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Abstract. A "quasiclassical" approximation to the quantum spectrum of the Schro­
dinger equation is obtained from the trace of a quasiclassical evolution operator for 
the "hydrodynamical" version of the theory, in which the dynamical evolution takes 
place in the extended phase space [q(t), p(t), M(t)] = [qi , oi S, OiOj S]. The quasiclas­
sical evolution operator is multiplicative along the classical flow, the corresponding 
quasiclassical zeta function is entire for nice hyperbolic flows, and its eigenvalue 
spectrum contains the spectrum of the semiclassical zeta function. The advantage 
of the quasiclassical zeta function is that it has a larger analyticity domain than 
the original semiclassical zeta function; the disadvantage is that it contains eigen­
values extraneous to the quantum problem. Numerical investigations indicat e that 
the presence of these extraneous eigenvalues renders the original Gutzwiller-Voros 
semiclassical zeta function preferable in practice to the quasiclassical zeta function 
presented here. The cumulant expansion of the exact quantum mechanical scatter­
ing kernel and the cycle expansion of the corresponding semiclassical zeta function 
part ways at a threshold given by the topological entropy; beyond this threshold 
quantum mechanics cannot resolve fine details of the classical chaotic dynamics. 

1 Introduction 

What we shall describe here is very much in the spirit of early quantum 
mechanics, and had physicists of the period been as familiar with classical 
chaos as we are today, this theory would have been developed in 1920's . The 
main idea is this: in the Bohr-de Broglie visualization of quantization, one 
places a wave instead of a particle on a Keplerian orbit around the hydrogen 
nucleus. The quantization condition is that allowed orbits are only those 
for which such a wave is stationary; from this follows the Balmer spectrum, 
the old quantum theory, and the more sophisticated theory of Schrodinger 
and others. Today we are very aware of the fact that integrable systems are 
exceptional and tha.t chaos is the rule. So, can the Bohr quantization be 
generalized to chaotic systems? The answer was provided by Gutzwiller in 
1971; the trace of the quantum evolution operator for a chaotic system in 
a semiclassical approximation is given by the Gutzwiller trace formula, an 
oscillating sum over all periodic orbits of the system. 
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There is however a hidden intellectual challenge in Gutzwiller's deriva­
tion: the derivation is based on the semiclassical Van Vleck approximation 
K(x, x', t) to the quantum propagator which does not satisfy the semigroup 
property 

j dx" K(x,x",t1)K(x",x',t2 ) =I= K(x,x',t 1 +t2). (1) 

In the literature this problem is usually sidestepped by saying that an equality 
holds if the integral is carried out by the saddle point method. Here we offer 
an alternative "quasiclassical'' quantization scheme based on a quasiclassical 
evolution operator which is multiplicative along the flow. Our main result 
is the quasiclassical trace formula for the quantization of a Hamiltonian dy­
namical system. For a system of 2 degrees of freedom the quasiclassical trace 
formula takes the form 

tr £t(E) = '\"' T ~ 8(t - rTp) et(S"-ET1,)r-i1r~r 

7 p ~ IAplr/2 (1 - 1/ A;)2(1 - 1/ A~r) · 

Throughout this paper we reserve the term "quasiclassical'' to distinguish 
this class of formulae from the original Gutzwiller formulae which we shall 
refer to as "semiclassical" . 

Search for the above formula was motivated by the classical periodic orbit 
theory, where convergence of cycle expansions is under much firmer control 
than in the semiclassical quantizations. One of the main lessons of the classi­
cal theory is that the "exponential proliferation of orbits" in itself is not the 
problem; what limits the convergence of cycle expansions for generic flows 
is the proliferation of the grammar rules, or the "algorithmic complexity". 
Indeed, for nice hyperbolic flows a theorem of H. H. Rugh (1992) asserts that 
the appropriate spectral determinants are entire and that their cycle expan­
sions converge superexponentially. 

On the basis of close analogy between the classical and the quantum zeta 
functions, it has been hoped (Cvitanovic 1992) that for nice hyperbolic sys­
tems the semiclassical zeta functions of Gutzwiller (1988) and Voros (1988) 
should also be entire. This hope was dashed by Eckhardt and Russ berg (1992) 
who established that the semiclassical zeta functions for the 3-disk repeller 
have poles. Their result had in turn motivated guesses for spectral determi­
nants with improved convergence properties by Cvitanovic and Rosenqvist 
(1993) and Cvitanovic et al. (1993), which eventually lead to the first deriva­
tion of the above trace formula by Cvitanovic and Vattay (1993). In this 
paper we offer a different derivation and interpretation of this formula. 

Improved analyticity has been very useful in sorting out the relative im­
portance of the semiclassical, diffraction (Wirzba (1992), Wirzba (1993), Vat­
tay, Wirzba and Rosenqvist (1994)) and quantum contributions (Gaspard and 
Alonso Ramirez (1992), Vattay (1996), Vattay (1994), Vattay and Rosenqvist 
(1996)). One had also hoped that improved analyticity would yield cycle ex­
pansions that would converge faster with the maximal cycle length truncation 
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than the Gutzwiller-Voros type zeta functions. As is shown here, this is not 
the case. Improved analyticity comes at a cost; the quasiclassical zeta func­
tions predict extraneous eigenvalues which are purely classical and do not 
belong to the quantum spectrum, but their presence degrades significantly 
the convergence of the cycle expansions. Furthermore, the investigation of 
Wirzba (1996) has clarified the relationship between the cumulant expansion 
of the exact quantum mechanical scattering kernel and the cycle expansion 
of the semiclassical zeta function; the order of expansion at which the two 
part their ways is determined by the value of the topological entropy, and 
beyond this threshold quantum mechanics fails to resolve the arbitrarily fine 
details of the classical chaotic dynamics. 

The paper is organized as follows: in Sect. 2 through Sect. 4 we develop 
the quasiclassical evolution operator formalism for a semiclassical approxima­
tion to the Schrodinger equation, and in Sect. 5 we derive the trace and zeta 
function formulae for quasiclassical quantization. In Sect. 6 we confront in nu­
merical experiments the cycle expansions of the quasiclassical zeta functions 
with the cycle expansions of the more standard semiclassical zeta functions 
and dynamical zeta functions, as well as with the exact quantum mechani­
cal results, and in Sect. 7 we explain the distinction between the asymptotic 
nature of quantum mechanical cumulant expansions and the convergence of 
semiclassical cycle expansions. Appendices contain some technical details as 
well as a discussion of the relation of the quasiclassical quantization to the 
Selberg zeta function. 

2 Quantum Mechanics in Hydrodynamical Form 

The Schrodinger equation for a particle in ad-dimensional potential V is 

( 
a ri2 ) in at + 2 ~ - V(q) 1/J(q, t) = o , (2) 

where 'lj;(q, t) is the wave function, and we set the particle mass m = 1 
throughout. The ansatz 

1/J = r.peiS/n (3) 

is as old as quantum mechanics itself. Schrodinger's first wave mechanics pa­
per was submitted 27 January 1926. Submission date for Madelung (1926) 
"quantum theory in hydrodynamical form" paper, where this ansatz is inter­
preted as a fluid flow, was 25 October 1926. 

Substituting the ansatz into (2), differentiating, and separating the result 
into the real and imaginary parts ( under assumption that both <p and S are 
real functions) yields 

as 1 2 1? ~r.p at+ 2 (v'S) + V(q) - 2 -;- = 0 (4) 

ar.p 1 at + v' Sv'r.p + 2~Sr.p = O (5) 
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The ti2 term has many names and is called the "quantum potential" by 
Bohm (1952), "enthalpy" by Spiegel (1995), by fluid dynamics analogy, or 
"quantum pressure" by Feynman (1972). While Schrodinger in his 21 June 
1926 paper noted that p = <p<p* satisfies the continuity equation, it was Born 
who (in a footnote of his 24 June 1926 paper) identified pas the probability 
density. Interpretations of quantum mechanics bifurcate here; keeping the 
n term in the potential ( 4) leads to the Madelung "fluid" theory. Shifting 
the n term into the second equation enforces that S satisfies the classical 
Hamilton-Jacobi equation 

as 1 2 at+ 2 (v'S) + V(q) = 0 , (6) 

while the "diffusive" n term in the equation for the amplitude 

8<p l in 
at + v' Sv' r.p + 2 iYlSr.p = 2 iYlr.p (7) 

motivates the "stochastic" interpretation of Nelson (1985) . 

2.1 Semiclassical Approximation 

Our goal here is to study the semiclassical approximation of quantum me­
chanics, with "Ii small, and concentrate on the leading order expressions. This 
can be achieved by setting "Ii formally zero in either the "hydrodynamic" or 
the "stochastic" picture. Either way we get 

(8) 

(9) 

As long as we concentrate on the leading semiclassical contribution, we can 
steer clear of the passions aroused by the differences between different inter­
pretations of quantum mechanics, and follow the original Gutzwiller deriva­
tion of the semiclassical trace formula via Van-Vleck approximation to the 
quantum propagator, Gutzwiller (1971), Gutzwiller (1990). 

Nevertheless, the procedure is unsatisfactory in the sense that in order to 
get an operator with the semigroup property we need to impose the saddle 
point condition. In order to overcome this problem we have to learn more 
about the technical details of the semiclassical dynamics first. This analysis 
will show that the semiclassical wave function evolution can be described as 
an evolution over an extended dynamical space. 

3 Semiclassical Evolution as a Set of ODE's 

We now examine the semiclassical approximation to the quantum wave evo­
lution ( a linear partial differential equation) and show that it can be refor­
mulated in terms of a finite number of ordinary differential equations. We 
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start by traversing a well trodden ground: Hamilton's 1823 formulation of 
wave mechanics. 

3.1 Hamilton's Wave Mechanics 

In the wave equation (2) q is not a variable; the variable is the wave function 
'i/J that evolves with time, and one can think of '!/J as an (infinite dimensional) 
vector where q plays a role of an index. S(q, t) plotted as a function of the 
position q for two different times looks something like Fig. l(a). A smooth 

S(q,t) S(q,t) 

(a) (b) 

Fig. 1. (a) A wavefront S(q, t) plotted as a function of the position q for two different 
times. (b) The phase of the wavefront S( q, t) transported by a swarm of "particles"; 
Hamilton's equations (15) construct S(q, t) by transporting qo --+ q(t) and Po , the 
slope of S(qo, to), to Po--+ p(t). 

"wavefront" S(q, t 0) deforms smoothly with time into the "wavefront" S(q, t) 
at time t. At this point one can ask: could we think of this front as a swarm 
of particles that move in such a way that if we know S(q, t) and its slope 
as/ aq at q at initial time t = to, we can construct a corresponding piece of 
S(q, t) and its slope at time t, Fig. l(b)? For notational convenience, define 

as 
Pi= Pi(q, t) := -a, i = 1, 2, ... , d . 

qi 
(10) 

In the semiclassical approximation ( 4) reduces to the Hamilton-Jacobi equa­
tion 

as ( as) at + H q, aq = 0 ' (11) 

where H(q,p) is the Hamiltonian, in this case 
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(12) 

For sake of simplicity we set m = 1 throughout. We shall also assume that 
the Hamiltonian is time independent (energy is conserved) and separable into 
a sum of kinetic and potential parts. 

Infinitesimal variation of S(q, t), Fig. l(a), is given by 

as as 
dS = dt-· + dq- . 

at aq 

Dividing through by dt and substituting (11) we obtain 

dS dt = -H(q,p) + qp . (13) 

The "velocity" q is arbitrary, and now comes Hamilton's idea: can we adjust 
q so that p is promoted to a variable independent of q? Take a gq derivative 
of both sides of (13): 

a d aH aH ap a d . ap 
--S = -- - - - +p--q + q­
aq dt aq ap 8q aq dt 8q 

(remember that H(q, p) depends on q also through p(q, t) := aqS, hence the 
~; term in the above). Exchanging aq and d/ dt derivatives leads to 

(14) 

Now we use the freedom of choosing q, and trade the ~ dependence for a 
set of ordinary differential equations, the Hamilton's equations 

. aH(q,p) 
q = ap ' 

. aH(q,p) 
p = -

aq 
(15) 

with the "wavefront" S(q, t) replaced by the action increment St(qo,Po), the 
integral of ( 13) evaluated along the phase space flow ( Qo, po) ~ ( q( t), p( t)): 

S\qo,Po) = t dT {q(T) -p(T) - H(q(T),p(T))} . 
l to 

(16) 

If the energy is conserved, H(q(r) ,p(T)) = E , and the second term is simply 
(to - t)E. 

To summarize: the Hamilton-Jacobi partial differential equation (11) for 
the evolution of a wave front can be reformulated as a finite number of or­
dinary differential equations of motion which increment the initial action 
S(qo, to) by the integral (16) along the phase space trajectory (q(T),p(r)). In 
order to obtain the full quasiclassical evolution we also have to deal with the 
amplitude evolution (9). 
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3.2 Amplitude Evolution 

The amplitude evolution (9) now takes place in the velocity field given by 

v(q, t) = 'v S(q, t) . 

We can define q(t) = P(q) as a solution of the differential equation 

q = v(q, t) 

(17) 

(18) 

with initial condition q(0) = q at time t = 0. This solution will coincide with 
qt(q, ':::7S(q, 0)), which is the q solution of the Hamilton's equations with initial 
conditions q' = q and p' = 'v S ( q', 0) . We introduce the not at ion "' ( q, t) = 
11S(q, t) and write (9) as 

{ :t + v(q, t) · 'v + 1,..,(q, t)} cp(q, t) = 0 . (19) 

This is a linear equation in cp, so its solution can be written in terms of its 
Green 's function as 

cp(q, t) = J dq' D(q, q')cp(q', 0) (20) 

where the kernel D(q,q') is the special solution of (19) with initial condition 
L0 (q, q') = 8(q - q'). It is easily checked by direct substitution into (20) and 
(19) that this Green's function is given by 

L\q, q') = exp {~ht "'(JT(q'), r) dr} 8(q - l(q')) , (21) 

where an extra negative contribution to (19) results from v(q, t)V8(q- ft( q')) = 
- (v'v(q, t))8(q - P(q')) and v'v(q, t) = "'(q, t). 

3.3 Quasiclassical Evolution 

The whole quasiclassical evolution procedure can now be summarized. First 
we t ake our initial wave function 1/J(q, 0). We pick a function S(q, t), a solution 
of (8), and compute the initial amplitude cp(q, 0) = e-iS(q,O)/li'l/;(q, 0) . We 
evolve this amplitude for time t and put back the phase: 

'I/J(q,t) = eiS(q,t)/li J dq' D(q,q')e-iS(q',O)/h'lj;(q',O) . (22) 

The whole evolution can be cast into the semiclassical evolution operator 

(23) 

where 
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L\q, q', S) = (24) 

exp { *(S(q, t) - S(q', 0)) +~lat r;,(JT(q'), T) dT} o(q- t(q')) 

The functional dependence on S( q', 0) sounds somewhat discouraging; we 
have to see it in an explicit form in order to understand the machinery of 
this operator. 

The most complicated looking object here is the function 

>.(q',t) = lat K(jT(q'),T)dT. 

We do not need the full information about S(q, t) in order to compute this 
integral of L1S(q, t) along the trajectory; as we shall see, an ODE suffices to 
evaluate this function. Consider the curvature matrix 

M
. __ EPS(q,t) 
iJ - . 

8qi8qj 
(25) 

The time evolution equation for this matrix is obtained by taking the second 
derivatives of (8): 

8M at+ v(q, t) · v'M + M 2 + D 2 V = 0 , (26) 

where D 2 V is the second derivative matrix of the potential. The first two 
terms combine to the full time derivative, and the evolution of M along a 
trajectory is given by 

M = -M2 - 0 2 v . (27) 

So in the extended dynamical space we do not only keep track of q and slope 
of S at q, but also the curvature of S at q, see Fig. 2. Let us denote the 
solution of this ODE along a trajectory with starting point ( q, p) and an 
initial matrix M by Mt(q,p, M). The function >.(q, t) now can be expressed 
as 

(28) 

with p initialized asp= v'S(q, 0). 
Another point where the "functional dependence" can be simplified is the 

phase term. We can make the replacement 

S(q,t) - S(q',0) = St(q',p') (29) 

in the kernel (25), where 5t is the integral (16) with initial point (q', p' = 
v' S ( q', 0)) and to = 0. 

With these observations the kernel (25) can be written as 

Lt(q,q',S) = j dp'dM'eiS1
(q

1

,p
1

)/ n+½ 1:drtrMT(q
1

,p
1

,M
1

) x 

o(q - l(q' ,p')) o(p' - v'S(q', o)) o(M' - 0 2S(q', o)) , (30) 

where we have made the functional dependence explicit. 
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S(q,t) 

Fig. 2. The evolution of the curvature matrix Mij of the wavefront S(q, t) along 
the trajectory [q(t), p(t), M(t)] in the extended dynamical space. 

4 Quasiclassical Evolution Operator 

If we write the time evolution of a wave function we get 

'I/J(q, t) = j dq' dp' dM' wt(q',p', M') 6(q - l(q',p')) 

x'ljJ(q',0)b(p' -v'S(q',0))6(M' -D2S(q',0)) , (31) 

where wt ( q, p, M) is a short hand notation for the exponential in (30). We 
now make a new proposal: let us regard the last deltas 6(p'-v'S(q', 0)) 6(M' -
D 2 S( q', 0)) as a part of the wave function. In other words, we think of 
w(q',p', M') = 'I/J(q', 0) 6(p' - v'S(q', 0)) 6(M' - D 2S(q', 0)) as a function de­
fined on the (q, p, M) space. We can multiply (31) by 6(p - v'S(q, t)) 6(M -
D2 S(q, t)) and write the evolved function in the extended space as 

w(q,p, M) = j dq' dp' dM' £t(q,p,Mlq',p', M') w(q',p', M') , 

where the kernel of this integral operator shall be referred to as the quasi­
classical evolution operator 

rt( Ml , , M') _ iS1 (q',p')Jn+½ f dr trM.,.(q',p',M') 
L q,p, Q ,p, - e 0 

x6(q - l(q',p')) 6(p - pt(q',p')) 6(M - Mt(q',p', M')) (32) 

Here the quantities v'S(q, t) and D 2 S(q, t) are computed from their initial 
values and replaced with l(q',p') and Mt(q',p',M') using (29). 

So, what does this mean? We have constructed an evolution operator 
which acts on functions of the ( q, p, M) space. Because of the three delta 
functions the evolution operator has the semigroup property. However, there 
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will be a price to pay: while a wave function can be embedded into the 
enlarged space, not all the functions living in the enlarged space represent 
functions in the old space. The spectrum of the quasiclassical operator will 
contain the semiclassical spectrum, but as we shall see in Sect. 6, it will also 
contain extraneous eigenvalues without quantum mechanical counterpart. 

4.1 Wave Packet Evolution 

There is also an easy way back from the extended space to the original one. If 
the function lli( q, p, M) is a representation of a q space wave function or rep­
resents a linear combination of such functions , the delta function dependence 
on p and M ensures that a q dependent wave function can be recovered by 

'1/J(q,t) = J dpdM\li\q,p,M) . (33) 

The quasiclassical evolution introduced here is closely related to the Gaus­
sian wave packet evolution theories of Heller (1975), Heller, Tomsovic and 
Sepulveda (1992). There a wave packet 

'1/J(q, O) = Aoeipo(q-qo)/li+ 2~ (q-qo)M0 (q-q0 ) (34) 

is "launched" at t = 0, with the parameters (qo,Po,Mo) evolving in time 
according to the equations we have for q, p and M, and with the amplitude 
evolving as 

(35) 

Initial wave functions can be decomposed into a linear combination of wave 
packets and the pieces can be evolved separately. Each packet is characterized 
by a phase point in the ( q, p, M) phase space and evolves according to (15) 
and (27), with clouds of points representing initial wave packets evolving as 
in the Heller, Tomsovic and Sepulveda (1992) picture. 

4.2 A Classical Motivation for the Extended Dynamical Space 

The above discussion might lead the reader to believe that the extended dy­
namical phase space is a peculiarity of quantum quasiclassics. However, what 
we have done is an example of a much more general procedure for construct­
ing multiplicative evolution operators in settings where the multiplicative 
property seems to have been lost. 

The problem can be illustrated by the Ruelle (1987) "thermodynamic" 
evolution operator of form 
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with At(x) an eigenvalue of the Jacobi matrix Jt(x) (see Appendix A} and 
ht(x) is a weight additive along the trajectory t(x). For one-dimensional 
maps this operator is multiplicative, but not so for flows with two or more 
transverse dimensions, for the simple reason that the eigenvalues of successive 
stability matrices are in general not multiplicative, 

Here Jab = JbJa is the Jacobian matrix of the trajectory consisting of con­
secutive segments a and b, Ja and Jb are the stability matrices for these 
segments separately, and A's are their leading eigenvalues. It was this lack 
of multiplicative property for A's that had for long time frustrated attempts 
to construct evolution operators whose spectrum contains the semiclassical 
Gutzwiller spectrum, until the method presented here was developed. 

The main idea, extending the dynamical system to the tangent space of 
the flow, is suggested by one of the standard numerical methods for evalua­
tion of Lyapunov exponents; instead of computing eigenvalues of linearized 
stability matrices, one monitors the growth rate of separation between nearby 
trajectories, i.e. one adjoins the d-dimensional tangent space ~ E TUx to the 
d-dimensional dynamical evolution space x E UC m,d_ The dynamics in the 
(x, ~) E U x TUx space is governed by the system of equations of variations, 
Arnold (1978): 

x = v(x), ~ = Dv(x)~ 

Here Dv(x) is the derivative matrix of the flow. We write the solution as 

with the tangent space vector ~ transported by the transverse stability matrix 
Jt(xo) = &x(t)/&x0 . Multiplicative evolution operators and the correspond­
ing trace and determinant formulae for such flows are given in Cvitanovic 
and Vattay (1993) and Pollner and Vattay (1996) . 

5 Quasiclassical Trace and Determinant Formulae 

Determination of the approximate eigenvalues of the Schrodinger operator 
(2) is now reduced to the computation of the eigenvalues of the quasiclassical 
evolution operator (32). But before we do this, a warning is in order. The 
spectrum of the new operator contains the semiclassical spectrum, i.e. we 
might find eigenvalues beyond those found in quantum mechanics. Optimally 
these extraneous eigenvalues should be filtered out, but at present we know 
of no practical technique for doing this, other than comparison with the exact 
quantum mechanical spectrum. 

We shall determine the eigenvalues of our operator by first deriving the 
classical trace formula (Cvitanovic and Eckhardt (1991), Cvitanovic et al. 
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(1996)), and then determining the zeros of the associated Fredholm deter­
minant, in this context called the quasiclassical zeta function. The (p, q) in­
tegrations can be carried out first , and yield a weighted sum over primitive 
periodic orbits p and their repetitions r 

t L L= 8(t - rT) ek(S,,-ET")r 
tr£ (E) = T P L1 

P I det(l - Jr) I p,r · 
p r=l P 

(36) 

By the periodicity condition 8(t - rTp) the M trace is restricted to a trans­
verse Poincare section of the flow, evaluated at a prime cycle completion 
t = Tp, or its r-th repeat 

Llp,r = J dMc5(M - MrT,,(q,p, M)) e¥ foT" drtrM,.(q ,p,M) . (37) 

The integration of this part requires some skill and it is left for Appendix A. It 
turns out that this last integral can also be expressed in terms of the eigenval­
ues of the full phase space Jacobian matrix A 1, A2 , · · · , Ad+ 1 = 1 / A1, · · · , A2d = 
1/ Ad. Putting all ingredients together we get the quasiclassical trace formula 
for the quantization of a Hamiltonian dynamical system in ( d + l) configura­
tion dimensions, i.e. restricted to the fixed energy shell in the 2(d + 1) phase 
space: 

= d 8(t _ rT) e( t(S,, -ET") -i-rrm,,/ 2)r 
tr .ct ( E) = L Tp L II -,A-'-i lr-/2-'-(~-'---1-/A_r __ )-2 (-l---l /-A-2r-_) 

p r=l t=l P, p ,t p ,t 

(38) 

Here Tp( E) = § dt is the p-cycle period, Sp( E) = § pdq the cycle action 
evaluated along the periodic orbit on the energy surface H = E, mp the 
Maslov index, and Ap,l, Ap,2, · • •, Ap,d are the d expanding eigenvalues of the 
transverse Jacobian matrix of the flow belonging to the p-cycle. The period 
is related to the action through Tp ( E) = a~ SP ( E). The associated quasi­
classical zeta function is given by 

{ 

1 d IA il - r/2e¼S"(E)r - i-rrfr} 
Zqc(E) = exp - L;: II(/~ l/Ar .)2(1 - 1/ A2r) 

p,r t= l p ,t p ,1. 

(39) 

(see e.g. Cvitanovic et al. (1996) for the trace ~--Heta functions relationship). 
This quasiclassical zeta function is our main result. The zeros of Zqc(E) yield 
the spectrum of the "quasiclassical" evolution operator. 

5.1 The Semiclassical Zeta Function 

The formulae derived above differ from those of the semiclassical periodic 
orbit theory for hyperbolic flows as originally developed by Gutzwiller (1971) 
in terms of traces of the Van Vleck semiclassical Green's functions . The semi­
classical Gutzwiller trace formula has topologically the same structure as the 
quasiclassical trace formula (38): 
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oo i S (E) . ~ 1 en 1' r-l7r 2 r 

trG(E) = g(E) + i1i ~Tv ~ ldet (l _ J~) /½ . (40) 

The Gutzwiller trace formula differs from the quasiclassical trace formula in 
two aspects. One is the volume term g(E) in (40) which is a missing from 
our version of the classical trace formula. While an overall pre-factor does 
not affect the location of zeros of the determinants, it plays a role in rela­
tions such as the zeta function functional equations of Berry and Keating 
(1990). The other difference is that the quantum kernel leads to a square 
root of the cycle Jacobian 1/ Jdet(l - Jp), a reflection of the relation proba­
bility = ( amplitude )2. This difference does not effect the leading eigenvalues 
(which coincide for the semi- and quasiclassical quantizations) , but has a 
dramatic effect on the convergence of respective zeta functions. 

The precise relation between the semiclassical zeta functions and the 
quasiclassical zeta functions is given in Appendix C. 

In the remainder of the paper we shall investigate the relative merits of 
the quasiclassical quantization compared to the Gutzwiller semiclassics and 
the exact quantum mechanics. 

6 Numerical Convergence of Cycle Expansions 
and Extraneous Eigenvalues 

A 3-disk repeller is one of the simplest classically completely chaotic scat­
tering systems and provides a convenient numerical laboratory for testing 
both the ideas about chaotic dynamics and for computing exact quantum 
mechanical spectra, see Eckhardt (1987), Gaspard and Rice (1989a)-(1989c), 
Cvitanovic and Eckhardt (1989). The 3-disk repeller consists of a free point 
particle moving in the two-dimensional plane and scattering specularly off 
three identical disks of radius a centered at the corners of an equilateral 
triangle of side length R. The discrete C3v symmetry reduces the dynam­
ics to motion in a fundamental domain, and the spectroscopy to irreducible 
subspaces A1 , A2 and E . All our computations are performed for the fully 
symmetric subspace A1 . 

In this section we address the following question: which of the three ap­
proximate quantization zeta functions is the best in predicting the exact 
quantum mechanical scattering resonances 

(a) the semiclassical zeta function of Gutzwiller (1988) and Voros (1988) 

{b) the dynamical zeta function of Ruelle ( 1987), the j = 0 part of the 
semiclassical zeta function 
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(42) 

( c) or the quasiclassical zeta function ( 39) 

(43) 

Here 

(44) 

is the weight of the p th prime cycle, np its topological length and z a book­
keeping variable for keeping track of the topological order in cycle expansions 
- the above zeta functions are Taylor-expanded in z around z = 0 up to a 
given cycle expansion order and only then z is set to z = 1 (see also (51) 
below). LP is the length of the p th cycle, mp its Maslov index together with 
the group theoretical weight of the studied C3v representation, and Ap its 
stability (the expanding eigenvalue of the p th Jacobian matrix). 

The results of comparing finite cycle expansion truncations of the above 
zeta functions with each other and with the exact quantum mechanical results 
computed with the methods outlined in Sect. 7 are summarized in Figs. 3 
and 4. Resonances are plotted as the real part of the resonance wavenumber 
(resonance "energy") vs. the imaginary part of the wavenumber (resonance 
"width"). We have computed several thousands of exact quantum mechanical 
as well as approximate A1 resonances for the 3-disk repeller with center-to­
center separation R = 6a. Further and considerably more detailed numerical 
results are available from Wirzba and Henseler (1995) . 

Some of the features of the resonance spectra have immediate interpreta­
tion. The mean spacing of the resonances is approximately 271' / L, where L is 
the average of the lengths Lo and L1 of the two shortest cycles of topological 
length one. The data also exhibit various beating patterns resulting from the 
interference of cycles of nearly equal lengths; e.g. the leading beating pattern 
is of order 271' / .dL, where .dL is the difference of the lengths L1 and Lo. 

In Fig. 3 the cycle expansion includes cycles up to topological length four. 
Already at this order the four leading resonance bands are well approximated 
by the semiclassical zeta function (41) (in fact, for Re k ;S 75/a already cycles 
up to length two suffice to describe the first two leading resonance bands). 
Neither the quasiclassical zeta function ( 43) nor the dynamical zeta function 
( 42) perform quite as well. The reason is that the quasiclassical as well as 
the dynamical zeta function predict extra resonances which are absent in the 
exact quantum mechanical calculation. The accessible resonances close to the 
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Fig. 3. The A1 resonances of the 3-disk repeller with R = 6a. The exact quantum 
mechanical data are denoted by diamonds. The semiclassical ones are calculated 
up to 4 th order in the cycle expansion and are denoted by crosses. (a) semiclassical 
zeta function ( 41), (b) dynamical zeta function ( 42), ( c) quasiclassical zeta function 
(43). 
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real axis can in this regime be parameterized by 16 measured numbers , i.e. 
8 cycle lengths and stabilities, together with the 8 Maslov indices. It turns 
out that the subleading bands remain completely shielded all the way up to 
Re k ~ 950 / a where they start mixing with the four leading ones. 

In Figs . 4a-c the comparison is made up to eighth, respectively twelfth 
cycle expansion order. The border of convergence of the semiclassical zeta 
function has now moved (in the plotted region) above the fifth and sixt h 
band of the exact quantum resonances. The dynamical zeta function exhibits 
a sharp accumulation line of resonances, the border of convergence controlled 
by the location of the nearest pole of the dynamical zeta function (Eckhardt 
and Russberg (1993), Cvitanovic et al. (1993)). With cycles up to length 12 
the quasiclassical zeta function resolves the exact quantum fifth and sixth 
bands of subleading resonances, but at the cost of many extraneous reso­
nances, see Fig. 4(c). At these high cycle expansion orders the quasiclassical 
zeta function has convergence problems for large negative imaginary k val­
ues ( especially for low values for Re k), in agreement with the expected large 
cancellations in the cycle expansion at high cycle expansion orders, Wirzba 
and Henseler (1995). There is the further caveat that the quasiclassical zeta 
function finds the lowest subleading resonances just barely at the 12th order 
in the cycle expansion. Therefore cycles of larger topological length would be 
needed to confirm this success. 

The extraneous eigenvalues are not without a meaning; they belong to 
the spectra of classical evolution operators, such as those that describe the 
escape from a classical 3-disk repeller, plotted in Cvitanovic et al. (1993) . 
The problem is that we now know, by comparing them to the exact quantum 
mechanical spectra, that they have nothing to do with quantum mechanics. 
As far as quantum mechanics is concerned, they are "extraneous". 

Another distinctive feature of the exact quantum mechanical spectra is 
the diffmctive band ofresonances from k ~ (0. -i0.5)/a to k ~ (100. -il.6) /a. 
As shown by Vattay, Wirzba and Rosenqvist (1994) and Rosenqvist, Vattay 
and Wirzba (1996), the diffractive band of resonances can be accounted for 
by inclusion of creeping periodic orbits, omitted from the calculations under­
taken here. 

Qualitatively, the results can be summed up as follows. The semiclassical 
zeta function ( 41) does well above the line of convergence defined by the dyn­
amical zeta function ( 42), already at very low cycle expansion orders where 
the other two zeta functions still have problems. Below this line of convergence 
the semiclassical zeta function works only as an asymptotic expansion; when 
it works, it works very well and very efficiently. The dynamical zeta func­
tion does eventually as well for the leading resonances as the semiclassical 
one. As experimentally these are the only resonances accessible, one can - for 
practical purposes - limit the calculation just to this zeta function. The quasi­
classical zeta function finds all known subleading quantum resonances , but at 
a high expense: the rate of convergence is poor compared to the semiclassical 
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zeta function, as most of the information provided by longer cycles is used 
to determine the extraneous resonance bands, with no quantum counterpart. 
Without a quantum calculation, one could not tell the extraneous from the 
real resonances. 

As a by-product of this calculation we can state an empirical rule of 
thumb: Each new cycle expansion or cumulant order is connected with a new 
line of subleading resonances. This rule relates the cycle expansion trun­
cations limit, n -, oo ( where n is defined below in (51)), and the limit 
Im k -+ -oo. Numerics supports the claim that the cycle expansion limit 
n -, oo and the semiclassical limit Re k -, oo do not commute deep down in 
the lower complex k plane, a point that we shall return to in Sect. 7. 

6.1 Exact Versus Semiclassical Cluster Phase Shifts 

In the above we compared the exact and semiclassical resonances of the 3-disk 
repeller in the A1 representation. As the deviations are most pronounced for 
the subleading resonances which are shielded by the leading ones, one could 
argue that experimentally it does not matter which of the three zeta functions 
are used to describe the measured data, as all three give the same predictions 
for the leading resonances. 

Nevertheless, as we shall now show, the three approximate quantizations 
can be told apart (Wirzba (1995)), even experimentally. 

The exact and semiclassical expressions for the determinant of the S­
matrix for the non-overlapping 3-disk repeller are given by 

det 

= 

s.c. 
----+ 

s<3)(k) 

( )

3 detM (k*)t detM (k*)t (detME(k*)t)
2 

det g(1)(ka) Al A2 2 
detMA1(k) detMA2(k) (detME(k)) 

(
e-i1rN(k)) 6 (Zl-disk(I)(k*)* Z1-disk(r)(k*)*)

3 
X 

Z1-disk(l)(k) Z1-disk(r)(k) 

ZA1(k*)* ZA2(k*)* ZE(k*)*
2 

x------ 2 (45) 
ZA1(k) ZA2(k) ZE(k) 

(See Wirzba and Henseler (1995) for details and notation.) For the Ai rep­
resentation of the 3-disk repeller the quantum mechanical kernels and the 
semiclassical zeta functions ( 41) are related by 

detMA1(k*)t s.c. ZA1(k*)* 
----+ 

detMA1(k) ZA1(k) 
(46) 

Both sides of ( 45) and ( 46) respect unitarity, and if the wave number k is 
real, both sides can be written as exp{i277(k)} with a real phase shift 17(k). 
We define the total phase shift for the coherent part of the 3-disk scattering 
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problem (here always understood in the A1 representation) for the exact 
quantum mechanics as well as for the three approximate quantizations by: 

e2i1)qu,(k) := _d_et_M_(_k_*)_t 
det M(k) 

(-1 (k*)* 
e2i1)dyu(k) ·= ----

. (-l(k) 

Zsc(k*)* 
Zsc(k) 

e2i11,1cCk) := Zqc(k*)* 
Zqc(k) 

( 47) 

This phase shift definition should be compared with the cluster phase shift 
given in section 4 of Lloyd and Smith (1972). The important point here is that 
the coherent or cluster phase shift of detS(k) is in principle experimentally 
accessible: one just has to construct the elastic scattering amplitude from the 
measured cross sections, and subtract the single disk contributions. 

So, T/qm(k) is a "measurable" quantity, useful to us as a different method 
for discriminating between the various zeta functions. An example is given in 
Fig. 5 where the zeta functions in the numerators as well as in the denomi­
nators in (47) have been expanded up to cycles of topological length 12. The 
phase shifts are compared in the window 104/a :S k :S 109/ a , a typical win­
dow sufficiently narrow to resolve the rapid oscillations, with k sufficiently big 
that the diffraction effects are unimportant. The performance of the original 
semiclassical zeta function is again the best. We stress that in contrast to 
the subleading resonances studied in Sect. 6 (which are completely shielded 
from experimental detection by the leading resonances), phase shifts are hard 
data, in principle extractable from measured cross sections. 

In conclusion: One can tell the three candidate zeta funct ions apart even 
experimentally. We have again confirmed that the semiclassical zeta function 
is the best. 

7 Semiclassics Versus Asymptotic Ii Expansion 

So far we have tested various approximate quantization proposals against 
each other and against exact quantum mechanics. Now we turn to a deeper 
question: how seriously should we take these cycle expansions in the first 
place? We will show here, following Wirzba (1996) , that the semiclassical zeta 
function is approximating its quantum mechanical counterpart, the "charac­
teristic KKR determinant" (Kohn and Rostoker (1954) , Lloyd and Smith 
(1972), Berry (1981)) as an asymptotic series and therefore makes sense only 
as a truncated series. 

Let detM(k) = det(l + A(k)) be the characteristic KKR determinant 
of the 3-disk repeller in the A1 representation, where the pertinent kernel 
A( k) expressed in the angular momentum basis relative to the half-disk in 
the fundamental domain reads (see Gaspard and Rice (1989c)) 
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Fig. 5. The coherent cluster phase shifts of the 3--disk scattering system in the A1 
representation with R = 6a . The exact quantum mechanical data compared to the 
predictions of the semi classical zeta function ( 41), the dynamical zeta function ( 42) 
and the quasiclassical zeta function ( 43) calculated up to 12 t h order in the cycle 
expansion. The semiclassical zeta function and the exact quantum mechanical data 
coincide within the resolution of the plot . 

A(k)m,m' = d(m)d(m') 
1
7i~ka) { cos (i(5m - m')) H~~m' (kR) 

Hm, (ka) 

+(-l)m' cos (i (5m + m')) H~tm,(kR)} (48) 

with O ~ m, m' < oo and 

d( m) : = { v'2 for m > 0 
1 form= 0 

Let Qm(k) denote them th cumulant of det M(k) , i.e. the coefficient of zm in 
the Taylor expansion of det (l + zA(k)). Qm(k) satisfies the Plemelj-Smithies 
recursion relation (Wirzba and Henseler (1995)) 

Qo(k) = 1 , 
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where Tr( AJ ( k)) is the trace of the j th power of the kernel A( k )m,m' evalu­
ated in the angular momentum basis, {Im)}, relative to the half-disk in the 
fundamental domain. 

The semiclassical analog of the characteristic determinant det(l + zA(k)) 
is the semiclassical zeta function ( 41). More precisely, the cycle expansion 
of the semiclassical zeta function truncated at the topological order n is the 
semiclassical analog of the quantum cumulant expansion of det(l + zA(k)) 
truncated at the same order. Thus Cm ( k), the corresponding semiclassical m th 

order cycle expansion term of Zsc ( k), is constructed from the semiclassical 
equivalent of the Plemelj-Smithies recursion relation: 

form 2=: 1 ( 49) 

with tP defined in (43). The cycle expansion (Cvitanovic (1988)) follows from 
the semiclassical limit 

In summary, the n th order truncated cumulant and cycle expansions are given 
by 

n n 

detM(k)ln = L Qm(k), Zsc(k)ln = L Cm(k) (51) 
m=O ni==O 

where the notation •••In indicates that the corresponding determinant or 
zeta function has been truncated at cumulant/cycle expansion order n. The 
following facts are known: 

1. The cumulant sum 

n 

lim detM(k)ln = lim '°' Qm(k) = detM(k) 
n--+oo n-+oo ~ 

m==O 

is absolutely convergent, I: IQm(k)I < oo , because of the trace class 
property of A(k) = M( k) - 1 for non-overlapping, non-touching n-disk 
repellers (Wirzba and Henseler ( 1995)). 

2. The semiclassical cycle expansion sum converges above an accumulation 
line ( which runs below and approximately parallel to the real wave num­
ber axis, see Fig. 4(a)) given by the leading poles of the leading dynamical 
zeta function, (- 1 ( k), or the leading zeros of the subleading zeta function, 
(11 (k) (Eckhardt and Russberg (1993), Cvitanovic et al. (1993), Cvi­
tanovic and Vattay (1993)) . 
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3. The truncated semiclassical cycle expansion sum Zsc(k)ln can approxi­
mate the quantum mechanical result as an asymptotic series even be­
low the semiclassical zeta function border of convergence, Wirzba and 
Henseler ( 1995). 

We have checked numerically that the following formulae relate the m th cu­
mulants and cycle expansion terms on the real k-axis with the corresponding 
quantities inside the complex k plane - at least as long as the condition 
llm kl « I Re kl is satisfied: for the quantum mechanical cumulants of order 
m we have the approximate leading order relation (under assumption that 
the diffraction effects are negligible) 

(52) 

L ~ R - 2a is the average length of the cycles of topological length one. 
We have also checked numerically that the corresponding relation for the 
semiclassical cycle expansion terms of order m is also approximately valid: 

Cm(Re k + ilm k) ~ Cm(Re k) e-mLimk . (53) 

Furthermore, on the basis of Fig. 6 we conjecture that for arbitrary values 
of the center-to-center separation R of the non-overlapping 3-disk repeller 
(R > 2a) the following relations hold on the real wave number axis (k real): 

7.1 The Meaning of It All 

if ka';:, 2m-ll , 
a 

if ka:::., 2m-ll 
a 

Where does the boundary ka ~ 2m- 1 L / a come from? 

(54) 

(55) 

This boundary follows from a combination of the uncertainty principle 
with ray optics and the non-vanishing value for the topological entropy of 
the 3-disk repeller. When the wave number k is fixed, quantum mechanics 
can only resolve the classical repelling set up to the critical topological order n 
given by (54). The quantum wave packet which explores the repelling set has 
to disentangle 2n different sections of sized~ a/2n on the "visible" part of the 
disk surface (which is of order a) between any two successive disk collisions. 
Successive collisions are separated spatially by the mean flight length L, and 
the flux spreads with a factor L/a. In other words, the uncertainty principle 
bounds the maximal sensible truncation in the cycle expansion order by the 
highest quantum resolution attainable for a given wavenumber k. 

The upper limit n for which cm(k) with m S: n approximates Qm(k) 
increases with increasing Re k. For n > m(Re ka), defined in (55), the cycle 
expansion terms and cumulant terms deviate so much from each other, that 
beyond this order the contributions of longer cycle expansions have nothing to 
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Fig. 6. Comparison of the absolute values of the first seven quantum mechanical cu­
mulant terms, 1Qn(k)l2

, with the corresponding semiclassical cycle expansion terms, 
lcn ( k) 12 , of the semi classical zeta function ( 41) evaluated on the real wave number 
axis k. Note that the deviations between quantum mechanics and semiclassics de­
crease with increasing Re k, but increase with increasing cycle expansion order n. 
The value of Re k where the quantum mechanical and semiclassical curves join is 
approximately given by Re ka ~ 2n+l where n is the order of the cumulant/ cycle 
expansion term and a is the radius of the disk. The data are for the A1 subspace 
of the 3-disk repeller with center-to-center separation R = 6a. 

do with quantum mechanics. The fact that Zsc(k)Jn - even in its convergence 
regime - is a good approximation to quantum mechanics only up to a finite 
n is usually not noticed, as the terms in (55) are exponentially small on or 
close to the real axis and sum therefore to a tiny quantity. In other words, for 
n > m(Re ka) and close to the real k axis, the absolute error lcn(k)-Qn(k)I is 
still small, the relative error lcn(k)/Qn(k)I on the other hand is tremendous. 
With increasing negative Imk, however, using the scaling rules (52) and (53), 
the deviations (55) are blown up, such that the relative errors lcn(k) / Qn(k) I 
eventually become visible as absolute errors lcn(k) - Qn(k)I (see e.g. the 
resonance calculation of Wirzba and Henseler (1995)). For Imk above the 
boundary of convergence these errors still sum up to a finite quantity which 
might, however, not be negligible any longer. Below the convergence line these 
errors sum up to infinity. 
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So, the value of Imk where - for a given n - the Zsc(k))n sum deviates 
from detM(k))n is governed by the real part of k and the scaling rules (52) 
and (53) . It has nothing to do with the boundary of convergence of Zsc(k), 
as a good approximation is given by the finite sum of terms satisfying (54) . 
Therefore, the truncated semiclassical expansion can describe the quantum 
mechanical resonance data even below the line of convergence of the infinite 
cycle expansion series, as we have already noted in Sect. 6. 

On the other hand, the boundary line of the convergence regime of the 
semiclassical expansion is governed by cm(k) , m ---+ oo, terms which have 
nothing to do with the quantum analog Qm(k), i.e. solely by terms of type 
(55). The reason is that the convergence property of an infinite sum is gov­
erned by the infinite tail and not by the first few terms. Whether a semi­
classical expansion converges or not is a separate issue from the question 
whether the quantum mechanical data are described well or not. The con­
vergence property of a semiclassical zeta functions on the one hand and the 
approximate description of quantum mechanics by these zeta functions are 
therefore two different issues. It could happen that a zeta function is conver­
gent, but not equivalent to quantum mechanics, as we have seen was the case 
with the extraneous resonances in the quasiclassical calculation. Or that it is 
not convergent in general, but its finite truncations nevertheless approximate 
well quantum mechanics, as is the case for the Gutzwiller-Voros semiclassical 
zeta function ( 41) . 

We conclude that the exponential rise of the number of cycles with in­
creasing cycle expansion order n is the physical reason for the breakdown of 
the cycle expansion of the semiclassical zeta function( 41) with respect to the 
exact quantum mechanical cumulant expansion. 

8 Summary and Conclusions 

In conclusion, we have constructed a classical evolution operator for the qua­
siclassical wave function evolution, and derived the corresponding trace and 
determinant formulae for periodic orbit quasiclassical quantization of chaotic 
dynamical systems. 

Improved analyticity has been very useful in sorting out the relative im­
portance of the semiclassical, diffraction and quantum contributions. How­
ever, one hope for consequence of the superexponential convergence of the 
cycle expansions of the new Fredholm determinant was that they would con­
verge faster with the maximal cycle length truncation than the more familiar 
Gutzwiller-Voros and Ruelle type zeta functions. As is shown here, this is 
not the case. Improved analyticity comes at cost; extraneous eigenvalues are 
purely classical and do not belong to the quantum spectrum, but their pres­
ence degrades significantly the convergence of the cycle expansions. 

The analysis sheds new light on the differences between the classical and 
semiclassical spectra; in particular, we have made explicit for the case of 
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n-disk repellers the quantum limitations on the phase space resolution by 
classical orbits, in the spirit of Bogomolny's analysis (Bogomolny (1992)) of 
the finite resolution of phase space for the bound systems. 

In spite of its laggard performance as a putative competitor to the semi­
classical quantization, the mere fact that there exists an alternative "qua­
siclassical" quantization that follows directly from the Schrodinger equation 
without recourse to path integrals and saddle points is of intellectual interest. 
It is still possible that a more ingeniously constructed "classical" evolution 
operator would also perform better than the semiclassical zeta function in 
practice. 
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Appendices 

A Calculation of '!race M 

In this appendix we calculate the trace (37). The equations of motion for a 
time independent Hamiltonian (15) can be written as 

8H 
Xm = Wmn~, 

UXn 
m,n = l, 2, .. . , 2d , (56) 

where x = [q ,p) is a phase space vector, I = [d x d] the unit matrix, and w 

the [2d x 2d] symplectic form Wmn = - Wnm, w 2 = - 1. The linearized motion 
in the vicinity of a phase space trajectory x(t) = [q(t) , p(t)] is given by the 
Jacobian matrix 

The equations of motion of J follow from (56) 
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with L(x, t)mn = WmkHkn(x)lx(t) . (57) 

where H kn = Ok On H is the matrix of second derivatives of the Hamiltonian. L 
is infinitesimal generator of symplectic (or canonical) transformations which 
leaves w invariant 

LTw+wL = 0. (58) 

J is a symplectic matrix, as it preserves the symplectic bilinear invariant 
w: 

JTwJ = w . (59) 

From this follows that det J = 1, and that the transpose JT and the inverse 
J- 1 are also symplectic; J- 1 :::: -wJT w . Hence if A is an eigenvalue of J, so 
are 1/A, A* and 1/A*. 

Let j be the configuration space Jacobian matrix 

•t . ( ) . = dqi ( t) 
J i J X • dqj(0) ' /(x) := det/(x) , (60) 

and j the configuration space Jacobian evaluated on the q-space projection 
of the phase-space trajectory x(t) passing through the t = 0 initial point 
x = (q,p). The curvature matrix (25) is related to the configuration space 
Jacobian matrix (60) by 

so the configuration space J acobian matrix satisfies 

d • t - M •t 
dtJ - J (61) 

and is given by the exponentiated time-ordered integral of the trace of M 

d t •t ( ) T r l dr tr M T 
e J X = eJo . (62) 

The full phase space Jacobian matrix J is given by 

[c5q:J = J lc5ql = [Jqq Jqpl l()ql , 
c5p c5p J pq J pp op (63) 

where c5q, c5p are d-dimensional infinitesimal t angent space vectors, and Jqq , 
Jqp, J pq and J PP are the [d x d] submatrices of the full [2d x 2d] J acobian 
matrix. (To save paper, we suppress the t , q, p dependence for t he time being) . 
Take a derivative o/o8qi of both sides of (63), keeping terms to linear order 
in 8q. This expresses the configuration Jacobian mat rix j and the curvature 
matrix (25) M' in terms of the J and the initial M 
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Using (61) we see that J evolves the configuration Jacobian matrix and its 
time derivative 

[ }t.t l = J [ ;~o l ' 
dtJ dtJ 

where the initial condition is j0 = 1 for t = 0. 
To spell it out: for a given initial set of <>q's and <>p's, the projection of the 

phase space volume onto the configuration space is given by the configuration 
space Jacobian matrix j 

(65) 

and the matrix of curvatures M' is evolved recursively by 

M' = Mt(qo ,Po,Mo) := (Jpq + JppM) J lJ M , 
qq + qp 

(66) 

where the q, p, t dependence is hidden in J. We also note that transposing 
(64), multiplying from the right by wJ, and using the symplectic invariance 
(59) yields an alternative formula for the configuration space Jacobian matrix 

(j)T =Jpp-M'Jqp . (67) 

Evaluation of the trace (37) requires a first variation in all of the dynam­
ical space coordinates X, including <5M'. From (66) together with (67) we 
obtain 

(68) 

so the trace (37) is simply reinstated 

(69) 

The sum is over all M that satisfy the fixed point condition 

(70) 

Consider now j for a periodic orbit p; j is a [d x d] matrix with eigenvalues 
and eigenvectors 

i=l,2,·· · ,d . 
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Multiply (64) from the right by the 2d-dimensional vector [ei , ei]; we see that 
an eigenvalue of j is also an eigenvalue of the [2d x 2d] phase space Jacobian 
matrix: 

Furthermore , transposing this equation, multiplying it from the right by 
A;1wJ, and using the symplectic condition (59) yields the associated left 
eigenvector with eigenvalue 1/ Ai, 

[ef, efM] wA; 1 = [ef, efM] wJ 

In this way the (Ai, 1/ Ai) pairs of eigenvalues of the [2d x 2d]-dimensional 
phase space Jacobian matrix correspond to the d eigenvalues of the d-dimensional 
j. As the d eigenvalues of j generate the d pairs of eigenvalues of J, the sum 
(69) gets 2d contributions Af At 1 ••• At. Each of these is expanding on 
its own M subspace, and the dominant one is the most expanding one, so 
we keep from (69) only the modulus of the leading term (the phase will be 
treated in the next section) 

I 
- I d IA ·Jr/2 ,1 = p ,t 

p,r IT 1 -1/A2r_ . 
i=l p,i 

(71) 

The dynamics in the tangent space can be restricted to a unit eigenvector 
neighborhood corresponding to the largest eigenvalue of the Jacobian matrix. 
On this neighborhood the largest eigenvalue of the J acobian matrix is the only 
fixed point, and the quasiclassical zeta function obtained by keeping only the 
largest term in the .'1p,r sum in (69) is also entire, Cvitanovic and Vattay 
(1993) . 

So, (very pleasantly) as Ai are also eigenvalues of the configuration space 
Jacobian matrix j , the extra trace over M comes for free; we have already com­
puted the eigenvalue set {A 1 ,1/A1 ,·· · ,Ad,1/Ad} for every full (q ,p) phase 
space cycle p. 

B Maslov Indices 

The square root of the configuration space Jacobian (62) is also a time ordered 
integral 

(72) 

M diverges at caustics; for example, for d = 1 Poincare sections (such as 
for billiards) M = 8p/8q diverges whenever a trajectory points in the p,-axis 
direction. Close to a singularity, where 
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we can neglect the non-leading terms from (27) and use the solution of 

M=-M2 

' 
(73) 

after the symmetric matrix M has been transformed into a diagonal form. 
The time ordered integral close to the singularity is dominated by 

where t± = tc ± 17 are infinitesimally close to tc and the integration variable 
Tis shifted to T + ic, because the corresponding wave packet should start out 
with a positive phase before it encounters the first singularity. This integral 
can be computed by taking the limit c - 0, 

(74) 

Note that the phase only results from the delta function part of the integrand, 
whereas the principle value contributes just to the modulus which has been 
already calculated in (71). Between two singular points the time ordered 
integral is positive and gives the absolute value of the volume ratio. R counts 
the number of rank reductions of the matrix M along the classical path, 
and it is a function of the initial condition M0 ; for a periodic orbit it is an 
invariant property of the cycle. 

C Gutzwiller Trace Formula vs. Quasiclassics 

Consider a generalization of the quasiclassical zeta function (39), weighted 
by extra powers of Ap,i : 

(75) 

The weight 1 / ( 1 - x), x = l / A;, i of the p-th term in the exponent of the semi­
classical zeta function ( 41) can be related to the quasiclassical zeta function 
cycle weight 1/(1 - x)2(1 - x 2 ) in (75) by multiplying it by 

l x x 2 x3 

1=-----------------+-----
(1-x)(l-x2) (1-x)(l-x2) (l-x)(l-x2 ) (1-x)(l-x2

) 

From this it follows that the semiclassical zeta function function (41) for 
Axiom A flows is meromorphic in the complex k plane, as it can be written 
as a ratio of entire functions; for 2-dimensional Hamiltonian systems 
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z (k) = Fo(k)F3(k) 
SC F1(k)F2(k)' (76) 

where Fn(k) includes only (71), the first term in the L1p,r sum (69) . The 
zeros of the semiclassical zeta function coincide with the ones obtained from 
Fo ( k) = Zqc ( k), and the leading poles should arise from F1 ( k). In two dimen­
sions, i.e. d = I , (75) can be resummed as 

CX) CX) ( )j+l 
Fn(k) = 9 Jl g 1 - A~!~+21 , (77) 

where tp is defined in ( 44). 

D Sel berg Zeta Function 

The question that arises naturally in discussing semiclassical quantization is 
following: if the usual semiclassical evolution is not multiplicative, why does it 
anyway yield the exact quantization in the case of the Selberg trace formula? 
And what does the quasiclassical quantization yield for flows on surfaces of 
constant negative curvature? 

The Selberg (1956) zeta function for geodesic flows on surfaces of con­
stant negative curvature is exceptional: in this very special case the multi­
plicativity is guaranteed by the Bowen-Series (1979) map, which reduces the 
two-dimensional fl.ow to a direct product of I-dimensional maps, and makes 
it possible to construct the associated transfer operators in terms of one vari­
able, Mayer (1990) . 

The essence of the construction is the following: In the Poincare halfplane 
representation the dynamics is described by the free Hamiltonian 

A 1 2 2 
H = 2y2(Px +Py) (78) 

whose classical trajectories are circle segments. The centers of the circles 
always lie on the y = 0 axis, and any free trajectory can be characterized 
by x f and Xb , the forward and backward intersection points of its circle with 
the y = 0 axis. T he polygonal billiards in the x, y plane are defined in terms 
of walls which themselves are geodesics, hence also characterized by t heir 
foot points x1, x ~, x 2, x~ ... ( see Fig. 7) . A reflection off a wall changes the 
direction of the particle, with the new trajectory characterized by a new pair 
of footpoints x1 and xb. The new forward footpoint will be the image of the 
old footpoint with respect to an inversion transformation on the circle of the 
wall. For example, a reflection off the wall Xn, x~ of radius Rn = lxn - x~l/2 
and center x~ = (xn + x~ )/ 2 is described by 

x 't = f n ( x f) = x~ + R;J ( x f - x~) . 
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y 

Fig. 7. A typical arrangement on the Poincare halfplane. The half circles with 
footpoints (xi, xD, i = 1, 2, 3 are the billiard walls. The forward and backward 
footpoints ( Xb, x f) represent a trajectory. 

The forward footpoint and the index of the wall determine uniquely the 
next forward footpoint. The footpoint of a periodic orbit reflected off walls 
t:1t:2 ... fn" respectively is determined by the equation 

(79) 

The hyperbolic length of this periodic orbit is lq€2 ... €,.
7
, = log IF:1 € 2 .. f,.f' (xp) I, 

and its stability eigenvalue is also given by the derivative F;1 € 2 .. . €,.
1

, ( Xp). The 
stability factor is the product of derivatives evaluated along the orbit 

n,, 

F' = ITF' €1 f2 · · .ftl.p fi ' 

i=l 

and is multiplicative without any need for further manipulations. This prop­
erty makes the polygonal billiards on surfaces of constant negative curvature 
unique and atypical. 

The Fredholm determinant of the 1-dimensional Perron-Frobenius opera­
tor 

£(y, x, k) = IJ'(x)l1;2+ikc5(y - f(x)) ' 

where f is the appropriate footpoint mapping and k = JE - 1/ 4 is the wave 
number, is precisely the Gutzwiller-Voros semiclassical zeta function for this 
problem, Zsc(E) = det(l - £ 0 ). Unlike the generic situation discussed in 
this paper, the semiclassical zeta function is in this case an entire function. 
However, the spectrum of the quasiclassical zeta function Zqc(E) defined in 
this paper contains spurious zeroes in the complex plane in addition to the 
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true zeroes on the real k axis. These spurious zeroes are the eigenvalues of 
weighted operators of type 

Lm(Y, x, k) = IJ'(x)ll/2+m+ik8(y - f(x)) ' (80) 

where mis an integer number. Since the Fn(k)'s (see (77)) can be expressed 
in terms of the Fredholm determinants of these operators as 

= { }l+l 
Fn(k) = IJ det (1 - Ln+l) det (1 - Ln+1+1) , 

l=O 

(81) 

Zsc(k) = det(l - Lo) results under the relation (76), too. 
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