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~ Generating functionals for planar field theories are defined in terms of non-commuting sources. Relations between gen-
erating functionals for full, connected and one-particle-irreducible Green’s functions are given, together with the Dyson—
Schwinger equations which generate the planar perturbation expansion. ’

The planar diagrams constitute a very small frac-
tion of all diagrams in ordinary field theories. Their
number grows slowly, roughly like (constant)? in nth
order [1], while the number of all diagrams explodes
factorially, like n!. Do there exist “planar field theo-
ries” whose perturbation expansions contain only
planar diagrams? In this letter we formulate such theo-
ries. Our construction parallels the construction of
fermion field theories; the key observation is that the
algebra of sources should reflect the symmetry of the
Green’s functions. As planar diagrams have no sym-
metry under interchanges of external legs, the sources
should be non-commuting. The structure of planar
generating functionals that emerge from our construc-
tion is quite different from those of ordinary field
theories. In particular, the exponentials of the ordina-
ry theories are replaced by continued fractions in the
planar theories.

Planar generating functionals. Let Zy;., ., Wy, g
and Fy;, . . be the full, connected and one-particle-

. irreducible Green’s functions, respectively. Here the
index 7 stands for all variables needéd to specify a par-
ticle, such as the momentum, spin, species, etc. Re-
peated indices imply summations over discrete labels
and integrations over the continuous variables. If the
symmetry of Green’s functions is not specified, a gen-
erating functional can be constructed by introducing
a source J{1) for the first partlcle, J{2) for the second
partlcle and $O on:
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The Green’s functions are retneved by ordmary dif-
ferentiation:

d d

Z= dJ(I)dJ(2) Z[7W, 7D, Y|y @
However, functionals with labelled sources are useless
if one wishes to study relations among different
Green’s functions. For Bose theories multiple sources
are avoided by the observation that the Green’s func-
tions are fully summetric, and that this symmetry is
respected by a singele c-number source J;:
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The combinatoric factor ensures that the Green’s func-
tions are recovered by
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For fermions the Green’s functions are fully antisym-
metric, and their symmetry is respected by a single
anticommuting source J; : {J;, J;} = 0. Relation (4)
applies, provided that the derivatives anticommute.
The planar Green’s functions have no symmetry

0 031-9163/81/0000—0000/$ 02.50 © North-Holland Publishing Company ) ' 49



Volume 99B, number 1

under interchanges of legs, as this in general gives rise
to non-planar diagrams. However, also in this case the
‘sources Jl(l),Ji(z), - «+ can be replaced by a single

source J;, provided that the source is a non-c number
(non-commuting),.f J; #2J.J;, i #], and that the de-

jor
rivative is likewise non-commutmg

aﬁ(&&'"Jﬁ)E5w&°”Jm= ®)
d/dJ is the operation of picking out the leftmost leg
of a Green’s function, and not the conventional ¢-num-
ber derivative. We use the derivative notatjon to em--
phasize the parallellism with the ordmary Bose and
Fermi theories.

‘In terms of non-c sources the generating functionals
for full and connected planar Green’s functions are
given by

Z[‘I] : 1 + E Zi""k‘]k"

Ew

and the Green’s functions are again recovered by (4).
(In the above sums m is the number of legs in the cor-
responding Green’s function.)

To establish the relation between full and connec-
ted Green’s functions, consider an arbitrary diagram
contributing to a full Green’s function. If we pull out
the leftmost leg, we pick out a connected diagram

.J]Jl ’

wlJI = VLN A | (©6)

whose remaining legs enter the diagram somewhere to -

the right, and interspersed between these legs are vari-
ous disconnected bits (fig. 1a). Functionally this is ex-

pressed by a recursion relation
Z =1+w[iz[J]] . (72)

Had we started our construction by pulling out the
rightmost leg, we would have obtained

ZIJ1 =1+ W(Z[A}J] .

Either relation immediately leads to the explicit
solution of the free planar field theory. There is only
one connected diagram

W1 =804, (8)

(7b)

" and the generating functional for the full Green’s func-
tions is '

ZiJ =1+ 4; JZ[J]JZ[J]
= {1 —A,'j-sz J]Ji}‘l 3
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Fig: 1. (a) Relation between the full and the connected planar
Green’s functions. The full Green’s functions are denoted by
boxes , and the connected Green’s function by hatched blobs.
(b} Expansion of a connected Green’s function in terms of
one-particle-irreducible Green’s functions. One-particle-irre-
ducible Green’s functions are denoted by crosshatched blobs.
All sources J; are implicitly contained in the connected
Green’s functions (hatched blobs).

or, iterating

Z[J] = h (9b)

1-J;

1
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Here the fraction 1/(1 —x)-is shorthand for the expan-
sion 1 +x +x2 + +++ , Tteration of (9a) or expansion
of (9b) now yields the free planar field theory (fig. 2).
Let us apply the reasoning that led to (7) to inter-
acting planar field theories. Consider planar ¢> theory,
characterized by a bare vertex ;. Pulling out the
leftmost leg we either end on some other external leg,
or hit a vertex (fig. 3a). Repeating this procedure we
obtain all planar diagrams up to a given order perturba-
tion theory. In terms of Z[J], this is the Dyson—
Schwinger equation for the full planar Green’s functions

( [J]J +7k1] di d(‘l] )Z[J]

The corresponding Dyson—Schwinger equation for con-
nected Green’s functions, fig. 3b, follows from (7). For

ar, Z[J]
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Fig. 2. The full Green’s functions for the free planar theory.

an arbitrary theory, the bare vertices are given by the
classical action

Sl = —Ai}1¢j¢i Vi Pr bt s (10)

and (10) can be rewritten as the equation of motion
forZ[J]:

(g% [%]+Z[J]Ji)Z[J] -0. (11)

Next we turn to the construction of the effective
action ‘

Pg) = 2 Ty xber=dy9i- W

T
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Fig. 3. Dyson—Schwinger equations for ®3 theory. (a) Full
Green's functions (sources J; implicit) (b) Connected Green’s
functions (sources J; implicit) (c) One-particle-irreducible
Green’s functions (fields ¢; implicit). As the sources and fields
are non-c numbers, their ordering is crucial.

Take a connected planar diagram and pull out its left-
most leg. One possibility is that this leg immediately
leaves the diagram. Otherwise it ends in a proper tad-
pole, or a proper self-energy which continues into a
connected piece, or in a proper vertex which then con-
tinues into two connected pieces, etc. (fig. 1b). Func-
tionally this is expressed by ‘

s=dAwlifas;, | 13)
Op= Dy (J; + Ty +my + Tpjiidy +000)
= Ay (J; +dIy[¢] /dg;) , , (4

where the “interaction” functional I'[[¢] is related to
(12) by ‘ ‘
Tlg] = Iyle] — &7109; .

Rewriting (14) in terms of I we obtain the equation
of motion for the effective planar action:

dI'[¢]/d¢; +J;=0. 7 (15)

The Dyson—Schwinger equations (fig.3c) now follow
from fig. 3b. (13) and (15) now also give us the Leg-
endre transform for planar generating functionals:

W[J] =T[¢] +¢;J; +J;9; . - (16)

This completes the generating functional formalism
for planar field theories. The key results are equation
(7), which says that planar field theory is characterized
by continued fractions (rather than exponentials) and
equation (16) which gives the Lagrange transformation
for non-commuting sources and fields.

Planar path integrals. From experience with the fer-
mionic functionals we know that path integrals are
not necessarily integrals; rather, they are rules which
map the operation d/dJ into a field ¢. Guided by the
observation that the classical action § is the tree ap-
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proximation to the effective action I', we guess that
the planar path integral is of form

z[71=[1d¢] Z[s.J1,
Z16,J1 =Z =1+ S[¢Z] +{8,Z, 1,2} . (17)

Here the continued fraction structure is motivated by
(7) (which is the planar theory’s equivalent of expo-
nentiation in the full theory), and the anticommuta-
tor by the Legendre transform (16)..The fields ¢; are
non-c numbers. f[d¢] is defined operationally; we re-
quire that the order of the d/dJ, f[d¢] operations can
be interchanged. This relates Green’s functions to the
expectation values of products of fields:

_d d .
- f [dg] Z¢-Z¢----Z¢k . (18)

Hence d/dJ; < ¢;, as desired.

The other requirement we impose on f[d¢] is that
it should respect translational invariance, which we
state as the absence of surface terms in integration over
total derivatives: [ [dp]d(---)/d®; = 0. Applying this
toZ[¢ J] we obtain

0= f[d¢1 f [d¢]( [Z¢1+ZJ) 19

i.e., the Dyson—Schwinger equation (11). We empha-
size that the above path integral is just a guess. All in-
formation is contained in the generating functional
(6). The reader might wonder why we have not men-
tioned cyclic symmetry yet? That is because planar
Green’s functions need not be cyclic; they are cyclic
if the starting complete theory had Bose symmetry. In

52
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terms of our derivatives (5), cyclicity means that
identities like

(d/dg)Se] &;=S[e] , (20)

are satisfied.

Zero-dimensional theories. No solution of planar
Dyson—Schwinger equations is known except for the
zero-dimensional planar field theories. These are dia-
gram counting expansions in terms of a single source
J; =J, so that the generating functionals commute and
the differentiation (5) is simply

dZ[J]/dJ = {Z[J] —1} 7.

The Dyson—Schwinger equations are now ordinary
polynomial equations. These equations are solved for
a number of theories in ref. [1]. The most trivial ex-
ample is the generating functional for the free field
theory (9), which becomes

1—(1 —4JHl2 D Q! ;a2n @1)
=1+J2+2J4+5J6 +--.

AU

Here the coefficient of J27 is the number of dlagrams
with 2# legs (fig. 2).
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