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The periodic orbit quantization on the anisotropic Kepler problem is tested. By computing
the stability and action of some 2000 of the shortest periodic orbits, the eigenvalue
spectrum of the anisotropic Kepler problem is calculated. The aim is to test the following
claims for calculating the quantum spectrum of classically chaotic systems:

(1) Curvature expansions of quantum mechanical zeta functions offer the best semiclassical
estimates; (2) the real part of the cycle expansions of quantum mechanical zeta

functions cut at appropriate cycle length offer the best estimates; (3) cycle expansions are
superfluous; and (4) only a small subset of cycles (irreducible cycles) suffices for

good estimates for the eigenvalues. No evidence is found to support any of the four claims.

I. INTRODUCTION

_ At first glance, the anisotropic Kepler problem seems
to be the ideal testing ground for periodic orbit guantiza-
tion of bound systems, indeed, so ideal that Martin
Guizwiller has asked us to convince him of the utility of
the cycle expansion techniques by demonstrating that their
accuracy surpasses his original calculation! of the aniso-
tropic Kepler problem spectrum.

In this contribution to this issue of CHAOS, we
present ¢ycle expansion spectra computations based on the
evaluation of thousands of cycles. In the cycling business,
one aims for many decades of extra precision over that
attainable by trace formulas; as the accuracy of our spectra
is still not significantly better than Gutzwiller’s, the origi-
nal gentleman’s agreement is hereby breached. Qur hand is
forced by the proceeding paper,” and the hope that the
failure is instructive if it clarifies the nature of the obstacle.
Our purpose is to test the following claims that have ani-
mated much of the discussions of the Nordita 1991 Quan-
tum Chaos workshop. -

(1) The complex zeros of the curvature expansions of
quantum mechanical zeta functions offer, at present, the
best semiclassical estimates of the low eigenvalues of clas-
sically chaotic quantum systems 3

\4 } The best estimate for low r:lg,t‘:i‘l'vallies of ¢l ass;cauy
chaotic quantum systems is obtained by taking the real
part of the cycle expansion of the quantum mechanical zeta
function, cuit at appropriate cycle length.*

(3) Cycle expansions are superfluous; the real part of
the truncated Selberg product for the quantum mechanical
zeta function yields a better semiclassical estimate for the
low eigenvalues.’

(4) Only a small subset of cycles suffices for good

estimates of the eigenvalunes up to a siven cufoff energy.
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Here, we shall test claim (4) on a simple one-dimen-
sional system; we find no numerical evidence in its support.
The remaining claims are tested on the anisotropic Kepler
problem; the results are not more encouraging.

. ANISOTROPIC KEPLER PROBLEM

The anisotropic Kepler problem appears ideal for test-
ing the validity of quantum cycle expansions because
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Gutzwiller! has provided strong evidence that for anisotro-
pies as large as the physically interesting ones, all cycles
(computed so far) are unstable, and in one-to-one corre-
spondence with a simple symbolic dynamics. For a Hamil-
tonian system, such a claim is very surprising; we know of
no other example of a bound Hamiltonian system with
simple symbolic dynamics, and this makes the anisotropic
Kepler problem the unique candidate for testing cycle ex-
pansions. For simple symbolic dynamics, the cycles can be
combined into “shadowed” curvature combinations, and
cycle expansions are expected to converge well. However,
as we shall see, the real difficulty with the anisotropic Ke-
pler problem was unanticipated; such “naive” shadowing
of long orbits by short ones fails.

The anisotropic Kepler problem is discussed in depth

in {htrwillar’e mannoranh arhace notatinnal conventin
I GUZWIanCT § Ioncgrapn, wWia0sEe notationa:x conventions

we foliow here. Briefly, the anisotropic Kepler problem has
its experimental background in solid state physics. Elec-
trons associated with donor impurities in silicon and ger-
manium lattices have an anisotropic effective mass tensor,
with the anisotropy defined as the ratio /v between the
high and the low components. For silicon, this ratio is
m/v =4.810 and, for germanium, it is p/v = 19.48 (Ref.
7). If the only force comes from the donor impurity, the
problem can be approximated by the effective Hamiltonian
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where the relevant physical constants such as electric
charge, dielectric constant, etc., have been scaled out.
There is a rotational symmetry with respect to the x axis,
and. the corresponding angular momentum M is the only
constant of motion apart from the energy. The Hamil-
tonian is therefore transformed to

P P M 1 _ )
wtutm o rA7? (2)

For M different from 0, the phase space is known to be a
mixture of hyperbolic regions and stability islands, but, for
M =0, and large anisotropy the system appears to be, for
all practical purposes, completely hyperbolic. We restrict

® 1992 American Institute of Physics 61



62 . Christiansen and P. Cvitanovié: Quantization of the Kepler problem

ourselves to this case. Setting M = 0 and renaming r and p,
to stress the two-dimensional nature of the problem, we get
the effective Hamiltonian

2 2
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The two dimensional anisotropic Kepler problem is invari-
ant under C,, = C, X C,, the group of reflections across the
two axes. However, for the M = 0 restriction of the three-
dimensional problem, the y variable is pﬁ&hvc (it is the
distance from the x axis), there is no x-axis reflection sym-
metry, and the symmetry group is only C,, the y-axis re-
flection symmetry. Using this symmetry, the motion can be
reduced to a fundamental domain® with x>0 and y0. The
three-dimensional nature of the problem also shows up in
the Maslov indices, in a way that will turn out to be essen-
tial to the convergence of cycle expansions.

A. Scale conventions

The homogeneity of the potential can be used to scale
out the energy dependence and bring the action to the form

(1/8)S,(E) = kT, (4)
where T, is the period of prime cycle p evaluated for en-
ergy fixed to £ = — 1/2, and the wave number & is inverse

of the square root of the energy expressed in “ Rydberg”
units:

mA04
k= Ex/E, Eg= —é—K;’%, (5)

and e is the electric charge. The mass unit is normalized by
convention to pv = 1; all calculations presented here are
carried out for the silicon ratio p/v = 4.810. The energy
shell is customarily fixed to £ = — 1/2. Equation (4) is a
consequence of the relation T = d5/9E, with T evaluated
for E= — 1/2. A reader interested in comparing different
spectra published in the literature should note that, due to
a difference in the definition of the effective Hamiltonian,
the Kohn—Luttmger Rydberg unit Eﬁ" is related to (5) by
E J17 Ep, and the exact eigenvalues in the complex
k plane are related to the spectra of Refs. 10 and 2 by
Imk=0,

i/4
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For the anisotropic Kepler problem the stability eigenval-
ues of a periodic orbit are independent of energy.

lii. CYCLE EXPANSIONS

Cycle expansions of dynamical zeta functions have re-
cently been shown to be effective in classical chaos'* and
open guantum systems’ applications; for hyperbolic dy-
namical systems with finite grammars, the correlation ex-
n{'\ﬂP“TQ dImPanﬁnQ FQ(‘QT‘IP rateg. qlmnfnm TPQ(’\“R“(‘F\Q

etc., have been computed to high accuracies with relatwely
little numerical effort. For example, the escape rate of a
chaotic map is given by the leading zero of'

ey = [ —g), g,=2"%A", (7)
P

where the product is taken over the prime (i.e., nonrepeat-
ing) periodic orbits p of length » and stability A, In order
to evaluate this infinite product, we must use some expan-
sion scheme; cycle expansions in their crudest form attain
this by ordering the cycles according to the length of their
symbol strings, carrying out the multiplication for cycles
up to given cufoff length, and truncating the series to 2
polynomial in z. For example, for systems with complete
binary symbolic dynamics, one obtains

1/8(2) = (1 — 1) (1 — 1) (1 — £ (1 — £ ) (1 — £11) "
= 1w tg— 1) — {fo1 — tofy) ~ (fo01 — Lofor) — (fon1
—hipd — . (8)

The important feature of this expansion is that the contri-
butions separate in a finite number. of fundamental cycles
(here ¢y and #,) and the curvatures, combinations of longer
cycles shadowed by products of shorter ones:

1
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The zeta function appropriate for the evaluation of quan-

tum spectra follows from the Gutzwiller semlclasswal trace
formula for the Green’s function

g(e) = go(E)
+% ng 2 = lm IS/ A—mg/2]
(10)
This can be rewritten as
. P A,
8LE) —glL) = Jrln Z( &), (1D

with Z for systems with two degrees of freedom given by'

II I a—-za,5,
p k=0

ei[SF/ﬁ — mpfr/Z]
f o=
? A 17

Z(E) =

(12)

where S, is the action, A, is the stability, and my is the
Maslov index for the prime cycle p.

Discrete symmetries lead to splitting of the spectrum
into subspectra belonging to different irreducible represen-
tations of the symmetry group. The Z function can be
written as a product over the irreducible representations,

1.2, with

o
.y X
=T Il (0 —xu(g)0A ") (13)
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p k=0

where the product over p refers to prime cycles in the
fundamental domain, y,, is the group character of the rep-

CHAQS, Vol. 2, No. 1, 1992



F. Christiansen and P. Cvitanovié: Quantization of the Kepler problem , 63

resentation @, and g, is the group element that relates the
fundamental domain orbit to a segment of the full space
orbit.

In the case of the anisotropic Kepler problem the y-
axis reflection symmetry splits the eigenvalue spectrum
into the even A, subspace, and the odd A, subspace. The
group elements are the identity e and the reflection o, with
the even representation character y 4 (o) = 1, and the odd
representation character y,,(c) = — L.

The cycle expansion evaluation of spectra for the an-
isotropic Kepler problem differs from the Gutzwiller’s pe-
riodic orbit calculation' in several aspects as follows.

(1) The zeta functions that we expand are already
asymptotic, arranged in such a way that the spectrum is
dominated by short cycles, with long cycles contributing
small curvature corrections. In other applications zeta
functions have yielded exponentially better convergence
than that obtainable from trace formulas.

(2) Symmetries are used to restrict the dynamics to a
fundamental domain, factorize the spectra, and simplify
the symbolic dynamics (this is, by now, standard, and has
been independently done by other groups contributing to
this issue of CHAOS™?).

(3) Series of cycles accumulate to limits with finite
stability and action, which might cause cycle expansions to
diverge. However, our numerical results indicate that the
Maslov phases induce cancellations between successive
terms in cycle expansions and that the remaining sums are
convergent.

IV. SYMMETRIES AND SYMBOLIC DYNAMICS

In order to identify the short fundamental cycles and
control the contributions of longer cycles by grouping
them into curvature combinations, we need a symbolical
description of all possible trajectories of our system. To be
useful for cycle expansions, symbolic dynamics musf reflect
the dynamics in a natural fashion; as we shall see, this
requirement leads to symbolic dynamics different from the
obvious binary dynamics.

A. Binary symbolic dynamics

An orbit that has just crossed the y axis-will, due to the
anisotropy, fall faster toward the x axis and thus always
cross the x axis before the mext p-axis crossing. If we
choose the x axis as a Poincaré section, there are two to-
pologically distinct possibilities: Either the orbit has
crossed the p axis between successive crossings of the x
axis, or it has not. This leads to Gutzwiller’s choice of
symbolic dynamics for the anisotropic Kepler problem,
namely, the sign of x at each crossing of the x axis. At large
anisotropy, p/v > 9/8, the orbit can cross the x axis any
number of times between two y-axis crossings, and, conse-
quently, any string of symbols (signs of x) can be dynam-
ically realized. Gutzwiller has conjectured! that there ex-
ists a unique orbit for each infinite symbol sequence. We
believe that this is very unlikely; for smail anisotropies
above 9/8, elliptic islands have been found,’® and one sus-
pects that such islands exist for all anisotropies; in another
model, which has for a long time looked as chaotic, careful

symbolic dynamics work has ferreted out stability
islands.'® However, such islands, if they exist for p/v=5
— 20, are certainly very small and will have a negligible
effect on low quantum states. We shall proceed as though
the anisotropic Kepler problem is fully chaotic.

Gutzwiller’s symbolic dynamics is complete quater-
nary; any closed orbit must cross the x axis an even num-
ber of times, and the four possible combinations of pairs of
signs can be used as four letters of a quaternary symbolic
dynamics, with the only restriction that the two symbolic
fix points, + + and — —, are not dynamically realiz-
able.

We do not use this quaternary symbolic dynamics,
since the convergence of cycle expansions is improved by
meaking fuli use of the symmetries of the problem and re-
stricting the dynamics to a fundamental domain. We re-
place the x- and y-symmetry axes by reflecting walls and
restrict the motion to a quadrant of the full x-y space. With
the x axis as the Poincaré section, the two possible topo-
logically distinct motions between successive bounces off
the x-wall are:

0-no bounce off the y wall

and (14)

1-bounce off the y wall.

This yields a binary dynamics description of the orbits of
the anisotropic Kepler problem, which is complete, except
for one orbit: The fixed point 0 is not realized dynamically.
Gutzwiller’s global symbolic dynamics ...5,5, , 1Sy 4 ... 18
related to the fundamental domain symbolic dynamics® by
a simple rule: a,=0if 5,=5,, 1, and @, = 1, otherwise.
For example,

+ — — — =1100,

With simple binary symbolic dynamics, all should be
well and ready for numerical computations. However, the
curvature expansions!” presume an approximately linear
relationship between symbolic lengths and actions, and
symbolic lengths and stability exponents. This assumption
is badly violated in the anisotropic Kepler problem, where
numerical work indicates that the cycles can be grouped in
infinite families, with actions and stabilities converging to
finite limits.'®? This simplest example of such a family is
10"~ A cycle of this family bounces along the x axis
n — 1 times, crosses the y axis at the nth bounce and con-
tinues at the other side of the origin. As » gets larger, the
trajectory hugs closer and closer to the x axis. In particu-
lar, the actions of cycles in such sequences converge to the
action of the limiting collision trajectory.

In the anisotropic Kepler problem, four such collision
orbits along the symmetry axes survive from the isotropic
case. In the isotropic case they belong to the family of
Keplerian ellipses of given action; they are pericdic in the
sense that they go into the center and return along exactly
the same path as they arrived. In the anisotropic case,
however, it is not clear whether a sensible continuation
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through the singularity at the center exists (Yoshida'® de-
fines it by going into complex time)}. We provisionally omit
collision orbits from our numerical computations, keeping
in mind that they do control the limits of converging fam-
ilies of cycles, and that any serious attempt to improve the
periodic orbit theory in this problem probably should in-
corporate them. The action of the collision orbits is given
by the third Kepler law:?’

T = 20am\2,

(15)

where m is the mass and a is the major semiaxis. For the
anisotropic Kepler problem, this yields

o Te=2m{u/v)/* =9.30499...,
Ty=2m(v/p)"* =4.24271.... (16)

Yoshida'® has given an explicit formula for the stabilities of
the collision orbits:

A=(le| + {1+ ¢%)? with ¢ = cos((n/2) V9 — 8u/v),

(17)

which yields A = 2.35... for the x-axis collision orbit, but
A= 10® for the y-axis collision orbit. We have not rederived
this formula, and, as far as we can tell, no family converges
to the A = 2.35... stability. It shouid be mentioned that
Wintgen? is firmly convinced that the y-axis collision orbit
is infinitely unstable, although we know of no evidence for
this claim.

B. Infinite symbolic dynamics alphabet

The pruning of the fixed point 0, is usually imple-
mented by replacing the binary alphabet by an unre-
stricted, but infinite alphabet.!” As we shall see, this is
indeed a natural choice for the anisotropic Kepler problem
(and has already been introduced by Devaney®' in this
context).

Numerical investigations of a set of approximately
2000 cycles (though admittedly a small set in the present
context, this set is still much larger than any used in pre-
vious calculations) have led us to the conclusion that the
cycles can be grouped in families of converging stability
and action, and that these families are of the form

10m - 11072~ 1 10m (18)

where the n;’s either go to infinity or are fixed equal to 1.
Furthermore, the differences »; — n; of those »; that do go

to infinity are to be kept constant, and no tw

n:‘<25

nd na twn congecntive
LR i it Y L

n/s must equal 1.

In order to get the symbolic grouping of the cycles in
accordance with the physical grouping, we will change our
Poincaré section to the y wall. The topologically distinct
orbits are now coded by the number of bounces off the x
wall between successive bounces off the y wall; that is, we
have the natural numbers as our symbols or r-ary dynam-
ics:

n — r bounces off the x wall. {19)
The families of cycles converging to a fixed action and
stability are now of the form

(20)

with the same restrictions on the #;s. As examples of fam-
ilies, we have ny, 1n;, 1n,n,, and 1n1ln,, but not 21, 11n;
or ny(2xmy).

With the infinite symbolic dynamics, we have grouped
cycles of comparable actions and stabilities into classes of
the same symbolic length., But we are now left with the
problem of summing infinite series in the cycle expansion
of the zeta function. So far, the only organizational prin-
ciple that seems to work is a pairing of families. The fam-
ilies of (20) can be paired in families that have almost
identical actions and stabilities. These are of the form

mMHg. Ry,

mng.ahy
and 2n
lnlnz...nk.

The initial symbol 1 in the second group of families gives
rise to a difference in Maslov index of 2. This results in
opposite signs on the weights 2, of the zeta function, mak-
ing the contribution from the two families almost cancel.
Here, the three-dimensional nature of the problem is im-
portant since the difference is Maslov index for the two-
dimensional system would have only been 1,

Cycles from paired families trace almost identical
paths in the fundamental domain. For the duration of most
of the cycle, the orbits are almost indistinguishable, but, as
the cycle from the first family starts to retrace itself, the
second will make one small bounce to the x wall and back.
This would in the full space be seen as a pseudo semicircle
resulting in a 180 ° turn.

There are two questions to be asked about the limits of
these cycle families: What happens when ail n; symbols go
to infinity and what happens when the differences n; — n;
go-to infinity? The answers we get from our numerical
work seem to be very simple. In the first case, the trajec-
tories approximate collision trajectories along the x axis; in
the second case, in addition they approximate collision tra-
jectories along the y axis. Recalling that the stability of the
y-collision trajectory was estimated to be of order ~ 105, it
is not surprising. that families with diverging (n; — n;)’s
apparently have diverging stabilities. A hope for the future
is that we might be able to divide the stability limit of
families with constant differences »; — »; into two parts:
one from the approximations of the x-axis collision orbits
and one from shifting between these. If, however, we let the

differences n.— n.
GIierences nr;— n; GIverge, tnére will DC OnC more part

from approximating the y-axis collision orbits. For the ac-
tion the picture is even simpler: The limit is the sum of the
actions of the limiting collision trajectories.

divarga thara will ha Aane mars favt

V. NUMERICAL RESULTS

In a system with a finite alphabet and finite grammar
symbolic dynamics, the evaluation of the zeta functions is
fairly straightforward. One finds the shortest orbits, mul-
tiplies the factors (1 —¢,) for all orbits up to the cutoff
length #, truncates the polynomial approximation to the Z
function to the same order », and then numerically deter-
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TABLE 1. The actions and the stability exponents for the families of cycles with symbolic sequences ny=n, nimy=1n, mmy=nn+1, and
mpngiy = Lnn + 1. The n— w Kepler law limits for actions are also indicated.

" In n(n+1) In(n+1)

n s In|A| s In|Al s In|Al s In|Al
2 5.316 1.167 7496 2.116 14.32 4.103 12.04 3.816
3 7.010 1.679 8.317 2.515 16.25 4.866 14.91 4.649
4 8.020 1.958 8.757 2.636 17.30 5.136 16.55 5.009
5 8.588 2.078 8.999 2.682 17.88 5.224 17.46 5.133
6 8.905 2.120 9.134 2.692 18.20 5.258 17.97 5.174
7 9.081 2.140 9.209 2.703 18.38 5.267 18.25 5.187
8 9.179 2.145 9.251 2.700 18.48 5.274 18.41 5.192
9 9.234 2.151 9.274 2.706 18.53 5.273 18.49 5.193

10 9.265 2,150 9.288 2.701

11 9.282 2.154 9.295 2,707

12 9,292 2.151 9.299 2.702

13 9.298 2.155 9.302 2.707

14 9.301 2.151 9.303 2.702

18.61 18.61

) 9.305 9.305

‘mines the zeros of the truncated Z. For the anisotropic
Kepler problem, however, the accumulation of infinite
families of orbits of approximately the same stability and
action makes it uncertain which cycles should be included
in this process.

A. Cycle accumulation sequences

The x-axis collision orbit is densely enveloped by infi-
nite sequences of orbits with arbitrarily large numbers of
successive x-axis crossings (high ...n... subsequences}). We
identify this collision orbit with the 0 fixed point, of the
well-defined Kepler period T, = T,. Numerical results in-
dicate that the periods of the sequence of orbits 2,3,.,A,

which twine around the O collision orbit, converge to
T,=T,—b/p" (22)

For u/v = 4.81, p = 1.78... . Similarly, sequences of cycles
of type 2» hug closer and closer to an x-collision orbit
followed by a y-collision orbit, and their periods converge
to 7,4+ T,=13.5477 with the same geometric factor.
However, the stability exponents in sequences that hug the
v axis grow very large with n, as large as for the y-axis
collision orbit, and longer cycles can be safely omitted.
Numerical work indicates also that the stabilities of the
n cycles converge geometrically u, =log|A,|
= u,, —c/0”, although not nearly as smoothly as for the
cycle periods. For u/v = 4.81, ¢=2, and g, = 2.15.....
The first task facing us is to establish whether we can
control these families. The families can be paired as

Bty and  lngng..ng, (23)

with n;— e or equal to 1 (no two adjacent »;/s must equal
1} and we will take a look at the two simplest sequences:
#n and 1n

plus (24)

1#(n +1).
In Table I we give the actions and stabilities of these cycles.

n(n+1) and

As we can see, the paired families do not converge to
exactly the same value for the stability as we would have
hoped. It is therefore clear that we cannot include infinitely
many members of the families, and a cutoff has to be made,
In Table II we show the dependence of the lowest zero of
the Z function depending on the cutoff.

It appears that the cutoff does not have significant in-
fluence on the zeros of our calculations. We will therefore

-include the tails up to a finite #; and hope that this will not

distort our results. We have found all cycles, nyn,...1, for
k<6 with n;<5. In addition to these, we have included the
tails for all families of lengths 1 and 2 and some of length
3, with #,;<10. In Fig. 1 and Table III we give the results
for the periodic orbit quantization compared to the quan-
tum eigenvalues.

B. The functional equation

One obvious shortcoming of the semiclassical cycle ex-
pansions is that nothing guarantees the eigenvalues are
real, as they should be for a bounded system. A remedy for
this failure, the functional equation for the Z function, has
been proposed by Berry and Keating* and applied to the
anisotropic Kepler problem by Tanner et a/.* In our de-

TABLE 1L The dependence of the first zero on tail cutoff. We have
included tails with #,<n for all families of lengths 1 and 2 and some of
length 3. Except for an alternation between odd and even #, the value #
does not seem to matter, as long as it is larger than 10,

n o E;
6 1.247 4+ 0.062 §
7 1.154 + 0.027 i
8 1.238 4+ 0.069
9 1.200 4+ 0.026 /
i0 1.227 + 0.074 §
11 1.222 +0.054 ¢
12 1.227 +0.074§
.13 1.223 +4-0.054 §
14 1.227 4 0.074 ¢
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FIG. 1. The Z function for the even subspace 4,. Full lines represent Re(Z)
they cross. Only the leading eigenvalues have been marked. Quantum eigenvalues are shown as dots on the line £ =0,

duction of the Z function from Gutzwiller’s trace formula,

hnwra Qaen s wralavsnn o

WeE 1ave uimcg,alucu LhC \"Ululllc I-Cl.ul 50, auu Ullliblcu a
phase factor ¢ ~ ¥, where N is the integral of the mean
level density. Omission of an overall prefactor has no effect
on the positions of the zeros of the zeta function, but were
the zeta function the exact quantum determinant, its inclu-
sion would, in principle, make the Z function real for real
values of the energy. “The functional equation” idea is to
take the real part of the semiclassical approximation to the
quantum determinant, and study only its zeros. In Fig. 2
and Table III we give the results of this computation; ¥ is
taken from Ref. 2.

TABLE III. The cigenvalue spectrum for the even subspace 4. The first
entry is the “exact” quantum mechanical value,' the second is the cor-
responding zero of the zeta function, and the third is the zero of the
functional equation form of the zeta function. The values are related to
those of Ref. 2 by a factor of (/%)% There is no numerical evidence
that the eigenvalues are improved by use of the functional equation.

Egm E, Egry
1.183 1.227 + 0.074 4 1.235
2.222 2297 + 0.054 2.306
3.026 3.059 + 0.038/ 3.053
3.415 3.397—-0.00947 3.399
3.875 3.926 + 0.030¢ 3,935
4,518 4.568 4- 0.033 4.567
4.761 4.851 4-0.032§ 4,866
5.316 5.366 4+ 0.016¢ 5.368
5.474 5.509 4+ 0.019 ¢ 3.512
5.844 5.895 - 0,018 5.916
6.130 6.198 + 0.027 ¢ 6.230
6.466 6.507 — 0.004 ¢ 6.504

= (; dotted represent Im(Z)

= 0. The eigenvalues have been marked where

We do not observe any improvement in the accuracy
due to the use of the functional equation, although its use
led to a considerable reduction of the work needed to find
zeros as they are now restricted to the real axis. Further-
more, while in the complex plane one has to distinguish
between the leading and the nonleading zeros, here this

ambiguity is postulated away.

C. A naive cycle product

It has been suggested by Martin Sieber’ that one may
forgo the cycle expansions altogether by evaluating the real
part of the unexpanded truncated product representation
of the functional determinant. This is a very violent ap-
proximation to the true zeta functions, as all of its complex
zeros are wrong; surprisingly, this too produces a reason-
able spectrum. In Fig. 3 we see, however, that, even though
we still obtain the energy spectrum to the same accuracy,
the Hamburg “zeta function” (of Ref. 5) is very kinky and
plagued by false zeros.

D. Irreducible cycles

The exponent proliferation of periodic orbits is one of
the major obstacles when one wants to improve a calcula-
tion using the cycle expansion technique. Eu. Bogomolny®
has proposed a way to reduce the number of orbits neces-
sary when calculating a zeta function to a given accuracy.
The idea is to keep successively redefining the alphabet and
assuming perfect shadowing of the cycles in the new alpha-
bet. Bogomolny conjectures that it suffices to leave out
most of the longer, “shadowed,” cycles and to keep only
the subset of the irreducibie cycles.
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FIG. 2. The real part of e“'"EZ( k) for teal k for the even subspace 4,. The quantum mechanical spectrum is given by the dots. Notice the smooth
behavior of the curve compared to Fig. 3.

Since we are not by any means satisfied with the accu-  pler systems; we test the conjecture on a one-dimensional
racy of the spectrum of the anisotropic Kepler problem  map with complete binary dynamics:
calculated from standard cycle expansions, we do not find

1 1

the anisotropic Kepler problem the optimal system to test Sx) =2+ ex(z—-x), 0<x<z (25)
this conjecture. Since the conjecture is based on essentially
topological arguments, it should apply equally well to sim- fX)=2x—1—e(3—x)(1 —-x), %<x< 1.
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FIG. 3. Using the functional equation on the naive product I,(1 — £,). The spectrum is reproduced, but the function is much more spiky than for the
cycle expanded case, giving rise to false zeros around k = ¢4 and k¥ =9.5.
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TABLE IV. The escape rate computed by prime and irreducible cycles,
Columns are: 1, max cycle length; 2, number of cycles used; 3, escape rate;
4, level of the alphabet for irreducible cycles; 5, max cycle length; 6,

number of cycles used; and 7, escape rate.

Prime eycles Irreducible cycles

n ¥ e level n # eV

3 5 0.94 1 4 6 1.0074
4 8 1.00402 2 3 19 1.00086
5 14 0.999931 3 16 179 1.0002
6 25 1+4x10-7

7 41 1—4x107"

8 71 1—9x10—"1

By construction, the classical escape rate for this map is
exactly 0, and the deviation of the leading zero of

Z(z) = H H( _“A_p)

from 1 tests the quality of the cycle expansion truncation.
(In the above formula the second product is taken either
over prime cycles or over irreducible cycles). The numer-
ical results are given in Table IV, There is no indication
that the irreducible cycles approach improves the accu-
racy-to-work ratio. On the contrary, our numerical studies
indicate that the error is dominated by the shortest cycles
omitted, with the inclusion of longer irreducible cycles
playing a superfiuous role.

To understand in more detail how the irreducible cy-
cles work, we have studied the curious way in which they
probe the phase space. In the usual cycle expansions if one
looks at all periodic points with period less than a given
length, one expects them to be rather evenly distributed.
The irreducible cycles, however, have a highly uneven dis-
tribution. This can be illustrated by plotting their distribu-

tion for the Hamiltonian baker’s map (stretch by a factor

Y vafnlAY Tn Tio ah Trod o i
of 4, TeitnG . 1n Cg. -r, we have marked all ycuuuxu yuuub

belonging to the irreducible cycles of level 4, i.e., cycles up
to length 32. Their number is of order of 10® points. Since
already 10° points distributed evenly would have given a
completely black picture, the strong concentration of irre-
ducible points in certain areas is evident.

(26)

VI. CONCLUSION

Although the numerical results are not unreasonable,
we find all of the applications of cycle expansions to the
anisotropic Kepler problem deeply unsatisfactory. The
sums over infinite families that converge to combinations
of collision trajectories are at best conditionally conver-
gent, and not under control yet. Clearly, some more serious
analytic work needs to be done, and new methods for re-
summing such infinite families need to be developed.

In retrospect, Gutzwiller seems to have been very
lucky; the central difficulty of the periodic orbit theory in
the anisotropic Kepler problem, accumulation of infinite
series of orbits to the collision orbits, was not even noticed
at the low cycle lengths at which the original calculation
stopped. There is a quick fix, and the very first test'® of
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FIG. 4. Irreducible cycles in the baker’s map. All irreducible cycles of
level 4 {up to length 32) are marked. The white regions are close to short
irreducible orbits.

cycle expansions yielded accuracy comparable to
Gutzwiller’s from a handful of cycles. Indeed, Tanner and
Wintgen's, Gutzwiller’s, and our calculations suggest that
almost any method, no matter how cockeyed, easily pro-
duces a spectrum of comparably mediocre accuracy. How-
ever, in cycling business, one expects not comparable ac-
curacy, but many decades of extra precision for the same
effort.

Sericus improvements of the convergence, however,
still elude us and seem to require a new idea. In our humble
opinion, the zeta function calculations presented at the
Nordita 1991 Quantom Chaos workshop do not seem to
offer any clear evidence in support of the proposed Berry
and Keating functional equation, Bogomolny’s reduction
of cycle expansions, and Sieber’s unexpanded truncated
Selberg products, without detractmg from the inspirations
these 1deas have for us.
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