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Abstract. The dynamical theory of moderate Reynolds number turbulence

triangulates the infinite-dimensional Navier-Stokes state space by sets of exact solutions

(equilibria, relative equilibria, periodic orbits, ...) which form a rigid backbone which

enables us to describe and predict the sinuous motions of a turbulent fluid. We report

determination of a set of unstable periodic orbits from close recurrences of the turbulent

flow. A few equilibria that closely resemble frequently observed but unstable coherent

structures are used to construct a low-dimensional state-space projection from the

extremely high-dimensional data sets. The turbulent flow can then be visualized as

a sequence of close passages to unstable periodic orbits, i.e, time-recurrent dynamical

coherent structures typical of the turbulent flow.
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1. Introduction

In the world of everyday, moderately turbulent fluids flowing across planes and through

pipes, advances in observation and computation are changing the ways we think about

hydrodynamic flows. The dynamical (as opposed to statistical) theory of moderate Re

turbulence in wall-bounded flows is making significant progress. Recent experiments

are very impressive, with the resolution of 3D particle-image velocimetry (PIV)

measurements of turbulent pipe flows almost comparable to the numerical simulations.

There is a multitude of new exact numerical solutions that one dared not dream about

a decade ago, and portraits of turbulent fluid’s state space geometry are unexpectedly

elegant. The theory triangulates the infinite-dimensional Navier-Stokes state space (not

low-dimensional models) by sets of exact solutions (equilibria, traveling waves, periodic

orbits, ...) which form a rigid backbone that enables us to describe and predict the

sinuous motions [1] of a turbulent fluid exemplified by figure 1.

The time evolution of such flows is profitably visualized in the state space, as

described below in section 3. Such state space visualizations promise to be a useful tool
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for viewing both experimental data and numerical simulations. The idea is to pick a

few typical coherent structures observed in a turbulent flow PIV data or simulation,

and use these to construct a low-dimensional state-space projection from the extremely

high-dimensional data set. Evolution of a typical turbulent flow is then visualized in

terms of close passages to the unstable coherent structures observed in turbulent regions

of the state space.

Here we give a brief overview of the recent progress on this front. Sections 2 and 3

summarize the technical preliminaries described in detail in refs. [2, 3, 4]. Section 4

introduces the new, previously unpublished periodic orbits results. Writing about

turbulence is a bit like writing about ballet without seeing any. The reader might enjoy

viewing the three kinds of accompanying animations on ChaosBook.org/tutorials [5]:

(i) 3D movies of velocity fields turbulent flows visiting unstable coherent structures

(ii) State-space trajectories, which show that (a) recurrent coherent structures arise

from close passes to unstable equilibrium and periodic orbit solutions of Navier-

Stokes, and (b) that these invariant solutions and their unstable manifolds impart

a rigid structure to state space that organizes the turbulent dynamics.

(iii) The dual views show some of these animations side-by-side. In these, one sees

recurrent coherent structures appear in the turbulent velocity field as the state-

space trajectory makes close passes to invariant solutions of Navier-Stokes.

In what follows, the key ideas are illustrated in the context of plane Couette flow.

Similar phenomena have been observed in pipe flows [6, 7, 8, 9]. Many people (see

the acknowledgements below) have contributed to this effort. Here we cite only a few

articles that cover technical aspects of results discussed here; for an overview of the

literature, see ref. [2].

2. 3D visualization of plane Couette flow

An instant in the evolution of plane Couette flow in a rectangular cell of size

[Lx, Ly, Lz] = [15, 2, 15] is shown in figure 1. In all simulations presented here the

Reynolds number based on half the wall separation and half the relative wall speed

is Re = 400. At this Re, sufficiently large perturbations of the laminar flow become

turbulent, and the turbulent flow settles into similar patterns of behavior in which

counter-rotating streamwise rolls and associated streaks of high and low-speed fluid

predominate, with the rolls spanning the distance between the two walls. It is striking

that these same recognizable unstable but recurrent structures appear in a wide range of

simulations and experimental conditions. But what, exactly, are these structures, and

how can they be identified and related? These questions motivate all that follows,

both the numerical searches for unstable invariant solutions, and their state space

visualization.

Figure 1 shows a flow in a cell large enough to mimic experimental conditions [10,

11]. The walls are in principle infinite in extent, but the size of observed structures is

http://ChaosBook.org/tutorials
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Figure 1. (color online). Plane Couette flow in a large aspect ratio periodic cell. The

[x, y, z] directions are referred to as streamwise, wall-normal and spanwise, respectively,

velocity components are denoted by u(x, t) = [u, v, w](x, y, z, t). The grayscale (color)

indicates u(x, t), the streamwise speed of the fluid: light (red) indicates fluid being

dragged away from the viewer by the top wall, dark (blue) towards, and arrows indicate

fluid velocity in the section plane. The velocity field is shown in three planes: (a)

the midplane (x, 0, z), halfway between the upper and lower walls, (b) the (x, y, 0)

streamwise cross-section, in the front and top half of the back, and (c) the (0, y, z)

sides, top left and bottom right.

comparable to the wall-wall separation. Hence rather small aspect ratio cells (spanwise,

streamwise periodic) such as those of figure 2 (a), which are simpler to analyze than

figure 1, can capture the essential physics and exhibit behavior qualitatively similar to

large aspect cells. Empirical searches for the smallest aspect cells still sufficiently large

to exhibit (numerically) stationary turbulence were first undertaken by Hamilton, Kim

and Waleffe [12]. All calculations reported here were performed for either the ΩHKW or

the ΩGHC small aspect cells (as defined in ref. [2]).

2.1. Exact solutions of Navier-Stokes: Equilibria

The classic laminar equilibrium (steady state) has a linear profile u = u(y, 0, 0).

Figure 2 (a) shows EQ2, the Nagata [13] “upper branch,” the first non-trivial,

numerically exact equilibrium, found in 1990. In the past four years many new equilibria

have been found [2, 3, 14]. Close passes of turbulent flow to these equilibria are evident

in the movies that the reader can view on ChaosBook.org/tutorials [5] website.

The exact numerical equilibrium solutions of Navier-Stokes are pretty amazing:

they are highly convoluted configurations, with the velocity field varying all over the fluid

cell in a manner indistinguishable to the naked eye from snapshots of a turbulent fluid,

but these solutions are stationary - they do not change under Navier-Stokes evolution,

http://ChaosBook.org/tutorials
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at least not until numerical errors creep in. They are robust and persist for ranges of

Re and spanwise and streamwise wavenumbers (inverse cell sizes). The Nagata “lower-

branch”, the least dissipative equilibrium, has been tracked [15] for Re as high as 10,000.

For a fixed Re solutions have preferred wavenumbers fixed by the interplay of the cell

dimensions and the boundary layer “wall units,” in ways not well understood.

Now that we have many exact solutions of Navier-Stokes equations: how do we

visualize them, fit them together?

3. State space visualization: a stroll through 61,506 dimensions

In order to better visualize the relations amongst the equilibria and periodic orbits,

and their relation to a typical turbulent trajectory, we have developed a new state-

space visualization of moderately turbulent flows [2]. The idea is simple, but the

key ingredients -exact solutions, their stability eigenvalues and eigenvectors- were not

available until recently.

Think of a 3D state of the fluid at a given instant -the 3D velocity field at

every point of the cell- as a point in a state space. In principle this space is infinite-

dimensional; in practice it is always approximated by a finite-dimensional computer

discretization. This dimension is bounded from below by computational accuracy needs

and the cleverness of numerical algorithms. Solutions presented here are resolved to

single precision accuracy, and for this cell size and Reynolds number, 61, 506 ≈ 105

coupled ODEs turn out to be sufficient [2]. This is the number of independent variables

in a 32×35×32 spectral expansion of an incompressible, no-slip velocity field; larger cells

and higher Re require more. As our exact invariant solutions require that 105 or more

dimensions for numerical accuracy, truncated models do not capture small scales that

are essential part of turbulent dynamics. We do no modeling here - all our calculations

are fully resolved direct numerical simulations (DNS), carried out in the full state space.

If our visual cortex can pick out and recognize large structures in these flows, not

all of these 61,506 dimensions can be equally important. Can we construct a state

space coordinate system in which a few coordinates reveal the organization of the flow

around these structures? We find Proper Orthogonal Decomposition (POD) helpful in

identifying important directions in state space, and we are indebted to the earlier POD

work [16, 17] for the idea of projecting onto characteristic states using an energy-based

inner product. The kinetic energy of the fluid endows the vectors in state space (velocity

field across the entire cell at a given instant in time) with a physically motivated bilinear

L2 norm, a velocity vector dot product averaged over the cell volume:

E(t) = |u|2 = (u,u) , (u, v) =
1

V

∫
Ω
dV u · v . (1)

POD is a method for construction of orthogonal coordinate frames by fitting long-time

trajectory averages by ellipsoidal cigars. In contrast, the triangulation of state space by

exact invariant solutions and their stable/unstable manifolds undertaken here involves

no averages over the turbulent flow, and does not replace the true dynamics with a
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(a)

(b)

Figure 2. (color online). (a) The Nagata EQ2 equilibrium solution and its three

1/2-cell translates. (b) The orthonormal basis set {e1, e2, e3, e4} within the “61,506-

dimensional” vector space of fluid states is constructed by adding the four Nagata

solutions in symmetrized / antisymmetrized combinations. Here we plot differences

from the laminar flow, otherwise, the plotting conventions are the same as figure 1.

low-dimensional model. Instead, we use exact solutions of Navier-Stokes to identify

important structures and show how they organize the state space dynamics.

THE IDEA: pick a few fluid states frequently visited by the turbulent flow,

and visualize the infinite-dimensional flow by projecting it onto coordinate frames

constructed from these states. For wall-bounded shear flows close to the onset of

turbulence such state space portraits are surprisingly informative. What are good

choices of such coordinate frames? A simple choice is to form a set of basis vectors

by orthogonalization of a set of physically important equilibrium solutions. For small

aspect ratio cells at moderate Re and simple symmetry groups we are lucky: a single

equilibrium and its three 1/2-cell translates, shown in figure 2 (a) produces a very nice

global visualization of the dynamics. (The choice of 1/2-cell translations is related to

symmetry group of the Nagata solution; for a more detailed explanation see ref. [2].)

From these, we form a set of four orthonormal basis functions {e1, e2, e3, e4}, shown
in figure 2 (b), and project a state-space trajectory

a(t) = (a1, a2, a3, a4)(t) , an(t) = (u(t), en) . (2)

This produces a projection of the fully-resolved Navier-Stokes flow in 105 dimensions

onto a four-dimensional subspace of physically important coordinates.

Figure 3 shows the state-space projection of the flow from the 105-dimensional

space of independent variables in the numerical simulation onto the 3d coordinate frame
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Figure 3. (color online). The state-space projection from the 105-dimensional space

of free variables in the numerical simulation algorithm onto a 3d perspective projection,

{e1, e2, e3} basis figure 2 (b), formed from linear combinations of the Nagata upper-

branch equilibrium EQ2 and its half-cell translations, with the laminar equilibrium as

the origin. Indicated are several equilibria (circles, dots, and squares), their unstable

manifolds (lines emanating from symbols), and a typical turbulent trajectory (dotted).

Two heteroclinic connections are shown as thick (red) lines spiralling out of one

equilibrium and landing in others.

{e1, e2, e3}. This global portrait shows several equilibria of plane Couette flow, together

with segments of their unstable manifolds traced by evolving the velocity field under

Navier-Stokes. The dense dotted region indicates the natural measure generated by

typical long-lived turbulent transients. Evidently the set of invariant solutions provides

a “cage” that confines and organizes the turbulent flow (for details see refs. [2, 3, 4]).

This visualization is physical, independent of whether the u(x, t) data is fetched

from a numerical simulation or an experiment. The global portrait is not static, it is

a picture comprised of thousands of videos: Each curve in figure 3 traces out a single

state space trajectory, i.e., it corresponds to a video of a given 3D flow evolving in time.

It is worth emphasizing that such low-dimensional projections are only a visualization,

not a reduction of Navier-Stokes to a low-dimensional model. We do not seek a smaller

set of ‘modes’ to represent the fluid dynamics; all calculations have to be done in high-

dimensional state-spaces, with the fully resolved DNS.

Dual views of state space / 3D physical space dynamics show the plane Couette

velocity field evolving under Navier-Stokes, side by side with the corresponding state-

space at the same instant in time. Here we are, wandering in 61,506 dimensions. Can one

slice up this high-dimensional state space into subregions, develop symbolic dynamics

that assigns a precise name to each distinct exact time-invariant solution of Navier-

Stokes equations?

One possible path is suggested by the existence of heteroclinic connections between
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Figure 4. (color online). Five periodic orbits in the state-space projection. The

orbits have symmetric counterparts that appear as mirror images in e2 and e3; these

are not shown. Note that the orbits are embedded in the natural measure (dotted line

in figure 3) of the turbulent flow and thus capture its dynamics and statistics. These

orbits are the beginning of an infinite hierarchy of unstable periodic orbits embedded

in the turbulent flow. From their 3D videos it would be hard to tell that these are

not segments of a turbulent orbit - they capture well the typical coherent structures

observed in turbulent flows.

different unstable solutions [4]. Each heteroclinic connection is traced out by an infinite-

time state space trajectory, i.e., it corresponds to one 3D flow evolving in time. The

reader is urged to explore ChaosBook.org/tutorials [5] for a dual-view movie of evolution

along several heteroclinic connections. Dual visualization helps develop intuition about

how states of different arrangements of rolls and streaks transmogrify into each other,

and coarsely partition state space into regions tied to each other by topologically robust

heteroclinic connections.

4. Turbulence and its periodic-orbit shadows

Equilibria, their stable/unstable manifolds and their heteroclinic connections teach us

a lot about the geometry of the state space, but equilibria are steady states of the

Navier-Stokes flow. But, by definition, they do not move, so no turbulence takes

place there. To describe turbulence we need to look further, for invariant solutions

that capture time-dependent dynamics. The ChaosBook.org/tutorials dual-view movies

of periodic orbits and transient turbulence show that the time dependence of typical

unstable structures seen in turbulence is better captured by unstable periodic orbits

embedded in the turbulent regions of the state space.

http://ChaosBook.org/tutorials
http://ChaosBook.org/tutorials


Geometry of turbulence in wall-bounded shear flows 8

t

T

750 800 850 900 950 1000 1050 1100 1150 1200 1250
0

50

100

150

0

0.2

0.4

0.6

0.8

1

Figure 5. (color online). Time-delay plot the distance between the trajectory at the

time t and the time t + T later (symmetry-reduced). Dark (blue) regions correspond

to close recurrences. Circles indicate initial guesses for Newton-Krylov searches that

successfully converged onto periodic orbit solutions; triangles, failures.

4.1. Exact solutions: Periodic orbits

The nontrivial equilibrium solutions are pretty cool. The next set of exact solutions

is more amazing still: the Eulerian velocity is time dependent, and their movies are

indistinguishable from the turbulent ones, but they return exactly to the initial state

after a given period. Several periodic orbits are plotted in figure 4. Turbulent dynamics

is captured by the (infinity of) such unstable periodic solutions, each a 3D movie that

repeats exactly after its own finite time T .

In fluid dynamics periodic orbits are the really big deal. In order to compute an

exact unstable periodic solution, one needs to guess the initial velocity field at 50,000-

100,000 with a sufficient accuracy that the exponentially unstable state of fluid recurs

nearly exactly after an (initially unknown) period. Until the first unstable periodic

solutions of Navier-Stokes were computed by Kawahara & Kida [18] in 2001, this seemed

utterly out of reach. As we report here, today arbitrarily many such solutions can be

determined.

The movies of the periodic orbits computed by our group are quite instructive:

viewing a few movies on ChaosBook.org/tutorials website (or the full database of

invariant solutions of plane Couette flow on Channelflow.org/database [19]) suffices to

get the idea. What is striking about the periodic solutions is how visually similar they

are to the turbulent dynamics: they also capture episodes of highly ordered motion

along streamwise counter-rotating rolls, interspersed by turbulent episodes.

How does one find unstable periodic orbits? The first ones were found by parameter

continuations [13, 20], but that is not feasible for finding the chaotic sets of orbits arising

from Smale-horseshoe stretching and folding rather than bifurcations of stable solutions.

The state-space trajectories of (transient) turbulence exhibit sequences of close passes to

various equilibria, as well as near recurrences to earlier states of the flow. We search for

such close recurrences in order to initiate periodic orbit seaches [21]. We quantify this

by plotting in a time-delay plot the energy norm distance (1) between the trajectory at a

http://ChaosBook.org/tutorials
http://Channelflow.org/database
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set of times t and times t+T later, as in figure 5. The virtue of initiating Newton-Krylov

searches [22] by close recurrences is that the guesses are weighted by the natural measure

(likelihood that the turbulent flow visits a given region of the state space), and thus

preferentially find orbits embedded into the turbulent regions of the state space (see, for

example, figure 4). A more systematic approach amenable to automatization eliminates

continuous time in favor of the discrete time Poincaré section returns (described below).

A long sequence of section crossings {u(t0),u(t1), · · ·} for a turbulent trajectory u(t) is

checked for close recurrences, |u(t0)−σn−ku(tn−k)| < ε, with the symmetry σn−k ranging

over the symmetry group of the flow. This approach captures both periodic and relative

periodic orbits. Currently we have some 40 periodic orbit solutions, but one can find

hundreds of (relative) periodic orbits this way without much further thinking.

While it is wisest not to wade into a discussion of symmetries of solutions [3] in

this brief overview, one should note that the most striking physical feature of flows with

continuous symmetries is the preponderance of “drifting” or “relative” solutions such

as traveling waves and relative periodic orbits. The first relative periodic orbits in the

full state-space of plane Couette were computed by Viswanath [23]. Currently we have

some fifteen relative orbits with streamwise phase shifts, and only one with a minute

spanwise shift. This reflects the physical fact that the energy is fed into the flow by

streamwise shear, and sidewise motions are only a weak, secondary effect.

Once a set of periodic orbits is found, their superposition, figure 6, illustrates the

sense in which periodic orbits shadow a typical “turbulent” state-space trajectory, and

serve as a systematic cover of its natural measure in the state space.

4.2. Stability of exact solutions

Spatially periodic solutions are also solutions of integer multiples of the original cell,

and of plane Couette flow on an infinite domain. Solutions in these larger cells are

more unstable; empirically any perturbation of a periodic solution decays quickly to

the sustained turbulence state. The equilibria and periodic orbits that we have found

(with exception of the laminar state) are unstable and thus never seen in long-time

simulations and experiments. Fortunately, for small aspect ratio cells they are not very

unstable. And in fact, we do observe close passes to the least unstable equilibria in

simulations. The number of unstable eigen-directions is small, of order 2 to 10, and the

leading eigenvalues are nicely separated into a few positive, exponentially expanding

and an infinity of negative, exponentially contracting ones.

4.3. Partitioning the state space: Poincaré sections, symbolic dynamics

Today we can determine a large number of periodic orbit and relative periodic orbit

solutions of Navier-Stokes. Each can be visualized as a 3D video, but how are we to

make sense of a large number of such invariant solutions, each a different 3D video?

Here is an idea. Note that for “steady turbulence” the shear forcing I by the moving

walls has to be balanced by the viscous dissipation D in the mean, but not at any
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Figure 6. (color online). State-space visualization of (left) a set of periodic orbits

compared to (right) the natural measure as explored by a generic turbulent trajectory.

Dots on the periodic orbits indicate intersections with the I −D = 0 Poincaré section.

The orbits are for the ΩHKW cell defined in ref. [2]; the projection is onto the first three

principal axes of the period T = 87.89 orbit together with its half-cell translation in x.

given instant in time. Let the Poincaré section H be the set of states where shear and

dissipation are balanced instantaneously:

H = {u | h(u) = I(u)−D(u) = 0 , and ḣ(u) < 0} ,
H is a curved hypersurface in the energy-norm based projections, since D is a nonlinear

function of u. This is a good Poincaré section, as (a) it is physically motivated, (b)

all equilibria and traveling waves lie on it, and their unstable manifolds help partition

it, (c) energy balance requires that all periodic and relative periodic orbits must pierce

this section transversely at least once, and (d) it is invariant under the symmetries of

the flow. We have determined the intersections with this Poincaré section for about 40

periodic orbits in the ΩHKW cell (shown as dots in figure 6). The intersections of the

periodic orbits with the Poincaré section are the fixed or periodic points of the Poincaré

return map. The longer cycles have np ≈ Tp/tmin periodic points, where tmin is a typical

shortest return time (the typical return times differ for different regions of the section).

In order to bootstrap this initial set of periodic points into a better and better

symbolic dynamics, on might proceed as follows. Label periodic points a, b, c, · · ·.
The Poincaré section can now be approximately partitioned into neighborhoods/cells

H = ∪Ha by a Voronoi triangulation, with a hyperplane through each shortest cord

connecting pairs of neighboring periodic points.

We are not hopeful about looking at projections of unstable manifolds in this

Poincaré section, or looking at I vs D plots. For the former, the dimensionalities are
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large (as few as four and as many as twenty unstable directions per orbit), and for the

latter, we have done it and not learned much. However, the I −D = 0 Poincaré section

could get us closer to understanding the network of transitions between the unstable

periodic orbit neighborhoods, and the associated symbol sequences help us gain insights

into the temporal evolution of turbulent dynamics. Here is the strategy (not as yet

successfully implemented):

A periodic point maps into the next periodic point, giving a directed link of an

approximate Markov diagram, connecting the two Voronoi cells. Starting in other parts

of the Voronoi cell one determines links to other cells that can be reached in one Poincaré

return. This yields a rough approximation to the Markov graph associated with this

partition. Now use segments of the known periodic orbits that follow the same symbolic

subsequence as starting guesses for multishooting Newton searches for periodic orbits

one Poincaré return longer. The longer the segments used, the better the guess, due to

the exponential closeness of trajectories that share the same finite symbol sequence. The

result is exponentially more periodic points, exponentially finer state space partition,

and a systematic hierarchy of longer and longer cycles.

4.4. How many periodic orbits is enough?

While the number of unstable periodic orbits for a chaotic system is infinite, the essential

dynamics is captured by the set of shortest, “fundamental” orbits, with longer orbits

acting as the exponentially decreasing corrections [24, 25]. Furthermore, the desired

finite accuracy of theoretical predictions and the intrinsic noise always renders the

number of required periodic orbits finite [26].

How many “fundamental” orbits are expected for the moderate Re, small aspect

ratio plane Couette flow? As a warm-up, consider the Kuramoto-Sivashinsky flow, a one

spatial dimension relative of the Navier-Stokes flow. In Kuramoto-Sivashinsky one looks

at the smallest spatially periodic cell that exhibits stationary turbulence and finds [27]

three equilibria and two traveling waves (after symmetry reduction). The shortest

periodic orbits wind around these in various ways, so there might be 5 × 4/2 = 10

pairwise visitations which are fixed points in the I − D = 0 section, the basic blocks

from which all longer periodic orbits are glued together. In plane Couette flow we have

three spatial dimensions: Streamwise motions should be the most important ones, as

this is how energy is fed into the flow, with the wall normal and spanwise motions

playing secondary roles. So symbolic dynamics might need triplets of symbols, one

for each direction. Each direction could have of order of ten important visitations

of (relative) equilibrium pairs, and then the number of periodic orbits which are the

shortest “building blocks” really shoots up. That almost all of the forty periodic orbits

computed so far intersect the I − D = 0 section just once is thus not unexpected.

Since the cell is of small aspect ratios, the dissipation at Re = 400 is strong, and the

motions along the three directions are strongly correlated, the number of basic building

blocks is possibly smaller than this pessimistic estimate, but forty “fundamental” orbits
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is certainly not a large number.

4.5. Do this at home: Channelflow.org

All computations reported here were performed with Channelflow.org public domain

computational fluid dynamics software [28] on either modest workstations or, for

systematic searches, a Linux cluster. Channelflow provides well-tested and easy-to-

use implementations of numerical integration algorithms for plane Couette and channel

flows, algorithms for computing equilibria, traveling waves, periodic orbits, their linear

stability, and utilities for manipulating velocity fields and producing visualizations.

The simulation software, scripts for producing movies, and data sets for all solutions

discussed here can be downloaded from Channelflow.org/download [19].

5. Summary and conclusions

Recent advances in experimental measurements and numerical analysis of unstable

coherent structures observed in transitional (i.e., close to the onset of) turbulence in

wall-bounded shear flows give us detailed dynamical-systems insights in the nature of

this type of turbulence.

Should this be called “turbulence?” The Reynolds number is low, in the transitional

regime, and there is no inertial range in the Kolmogorov sense. Reynolds [1] described

this dynamical regime as “sinuous motion” of a fluid. However, a wall-bounded flow

explores a wide range of Re, from the laminar flow at the wall itself, through the

boundary layer, to large Re, large scale motions further away from the wall. A precise

dynamical description of unstable coherent structures observed close to the wall in

all wall-bounded flows, qualitatively similar to exact solutions described here, is an

important piece of the overall puzzle of turbulence.

While different equilibria, traveling waves, periodic orbits and relative periodic

orbits are clearly physically distinct, it is hard to intuit how are they related dynamically

from their spatial 3D movie visualizations. The insights of low-dimensional dynamical

systems have been essential guide to the recent progress described here: The global

dynamics of transitionally turbulent flows is revealed by their state-space portraiture.

The new dynamical insights offer several new perspectives on this classical problem:

(i) Computation of dynamical averages such as turbulent drag, velocity correlations,

etc.: In contrast to probabilistic and scaling approaches to large Re turbulence,

the predictions here are in principle exact (obtained by periodic orbit theory) and

transport properties are sensitive to the precise value of Re (lack of structural

stability).

(ii) New approaches to nonlinear control: Now that we have a detailed picture of the

invariant solutions of the flow, their linear stability eigenvectors, and their unstable

manifolds, control systems using body or boundary forcing can be constructed to

chaperon the fluid toward a desired state.

http://Channelflow.org
http://Channelflow.org/download
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Still, much remains to be accomplished before the dynamicist’s vision of turbulence

becomes a part of an engineer’s tool box. Application of periodic orbit theory lies far

in the future: the effective methods for symmetry reductions, and for elaboration and

refinement of symbolic partitions of state space need to be developed first. Once that

is accomplished, we will have

(i) accurate predictions for measurable time-averaged observables for a given wall-

bounded shear flow, such as the mean frictional drag for the plane Couette flow,

turbulent mixing rates, etc.

(ii) a detailed qualitative and quantitative description of the geometry of turbulent

flows, with dynamical insights into turbulent vs. laminar basins of attraction, and

potential applications to non-local control of such flows.
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[3] J. F. Gibson, J. Halcrow, and P. Cvitanović. Equilibrium and traveling-wave solutions of plane

Couette flow. J. Fluid Mech., 638:1–24, 2009. arXiv:0808.3375.
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