shortest periodic orbits of the system up to length 5 and their
stabilities, which together with the already known cycle periods (an integer times the acoustic
period) can be plugged into cycle expansions of trace formulae to compute averages of physical
quantities [36]. All the simulations in this chapter used the parameters Pa = 1.26 bar, R0 =
20 µm, γ = 5/3, and ω/2π = 27 kHz. At the above parameters the return map of V is a
unimodal map, and the value of V where the slope is zero in Figure 9(c) defines the critical
point V ∗. Introducing the following rules, the system can be described by symbolic dynamics
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Figure 8. Return maps of bubble radius R, stroboscopically sampled at the end of each period.
The other parameters are R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz.

with a binary alphabet of symbols {0, 1}.

V (n) =
{

0 if V (n) < V ∗ (to the left from the critical point),

1 if V (n) > V ∗ (to the right from the critical point).
(10)

In this notation the itinerary (S+) of a trajectory starting from the point ζ is given by an infinite
sequence of symbols

S+(ζ ) = 1001101000101110100011 . . . (11)

and the itinerary of a prime periodic orbit of length N is labelled

S+(s1s2s3 . . . sN ) = (s1s2s3 . . . sN )∞ = s1s2s3 . . . sN , si ∈ {0, 1}. (12)
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Figure 9. Return maps of the interface velocity V stroboscopically sampled at the end of each
period. The other parameters are R0 = 20 µm, γ = 5/3, and ω/2π = 27 kHz.

To find which periodic orbits are realized by the system, one has to generate the list of
all admissible itineraries. This can be done to any chosen finite length of the itineraries
by applying Kneading’s theory (see for instance [37, 38] or Appendix B of [36]). The
condition for the admissibility of an itinerary S+(s1s2s3 . . . sN ) is that its topological coordinate
γ (S+(s1s2s3 . . . sN )) should be less than or equal to the topological coordinate of the itinerary
corresponding to the critical point γ (S+(V ∗)):

γ (S+(V ∗)) � γ (S+(s1s2s3 . . . sN )). (13)

The itinerary of the critical point is also called the Kneading sequence and its topological
coordinate the Kneading value. To generate the topological coordinate of an itinerary it is
convenient to replace the binary alphabet {0, 1} by the infinite alphabet

{a1, a2, a3, a4, . . . ; 0} = {1, 10, 100, 1000, . . . ; 0}. (14)
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Table 2. Admissible itineraries and their topological coordinates.

n Itinerary S γ (S)

1 1 0.10101010101
2 10 0.11001100110
3 — —
4 1011 0.11010010110
5 10110 0.11011001001
5 10111 0.11010110101
6 101110 0.11010011010
6 101111 0.11010100101

Using this notation the itinerary S = aiaj akal . . . and its topological coordinate are related by
γ (S) = 0.1i0j 1k0l . . . . For instance, the Kneading sequence and the Kneading value of this
particular system are

S+(V ∗) = 10110101011 . . . = a2a1a2a2a2a1 . . . ,

γ (S+(V ∗)) = 0.11011001101 . . . = 0.12011202120111 . . . . (15)

For prime periodic orbits the situation is a bit more complicated, because to each of these orbits
there will be N itineraries that are cyclic permutations of each other, where N is the period of
the orbit. Since all these itineraries will have different values of the topological coordinate,
one has to find the maximal among them. Applying criterion (13) one finds for instance that
the itineraries 100 and 101 are inadmissible, because both γ (100) = 0.111000111000 . . . and
γ (101) = 0.110110110110 . . . are greater than the Kneading value. Table 2 lists all admissible
itineraries of prime periodic orbits up to symbol length 6.

Now that we have found which periodic orbits are realized by the system, the next task
is to find their stabilities. The stability of a periodic orbit is given by the eigenvalues of the
corresponding d-dimensional Jacobian matrix, which is defined as

J t
i,j = ∂f t

i (x0)

∂xj

, i, j ∈ {1, . . . , d}, (16)

where f t
i (x0) is the ith component of the solution with initial values x0, to the differential

equations describing the dynamical system ẋ = v(x, t) at the time instant t . In our case d = 2
and ẋ = v(x, t) is represented by equations (3). The elements of the Jacobian can be computed
by solving

d

dt
J t

i,j =
2∑

k=1

Ai,k(x, t)J t
k,j , Ai,k = ∂vi

∂xk

, (17)

along the orbit, with initial conditions J 0
i,i = 1 and J 0

i,j = 0, where i �= j . The matrix A is
called the derivative matrix, which for the system in hand reads

A =
(

0 1
a21 a22

)
(18)

with

a21 =− 1

ρwR2
(Pg − Pf − P0 − Pη − Pσ + Ps)

+
1

ρwR

(
4ηV

R2
+

2σ

R2
− 3γ R2Pg

R3 − a3
+

Pa

c
ω cos (ωt)

)
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− 9γ V Pg

ρwcwR

(
R2(R3 − a3) − R5(1 + γ )

(R3 − a3)2

)
+

3

2

V 2

R2
, (19)

a22 =−
(

4η

ρwR2
+

3γ R2Pg

ρwcw(R3 − a3)
+

3V

R

)
. (20)

The expressions of the pressure terms Pg, Pf , Pη, Pσ and Ps, as a function of the phase space
coordinates and time, are already given in equations (2) and (4). An efficient way to find
periodic orbits is to use the Newton method sketched below. One starts with an initial guess
x for the location of a fixed point in the Poincaré section, which is in our case x = (R, V ) at
time zero. Then one has to evolve the initial point, together with the Jacobian, and find their
values f (x) and J after an acoustic period. Inserting these into

x ′ = x − (1 − J )−1(x − f (x)) (21)

yields the improved guess x ′. Iterating the routine, the guesses converge faster than
exponentially to the right values. In practice this means that, for instance, if one wishes
to know the coordinates of a fixed point accurate to ten digits, then it requires around 5–7
iterations, even if the initial guesses are quite rough. A problem can arise if the Jacobian has
an eigenvalue 1 for some reason, because in that case the matrix (1 − J ) is not invertible.
There are techniques to overcome such difficulties (see chapter 9 of [36]), but fortunately in
our case we do not have to deal with this problem.

Good starting values can be obtained from n-return maps of the phase space coordinate
V , because a prime orbit of length n will show up as n identical fixed points in such maps
(see figure 10). Table 3 lists the prime cycles up to length 5, their stability eigenvalues,
periods, Liapunov exponents, and the coordinates of the fixed point, where the Newton iteration
converged. A part of the orbits is shown in figure 11.

The information contained in the stability and period of prime periodic orbits can be
used to calculate global properties, such as the Liapunov exponent, or averages of physical
quantities of interest for the particular system. For instance, in our case this quantity can be
the concentration of the gas in the liquid Ci , at which the bubble is in diffusive equilibrium
with the surroundings. For stable periodic oscillations this is given by

Ci = C0

∫ T

0 R(t)4Pg(R(t)) dt

P0
∫ T

0 R(t)4 dt
, (22)

where C0 is the constant equilibrium air concentration at an ambient pressure of 1 bar, and the
integration is done over one acoustic period (see e.g. [39–43]). If the oscillations are chaotic,
one has to do the above integrals over a very long time, until the trajectory covers the whole
attractor (figure 4). According to [36] the average over the covered part of the phase space can
be rewritten as an average over the unstable periodic orbits.

Before proceeding any further, it is worth noting that the system satisfies the hyperbolicity
assumption (at least in the case of the few studied orbits), which is a requisite to apply the
forthcoming methods. Skipping a lot of details and considerations (which can be found in
[36]), here we just state that for a bound system with zero escape rate the phase space average
of a time-integrated quantity A can be expressed through an infinite sum over the properties
of the prime periodic orbits,

〈A〉 =
′∑

{p1,p2...pk}
(−1)k+1 Ap1 + Ap2 + · · · + Apk

|)p1)p2 · · · )pk
| , (23)

where the sum is taken over all distinct non-repeating combinations of prime cycles with
topological length k (k = 1 . . . ∞), )pk is the expanding eigenvalue of the Jacobian evaluated
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Figure 10. N -return maps of V . The vertical lines separate spatial regions with different itineraries.
For instance, if a trajectory is started from a region marked 010 it means that initially it was on the
left of the 1-return map, in the next step it will be on the right side, and finally it will end up on
the left.

Table 3. Stable and unstable eigenvalues of the Jacobian, Liapunov exponents, and the coordinates
of the fixed points for the first five prime periodic orbits.

n Itinerary )s )u λ = ln(|)u|)/T (s−1) R(µm) V (m s−1)

1 1 −0.003 002 373 −1.752 777 328 15152.4 36.585 942 554 0.830 082 401
2 10 −1.659 79 × 10−5 −2.757 133 837 13691.5 36.351 426 255 2.423 921 084
3 — — — — — —
4 1011 −2.4 × 10−10 −7.148 450 714 13276.5 36.226 011 047 2.654 682 468
5 10111 1.9 × 10−12 7.393 516 311 10803.3 36.100 765 029 2.889 400 458
5 10110 −2.6 × 10−12 −6.078 932 905 9746.1 36.084 527 077 2.926 305 255
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Figure 11. The convergence of escape rate to zero, with increasing topological length of truncation.

along the orbit, and Apk denotes that the physical quantity is integrated in time over the orbit
period Tpk (the orbit period is an integer times the acoustic period in our case). In practice one
always uses a truncated version of the above formula, but that still gives good approximations,
since the contribution of cycles diminishes with their topological length. For convenience the
truncated (at topological length 5) version of equation (23) applied for the system at hand is
shown below:

〈A〉 = Ap1∣∣)p1

∣∣ +
Ap10∣∣)p10

∣∣ +
Ap1011∣∣)p1011

∣∣ +
Ap10111∣∣)p10111

∣∣ +
Ap10110∣∣)p10110

∣∣ − Ap1 + Ap10∣∣)p1)p10

∣∣ − Ap1 + Ap1011∣∣)p1)p1011

∣∣ . (24)

The validity of the approximation can be checked by flow conservation sum rules such as

0 = 1 −
′∑

{p1,p2...pk}
(−1)k+1 1

|)p1)p2 · · · )pk
| , (25)

which is exact if the sum involves infinite cycles. This formula gives the escape rate of
trajectories, which for a bounded system equals zero. Figure 12 shows to what degree
equation (25) is satisfied as a function of the truncation. The non-monotonic and relatively
slow convergence can be attributed to the effect of pruning, since in this case there is only
partial shadowing. For instance, there is no 101-term present which would almost cancel the
contribution of the 1 · 10-term; thus there is a hump in figure 11 at N = 3.

5. Averages of physical quantities

This section gives the results of applying the method discussed in the previous section for the
dimensionless equilibrium concentration Ci/C0. Water under normal conditions contains an
amount of dissolved air with concentration C0. In experiments one usually sets Ci to be a
fraction of the normal value to achieve equilibrium, otherwise the bubble would grow from
cycle to cycle by rectified diffusion [39–43]. It is worth mentioning that in the applications
the acoustic period is much smaller than the timescale of diffusion. If this would not hold,
one would have to use a modified RP equation which incorporates diffusion. For convenience,
equation (22) is rewritten as

Ci

C0
= Ap

Bp

, Ap =
∫ Tp

0
R(t)4Pg(R(t)) dt, Bp = P0

∫ Tp

0
R(t)4 dt. (26)

Table 4 contains the values of Ap and Bp obtained for the shortest cycles.
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Figure 12. Prime periodic orbits up to a topological length of 5 symbols. The pictures show a
blowup of the phase space near the maximal radii.

Table 4. The values Ap and Bp integrated along the calculated prime orbits.

n Itinerary Ap Bp

1 1 3.658 410 33 × 10−24 2.770 306 05 × 10−22

2 10 7.345 372 47 × 10−24 5.442 509 36 × 10−22

3 — — —
4 1011 1.468 173 06 × 10−23 1.086 670 31 × 10−21

5 10111 1.836 756 29 × 10−23 1.342 018 73 × 10−21

5 10110 1.838 085 64 × 10−23 1.335 144 17 × 10−21

Using the data of table 4 and equation (24), the result for the equilibrium concentration is

Ci

C0
= 〈A〉/〈B〉 = 0.013 608. (27)

This means that in order to be in diffusive equilibrium with the surrounding liquid, the water
has to be de-gassed to 1.36% of its concentration at normal conditions. For stable oscillations
it is customary (and satisfactory) to calculate the above integrals only for one acoustic cycle,
and with initial values R(t = 0) = R0, V (t = 0) = 0. The question can arise as to how big
an error will one get by applying these rules for the chaotic case. The calculation for Ci/C0

in this case gives 0.0301, showing a considerable difference. This can be improved if one
integrates for many acoustic cycles. In figure 13 the (+) symbols show the calculations over
N acoustic periods, with initial conditions R(t = 0) = R0, V (t = 0) = 0. The other symbols
(×) indicate the convergence of Ci/C0 as the topological length of the truncation is increased
in equation (24). It is apparent from the figure that after 50 acoustic periods the two methods
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Figure 13. Convergence of the physical quantity Ci = C0. Symbols (+) were obtained by
integrating over N periods, and using the initial conditions R(t = 0) = R0, V (t = 0) = 0, while
the symbols (×) denote the cycle expansions for the first N orbits. The horizontal line shows the
value obtained by 5 prime cycles.

give identical results, and that for a good approximation it was enough to consider prime cycles
up to topological length 5 in the cycle-expansion formula (24). One can also check how good
an approximation can be obtained by considering only the first prime periodic orbit. In this
case one gets Ci/C0 = 0.0132, a value fairly close to that obtained with five prime cycles.
Even though the two methods agree in this particular example, it cannot be guaranteed in
general that for a quantity which depends differently on R and V , integration over 50 periods
will be sufficient to achieve convergence. Thus if possible it is always better to apply periodic
orbit theory and use cycle-expansion formulae to calculate the physical quantities of a chaotic
system, because the results obtained by this technique converge faster with the topological
length. Another advantage of the method is that once the properties of the prime periodic
orbits are known (period, stability eigenvalue, and the coordinates of the fixed points), they are
readily available for the calculation of other physical quantities. Thus for each new quantity
one has to integrate only over a few prime cycles, instead of many periods until achieving a
steady value.

6. Conclusion

The RP dynamics of a driven gas bubble has been investigated in the stable and chaotic regimes.
Concerning period doubling and chaos, the same qualitative behaviour was observed as in the
previous paper by Lauterborn and Suchla [13] who studied a slightly different bubble dynamical
model and considered much bigger bubbles (R0 � 100 µm). By scanning a large parameter
space, all the transients are found to die out in less than ten cycles for R0 � 6 µm, which implies
that at the studied acoustic frequency the solutions to the RP equation are stable in the whole
parameter space of SBSL. This provides strong evidence for the assumption that radial RP
dynamics is insufficient to explain the period-doubling, quasiperiodic and chaotic behaviour
observed in the measurements of Holt et al [11] and Jensen [12]. By constructing return maps
we showed that at particular values of the parameter Pa the return map is unimodal; thus binary
symbolic dynamics can be used to describe the system. The list of admissible prime cycles
up to symbol length 6 is found by applying Kneading’s theory. The information contained
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in the stability and periods of the first few prime cycles can be used to calculate averages of
physical quantities relevant for the system. We show this on a particular example and find that
the time-averaged value of this quantity converges to the value obtained from the truncated
cycle expansion formula.
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