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Abstract 

Classical and semiclassical periodic orbit expansions are applied to the dynamics 
of a point particle scattering elastically off several disks in a plane. Fredholm 
determinants, zeta functions, and convergence of their cycle expansions are tested 
and applied to evaluation of classical escape rates and quantum resonances. The 
results demonstrate the applicability of the Ruelle and Gutzwiller type periodic 
orbit expressions for chaotic systems. 

1 Introduction 

At the heart of semiclassical descriptions of chaotic systems is the Gutzwiller trace 
formula which relates the eigenvalue spectrum of the Schrodinger operator to the 
periodic orbits of the underlying classical system [1]. This relationship between 
the classical and the quantum properties can be viewed as a generalization of the 
Selberg trace formula which relates the spectrum of the Laplace-Beltrami operator 
to geodesic motion on surfaces of constant negative curvature [2]. Whereas the 
Selberg trace is exact, the Gutzwiller trace, derived within a stationary phase 
approximation, is only approximate, valid in a suitable semiclassical limit. 

In one-dimensional systems the trace formula recovers the standard WKB 
quantization rules, which yield easy and sometimes quite accurate estimates for 
the quantum eigenvalues [3]. For systems with more than one degree of freedom 
a classical system can exhibit chaos. The simple WKB quantization fails and 
evaluation of the trace formulas can become rather difficult; in fact, it is often 
easier to do the full quantum calculation and to obtain the periods of classical 
periodic orbits from the quantum data by a Fourier transform [4]. Perhaps the 
main difficulty inherent in the periodic orbit quantization is the fact that for 
chaotic systems the number of periodic orbits grows exponentially with time, and 
formulas such as the Gutzwiller trace formula diverge in the regime of physical 
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interest [5]. One aim of the present contribution will be to summarize techniques 
that have been developed recently to overcome such divergences [6, 7, 8]. 

From the vantage point of the dynamical systems theory, the trace formulas 
(both the exact Selberg and the semiclassical Gutzwiller trace formula) fit into 
a general framework of replacing phase space averages by sums over periodic 
orbits [9]. For classical hyperbolic systems this is possible since the invariant 
density can be represented by all periodic orbits, with weights related to their 
instability. The semiclassical periodic orbit sums differ from the classical ones only 
in phase factors and stability weights; such differences may be traced back to the 
fact that in quantum mechanics the amplitudes rather than the probabilities are 
added. However, it must be emphasized that for generic nonhyperbolic systems 
(which we shall not discuss here), with mixed phase space and marginally stable 
orbits, such summations are at present hard to control, and it is not clear that the 
periodic orbit sums should necessarily be the computational method of choice. 

For hyperbolic systems, the cycle or curvature expansions of Fredholm deter­
minants and zeta functions have proven extremely useful in evaluating eigenvalues 
quickly and accurately. For classical dynamics, demonstrations of the success of 
this method abound [7, 10]. We shall here focus on an ideal quantum system, 
scattering off three (or more) disks in the plane [11]. This system was investigated 
in a series of papers by Gaspard and Rice [12, 13], and, independently, by us. We 
shall present here our (mostly previously unpublished) results. We will demon­
strate that for this nontrivial system cycle expansions offer an accurate test of 
Gutzwiller semiclassical quantization. We shall skirt some of the more technical 
issues; the reader can pursue them by perusing the references. 

The outline of the chapter is as follows. In the next section we introduce the 
model and discuss the relevant aspects of its classical dynamics. The quantum 
results are given in section 3, and the cycle expansions are discussed in section 4. 
Methods for computation of periodic orbits are sketched in appendices A and B. 

2 Classical pinball 

The model that we shall discuss here is simple, yet physical and instructive. One 
can use it to illustrate and teach, in clearly physically motivated steps, almost 
everything one needs to know about deterministic chaos: from Smale horseshoes, 
Cantor sets, Lyapunov exponents, symbolic dynamics, discrete symmetries, bifur­
cations, pruning and diffusion, all the way to transfer operators, thermodynamic 
formalism, and classical and quantum zeta functions. We shall concentrate here 
on semiclassical calculations and tests of Gutzwiller type periodic orbit formulas. 

Our classical pinball model consists of a point particle and three identical 
circular disks in the plane (fig. l(a)). The point particle is scattered elastically off 
the disks and moves freely between collisions. The dynamics with one or two disks 
is simple (there is either no or one trapped trajectory), but with three or more disks 
there are infinitely many trapped trajectories, forming a repeller. This repeller can 
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(a) 

(b) 

Fig. 1. The scattering geometry for the disk radius : separation ratio R : d = 1 : 2.5; (a) 
the three disks, with 12, 123 and 121232313 cycles indicated; (b) the fundamental domain, 
i.e., a wedge consisting of a section of a disk, two segments of symmetry axes acting as 
straight mirror walls, and an escape gap. The above cycles restricted to the fundamental 
domain are now the two fixed points O and I, and the 100 cycle. 

be in principle observed by measurements such as irregularly fluctuating outgoing 
angles vs. impact parameter (the irregular or chaotic scattering [14]), but such 
measurements are difficult and very sensitive to small perturbations. Much more 
robust are the global averages of quantities such as the mean trapping time, which 
we shall discuss in what follows. 

2.1 Symmetries of the model 

As the three disks are equidistantly spaced, the system has C3v symmetry. Applying 
an element (identity, rotation by +2n/ 3, or reflection) of this symmetry group 
to any trajectory yields another dynamically acceptable trajectory. Symmetry 
operations map nonsymmetric orbits into different orbits of the same shape, and 
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for a symmetric orbit, the symmetry operation will map the set of points making 
up the orbit in phase space into itself. 

For symmetric periodic orbits ( a trajectory is periodic if it returns to the starting 
position and momentum in phase space) some or all symmetry operations act 
like a shift in time, advancing the starting point to the starting point of a 
symmetry related segment. In this way a symmetric periodic trajectory can 
be subdivided into a sequence of irreducible segments. Stability, action and 
traversal time are the same for all irreducible segments. The global periodic 
orbits can be described completely in terms of the irreducible segments, by 
folding the irreducible segments into periodic orbits in the fundamental domain. 
The fundamental domain is a one sixth slice of the full three-disk system, with 
the symmetry axes acting as reflecting mirrors, see fig. 1 (b ). 

Orbits related in the full space by discrete symmetries map onto a single funda­
mental domain orbit. The reduction to the fundamental domain desymmetrizes 
the dynamics and removes all global discrete symmetry induced degeneracies: 
rotationally symmetric global orbits have degeneracy 2, reflectionally symmetric 
ones have degeneracy 3, and global orbits with no symmetry are 6-fold degen­
erate. The time-reversal degeneracies persist in the fundamental domain as well. 
Some examples of such orbits are shown in fig. 2. 

2.2 Symbolic coding 

The motion of a point particle is such that after a collision with one disk it 
either continues to another disk or it escapes to infinity. Labelling the disks 
1, 2 and 3, this suggests associating with every trajectory a sequence of labels, 
indicating the disks with which the particle collides. The collision sequence will 
be finite for a scattering orbit, coming in from infinity and escaping after a 
finite number of collisions, and it will repeat periodically for a (trapped) periodic 
orbit. Arguments used in the usual horseshoe construction show that among the 
infinitely long sequences and the infinitely long unstable trapped orbits there is a 
one-to-one relationship; there exists an orbit to every (allowed) infinite sequence 
and every (allowed) infinite sequence labels a unique orbit. 

There is one obvious restriction to the possible sequences, namely that two 
consecutive symbols must not be identical, since the particle cannot collide twice 
in succession with the same disk. In addition, there are relabelling symmetries, 
relating for instance the periodic orbits 12, 23, and TI, which are mapped 
into the same fundamental domain orbit. (A bar over a sequence indicates 
periodic repetitions; it will often be omitted when it is clear from the context 
that we are dealing with periodic orbits.) By replacing the absolute disk labels 
by relative symbols, indicating only the orientation of the motion ( clockwise 
or anticlockwise), both the symbol repetitions and the symmetry degeneracy 
are removed. We shall use the symbol 1 to indicate that the orientation after 
collision is kept, and the symbol O to indicate that it is reversed. Depending 
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(a) 

12123 13132 

(b) 1 

123 132 

(c) 

1213 1232 1323 

(d) 

121212313 121212323 

Fig. 2. Some examples of three-disk cycles: (a) 12123 and 13132 are mapped onto each 
other by a23 , the flip across 1 axis; this cycle has degeneracy 6 under C3v symmetries. 
Similarly (b) ill and ill and (c) 1213, 1232 and 1323 are degenerate under C3v. (d) The 
orbits 121212313 and 121212323 are related by time reversal but not by any C3v symmetry. 
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Table 1. C3v correspondence between the binary labelled 
fundamental domain prime cycles p and the full three-disk 
ternary {1,2,3} cycles p, together with the C3v transfor-
mation that maps the end point of the p cycle into the 
irreducible segment of the p cycle. The degeneracy of p 

cycle is mp = 6np/np. 

p p gp 

0 12 <112 

1 123 C3 

01 1213 0'23 

001 121232313 C3 

011 121 323 0'13 

0001 12121313 0'23 

0011 1212 31312323 cf 
0111 1213 2123 <112 

00001 121212323231313 C3 

00011 1212132323 0'13 

00101 1212321213 0'12 

00111 12123 e 
01011 1213123212 31323 C3 

01111 1213213123 0'23 

000001 121212131313 0'23 

000011 121212313131232323 c2 
3 

000101 121213 e 
000111 121213 212123 <112 

001011 121232131323 0'23 

001101 121231 323213 0'13 

001111 121231232312313123 C3 

010111 121312313231232123 c2 
3 

011111 121321323123 0'13 

on the symmetry of the global orbit, periodically continued binary string labels 
correspond either to the full periodic orbit or to a repeating irreducible segment 
(examples are shown in fig. 1). If the disks are sufficiently far apart there are 
no further restrictions on symbols, and all periodic binary sequences are realized 
as allowed periodic orbits. Table 1 lists some of the shortest binary symbol 
strings, together with the corresponding full three-disk symbol sequences and 
orbit symmetries. 

2.3 Periodic orbits 

There is only one length scale in the system, the ratio of the center-to-center 
separation to the disk radius d : R. The energy is a quadratic function of 
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momenta, H = p2 /2m, so motion at different energies E and E0 is related by the 
scaling PE-+ p0./E[Eo for momenta, tE-+ tojF;JE for times, and 

S(E) = LJ2mE, = S(Eo)./E!Eo (1) 

for the actions, where L is the geometrical length of the orbit. The eigenvalues 
of the jacobian transverse to a periodic orbit (see below) are invariant under 
the above energy rescaling. These observations will be useful below in the 
semiclassical context where the energy in (1) will combine with Ii to the relevant 
quantum variable, the wave number k = J2mE, /Ii. 

The motion between collisions is completely characterized by an angle s (or 
arclength in case of a general billiard) marking the point of collision along a disk 
and the impact parameter b = b' / R = sin </> measured in units of the radius, with 
</> the incidence angle (the angle between the outgoing particle and the outgoing 
normal to the billiard edge). Because of symmetry, we can always select the 
disk 1 as the disk of current collision and disk 3 as the origin of the particle. 
Ingoing coordinates then are ( <f'in, bin) and outgoing coordinates are ( <p0 ut, b0 ur), 

where the ~ indicates that these coordinates refer to the next collision disk. When 
working in the fundamental domain they still need to be mapped back onto disk 
2. Accordingly, we have two types of collisions: 

0: the particle returns to the disk it came from 
1 : the particle continues to the next disk. 
The corresponding maps are (the angle s is measured clockwise relative to the 

line connecting the centers of disks 1 and 3) 

{ 

<f'out = -<p;n + 2 arcsin bin 
To: d . 

bout = -bin + R Sill <f'out 

(2) 

for reflection and 

{ 

<f'out = <f'in - 2 arcsin bin + <f'shif t 

Ti: d . 
bout = bin - R sm <f'out 

(3) 

with <f'shift = 2n/3 for the case of continuation. Each map has a fixed point, 
corresponding to the orbits O and T. Longer periodic orbits are fixed points of 
sequences of maps, e.g. 

To To Ti To Tixioioo = xwioo, (4) 

(note that in our convention the maps are applied in reverse order compared to 
the symbolic sequence). 

The jacobian of the single collision map is given by 

l; = oT;(<f'out, bout) (S) 
o( <f'in, b;n) 

and the cycle jacobian Ip is given by the product of jacobians for the bounces 
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around the cycle p. As the dynamics is phase-space volume preserving, detJ = 1, 
and the eigenvalues depend only on tr(J): 

(6) 

The sign of the eigenvalue depends on the number of collisions along the cycle 
(see appendix B). For the 'O' symbol there are two bounces in the fundamental 
domain: one with the disk and one with the reflecting wall. Since the wall can 
be regarded as a disk of infinite radius, the trace changes sign twice and thus the 
eigenvalues are positive. Symbol 'l' corresponds to one bounce with the disk but 
two wall bounces and hence the eigenvalues of the 'l'-cycle are negative. For an 
arbitrary fundamental domain cycle, the eigenvalue sign is given by (-1 )"1, where 
n1 is the number of 'l's in the binary string corresponding to the cycle. 

The exact lengths and eigenvalues of 0, 1 and 10 cycles follow from elementary 
geometrical considerations (we set the disk radius R = 1 throughout). For the 
fundamental domain O (the 2-cycle of the complete 3-disk space) and I (the 
3-cycle of the complete 3-disk space) fixed points we obtain 

0: 

1: 

<po= 0 

<f)1 = 0 

Lo=d-2 

L1 = d-J3 
Ao = (d - 1) + .jd(d - 2) 

A1=-(-d-l)- -d(-d-2) 
2 ✓,-2--2--- ' 

J3 J3 J3 
(7) 

and for the 10-cycle we obtain 

L10 - J1 +(2d-v13)
2 
-2, 

tr(J10) 
L1o(L10 + l)(L10 + 2) 2L 2 

j)d/2 - 1 + 10 + . (8) 

A10 follows from (6). Longer cycles require numerical evaluation by methods 
such as the multipoint shooting or orbit length minimization, described in the 
appendix A. Formulas for evaluation of the cycle jacobians are given in the 
appendix B. A typical set of the periodic orbit data, for d : R = 6 and length < 6, 
is listed in table 2. 

2.4 Classical escape rate 

The interesting part of the classical scattering dynamics is generated by the 
chaotic repeller, formed by the trapped (periodic and aperiodic) orbits. The 
closure of this set in the phase space is of zero Lebesgue measure, and almost 
every trajectory entering the vicinity of the repeller eventually escapes. However, 
some will be trapped for very long times; the quantity that characterizes this 
phenomenon is the mean trapping time or its inverse, the escape rate. The escape 
rate can be extracted from the trace of the classical Liouville operator [15], which 
we interpret as follows. The probability of returning to the starting point in phase 
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Table 2. All periodic orbits up to six bounces for the three-disk fundamental domain at 
d : R = 6. The columns list the topological length of the cycle, its expanding eigenvalue 
Ap, the length of the orbit (for billiards this is the same as the action), and the binary code 
for the cycle. Note that the two period 6 orbits 001011 and 001101 are degenerate due to 
the time reversal symmetry, but are not related by any discrete spatial symmetry. 

period Ap Action code 

1 9.898979485566 4.000000000000 0 
1 -1.l 77145519638x 101 4.267949192431 1 

2 -1.240948019921 X 102 8.316529485168 01 

3 -1.240542557041 X 103 12.321746616182 001 
3 1.449545074956x 103 12.580807741032 011 

4 -1.229570686196x 104 16.322276474382 0001 
4 1.445997591902x 104 16.585242906081 0011 
4 -l.707901900894x 104 16.849071859224 0111 

5 -1.217338387051 X 105 20.322330025739 00001 
5 l.432820951544x 105 20.585689671758 00011 
5 1.539257907420x 105 20.638238386018 00101 
5 -1.704107155425x 105 20.853571517227 00111 
5 -1.799019479426x 105 20.897369388186 01011 
5 2.010247347433X 105 21.116994322373 01111 

6 -l.205062923819x 106 24.322335435738 000001 
6 1.418521622814x 106 24.585734788507 000011 
6 1.525597448217x 106 24.638760250323 000101 
6 -l.688624934257x 106 24.854025100071 000111 
6 -1. 796354939785 X 106 24.902167001066 001011 
6 -1. 796354939785 X 106 24.902167001066 001101 
6 2.005733106218 x 106 25.121488488111 001111 
6 2.119615015369 X 106 25.165628236279 010111 
6 -2.366378254801 X 106 25.384945785676 011111 

space after a time t is J(x - xr), so integrating over all phase space points yields 
the total recurrence probability 

~ Tp 
-;;: ldet (1 - Jp.o.)I J(t - Tp.o.)' 

where p.o. indicates that the sum extends over all periodic orbits, including 
multiple traversals; their period time (single traversal) is Tp, and the jacobian (or 
the monodromy matrix) of the mapping transverse to the trajectory is Jp.o. • The 
above expression is correct if the system is hyperbolic, i.e., if all periodic points 
are isolated and their stability eigenvalues are strictly bounded away from unity. 
In this case the sum decays exponentially with time, oc e-Yt, and the leading pole 
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of its Laplace transform 

T 
Q(s) = ~ ldet (1 .!:, Jp.o.)I esTP-"· (9) 

yields the decay rate s = y. Now distinguish a primitive periodic orbit p from its 
r-th traversal, p.o. = rp, and write 

00 

Q( ) _ ~ ~ Tp rsTp 
s - L-L- ldet(l -Jr)( · 

p r=l P 

(10) 

For a Hamiltonian two-degrees-of-freedom system, Jp is a [2 x 2] matrix with 
unit determinant. If the cycle is unstable, the eigenvalues Ap and 1/ Ap are real, 
and we denote the expanding eigenvalue by Ap. The denominator can then be 
expanded in a geometric series 

00 

1/ldet (Jp - 1)1 = IAPl-1(1 - 1/ Ap)-2 = IAPl-1 LU+ l)A;i. 
j=O 

Performing the r summation and interchanging sums and logarithms one ends 
up with Q(s) = (8 /8s) In F(s), where F(s) is the classical Fredholm determinant 

00 

F(s) = ITIT (1- IAp1-1A;iesTp)j+l. (11) 
P j=O 

As Q(s) is a logarithmic derivative, its poles are given by the zeros and poles 
of F(s). Denoting the classical weight of the cycle p '.:>y 

tp = znPesTp /IAPI 

and defining dynamical zeta functions [9] 

(12) 

1/(j = exp (-I:t ~(tp/Att) = IT (1-tp/At) , (13) 
p r=l p 

the Fredholm determinant can be written as an infinite product over 1 / (j: 

00 00 

F(s) = ITIT(l - tp/ At)j+l = IT lf(f+l . (14) 
p j=O j=O 

We have introduced a bookkeeping variable z raised to the power of the 
topological length (number of disk collisions in a cycle) in order to be able 
systematically to expand the infinite products in terms of increasing topological 
cycle length. 

Postponing a discussion of both the cycle expansions and their convergence 
until we have introduced the corresponding quantum objects, we present the 
results for the classical escape rate, computed by using 1/ (0 from eq. (13), in 
fig. 3. For sufficiently separated disks, already period 2 cycles yield results in 
good agreement with the Monte Carlo simulation estimates, demonstrating that 
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Fig. 3. Classical escape rates and bounds on quantum escape rates, i.e. the zeros of the zeta 
functions (11) and (17) with absolute weights (19), as functions of the disk-disk separation. 
The top two curves show the classical escape rate. Zeros computed from fixed points alone 
are shown as dotted lines, zeros from fixed points and period two orbits as full lines, and 
the Monte Carlo estimates of classical escape rates [12, 18] are marked by diamonds. The 
classical escape rate should approach 0 as R : d -+ 0.5 ; in this limit cycle expansions are 
expected to converge poorly due to pruning and intermittency effects. The lower two curves 
show Sc, the abscissa of absolute convergence of the Gutzwiller trace formula, which serves 
as a crude lower bound on the imaginary part of the semiclassical quantum resonances. 
Though this bound becomes negative near R : d ~ 0.33, the semiclassical resonances do 
remain below the real energy axis, see fig. 4. 

the zeta function formalism offers a powerful method for evaluation of escape 
rates. 

3 Quantum pinball 

For the three-disk system, the explicit expressions of the outgoing waves in terms 
of the ingoing waves using the quantum scattering matrix S have been given by 
Gaspard and Rice [13]. Resonances are related to complex zeros of tr Sf(dS/ dE), 
the generalization of the concept of the density of states to scattering systems [16]. 
We shall first evaluate these complex zeros in the semiclassical approximation, 
and then compare them with the exact quantum-mechanical resonances. 
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3.1 The semiclassical density of states 

In the Gutzwiller's semiclassical approximation [1], the oscillatory part of the 
density of states is given by 

p(E) = -Im-1-~ ~ Tp eir(Sp/fi-µpn/2). (15) 
inn L-L- ldet (1 - Jr)il/2 

p r=l P 

For billiards the Maslov indices µP count the number of collisions, with a 
phase loss of n at every collision off a hard wall. The group-theoretic weights as­
sociated with reducing the dynamics to irreducible representations of the discrete 
symmetry group can sometimes also be absorbed into the phase indices. In the 
A1 representation, one has only reflections at the disks, none at the boundaries 
of the fundamental domain. Therefore, µp = 2np, since the symbol string length 
counts the number of the disk collisions. For the A2 representation, the wave 
function is antisymmetric under reflections at the symmetry lines, and one can 
associate one additional reflection with each occurrence of the symbol 0, and two 
reflections with each occurrence of the symbol 1. The net effect is an additional 
overall minus sign, if the number of Os in the symbol string of the orbit is odd. 
However, in general (for example, for the two-dimensional E representation of 
the C3v discrete group) a full group-theoretic decomposition in terms of group 
characters is required [19]. Furthermore, special attention should be paid to the 
orbits that run along the borders of the fundamental domain. The three-disk 
system studied here does not have boundary orbits, but the four-disk system, for 
example, does have such orbits. 

As mentioned above one can replace Sp(E)/n = Lpk, where Lp is the geometric 
length of the orbit, and k is the wave number. Expressing the density as a function 
of k, and manipulating the denominator as in sect. 2.4, one finds 

1 a 
p(k) = -Im; oklogZ(k) (16) 

where Z(k) is the quantum Se/berg zeta function [17] 
00 

Z(k) = rrrro -eiLpk-iµpn/21Apl-l/2A;j). (17) 
j=O P 

The quantum Selberg zeta function can also be expressed as a product over 
dynamical zeta functions (13), 

00 

Z(k) = IT 1/(j, 
j=O 

this time with cycles weighted by semiclassical weights 

tp = 2 npeiSp/fi-iµpn/2 /IApll/2 . 

(18) 

(19) 

We have evaluated several hundreds of semiclassical and exact quantum reso­
nances in the three symmetry subspaces A 1, A2 and E; some of them are listed 
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Fig. 4. Semiclassical scattering resonances (diamonds) compared with the exact quantum 
scattering resonances (crosses) in the A, subspace. The lines in the upper half of the 
diagram indicate the (geometrical) difference between the semiclassical and quantum 
resonances for all resonances with Im k > -0.4, magnified by a factor 10. The dotted 
line at kc = -0.121556 indicates the semiclassical abscissa of convergence; all semiclassical 
resonances lie below this line, but the first two quantum resonances lie above it. For the 
semiclassical calculation, all orbits up to symbolic length 5 have been used in the cycle 
expansion for (o1• 

in table 3 and plotted in fig. 4. The accuracy and numerical convergence of the 
semiclassical estimates came as a surprise [8]. 

3.2 "Quantum escape rate" 

The region of absolute convergence of the Gutzwiller trace formula in the 
k = K - is complex plane is determined by the convergence of the sum of 
absolute values of the terms in the series (15). The sum converges absolutely for 
s < sc, where Sc is called the abscissa of absolute convergence. Since Sc is the 
value of s for which the sum 

i'l(s) - ~ ldet (1 ! ~, ,Ji 1/2 ,,T., ' (20) 

diverges, one can, by analogy with the determination of the classical escape rate 
by the divergence of sum (9), interpret the abscissa of absolute convergence Sc as 
a "quantum escape rate". In fact, sc is only a lower bound on the escape rate; the 
correct rate of a decay of a given initial wave function is given by a superposition 
of complex resonances evaluated below. Within the same short cycles truncations 
as in the classical case, one finds the sc curves shown in the lower half of fig. 3. 
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Table 3. Several subsets of semiclassical and quantum resonances ford : R = 6. 
The A1 subspace resonances are plotted in Fig. 4. 

RekqM ImkqM Re kzeia Im kzeia 

0.69800 -0.07497 0.75831 -0.12282 
2.23960 -0.11880 2.27427 -0.13305 
3.76270 -0.14756 3.78787 -0.15412 
4.13165 -0.61702 4.15179 -0.66591 
5.27569 -0.18325 5.29607 -0.18678 
6.77609 -0.22750 6.79366 -0.22986 
8.26114 -0.27492 8.27663 -0.27698 
9.73452 -0.13880 9.74826 -0.32121 

10.33819 -0.37371 10.34656 -0.37834 
11.20210 -0.35823 11.21361 -0.36168 

A1 11.90760 -0.33223 11.91448 -0.33488 
12.66760 -0.39467 12.67500 -0.39841 
13.47692 -0.29412 13.48266 -0.29623 
14.13370 -0.42883 14.13680 -0.42956 
15.04170 -0.25552 15.04705 -0.25762 
16.59706 -0.21700 16.60244 -0.21889 
18.14115 -0.18280 18.14647 -0.18426 
19.67567 -0.15653 19.68084 -0.15761 
21.20308 -0.13958 21.20807 -0.14032 
22.72484 -0.13187 22.72966 -0.13235 
24.24120 -0.13284 24.24588 -0.13311 
25.75156 -0.14130 25.75605 -0.14153 

7.93363 -0.15129 7.94561 -0.15526 
9.45604 -0.13196 9.46661 -0.13458 

10.97616 -0.12325 10.98563 -0.12504 
12.49347 -0.12432 12.50215 -0.12550 
14.00693 -0.13468 14.01501 -0.13534 
15.51469 -0.15329 15.52229 -0.15368 

A2 17.01453 -0.17810 17.02178 -0.17836 
18.50574 -0.20544 18.51273 -0.20573 
19.99011 -0.23236 19.99681 -0.23275 
20.54565 -0.31325 20.54989 -0.31495 
21.46993 -0.25775 21.47596 -0.25817 
22.10098 -0.28557 22.95261 -0.28199 
22.94703 -0.28164 23.66203 -0.26365 

18.85038 -0.17271 18.56037 -0.17350 
19.44833 -0.25471 19.45385 -0.25454 

E 20.37203 -0.17461 20.37745 -0.17502 
20.94214 -0.28849 20.94718 -0.28767 
21.88904 -0.19045 21.89438 -0.19059 
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Since the trace formulas are convergent in the domain of absolute convergence, 
one cannot have zeros of the zeta function or resonances of the S-matrix in that 
domain. In particular, for sufficiently large d : R, all resonances will stay a finite 
distance from the real axis. In contrast to the classical case, for d : R less than 
about 2.8 the bound Sc actually becomes negative. As we shall see below, the 
semi classical resonances do lie below the real axis, as they should; but this serves 
as a reminder that the resonances (and the energy eigenvalues for bound systems) 
are being evaluated in a region where cycle expansions are only conditionally 
convergent, and one has to be very careful in ordering terms in such expansions. 

The same absolute convergence arguments can be applied to the dynamical 
zeta functions. Their logarithmic derivatives correspond to sums over orbits of 
form 

(21) 

Due to the extra powers of A/s present in 1 / (1 cycle weights, the corresponding 
abscissas of absolute convergence form an ordered sequence s1 < s1_ 1 < · · · < so. 
The resonances closest to the real axis - which will be noticable as the sharpest 
resonances - should be due to zeros in 1 / (0 since the leading zeros of other 
1/(1 have larger imaginary parts. We often find it convenient to use this fact 
and restrict our numerical work to the leading zeros of 1 / (0 rather than the full 
Selberg zeta functions. 

3.3 Quantum resonances 

We evaluate the exact quantum mechanical resonances by the method described 
by Gaspard and Rice [13], which we have improved by implementing a symmetry 
reduced code. A comparison of resonances obtained from cycle expansions 
truncated to the 14 cycles of periods :s;; 5 with the exact quantum values is given 
in table 3 and in fig. 4, together with the difference between the semiclassical 
and quantum resonances {> = JlkQM - kscl- Numerically this difference seems to 
decrease with increasing Re k, i.e., with approach to the semiclassical limit. As 
the semiclassical approximation ignores terms of higher order in n, one expects 
on general grounds this difference to approach a nonzero constant. Our data are 
insufficient to estimate the asymptotic behaviour and to bound it away from zero. 

Also shown in fig. 4 is the abscissa of absolute convergence Sc, No semiclassical 
resonance lies above it. Two of the lowest exact quantum resonances, for which 
the semiclassical approximation error is largest, do lie above Sc, but that is 
acceptable as the bound is semiclassical. 
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4 Cycle expansions 

The periodic orbit formulas for classical and semiclassical escape rates and reso­
nances introduced above are in practice evaluated by expanding the appropriate 
zeta functions and determinants as cycle expansions: 

Nmax 

F(z) = L Cjzi , (22) 
j=O 

and investigating their zeros and radii of convergence as functions of truncations 
to finite numbers of shortest cycles. The bookkeeping variable z that keeps 
track of the topological cycle length np is set to z = 1 in actual calculations. 
The evaluation of cycle expansions is facilitated by understanding the analytic 
properties of F(z), by judicious use of the symmetries of classical dynamics, and 
by topology guided rearrangements of terms in the expansions. As we shall see 
below, the main virtue of cycle expansions is their fast convergence. 

4.1 Symmetry factorizations 

Discrete symmetries of the classical dynamics play a role with which we are famil­
iar from quantum mechanics; as they commute with the evolution operators, they 
can be used to decompose them and factorize the associated determinants [19]: 

1/(3-disk = IT 1/(i• . 
Ct 

The product is over the det-dimensional irreducible representations a of the 
symmetry group, in this case C3v, with two one-dimensional representations Ai, 
A2 and a pair of two-dimensional representations E. The factorization relates 
each fundamental domain orbit to the corresponding degenerate set of full space 
orbits as follows: 

symmetry full space Ai A2 E 

rotation (1 - t;ot)2 - (1 - t,0 i) (1 - t,0 i) (1 +trot+ t;ot)2 
reflection (1 - t;ef )3 (1 - t,ef) (l+tref) (1 - t;ef )2 

none ( 1 - tnon)6 - (1 - tnon) (1 - tnon) (1 - tnon)4 

Fundamental domain cycles up to length 5 are listed in table 1, together 
with the symmetry factors that map them into the corresponding global orbit 
irreducible segments; these determine which of the above factorizations apply to 
a given cycle. Substituting the shortest cycles into the zeta functions, we obtain 
for the completely symmetric Ai subspace : 

l/(A1(z) = (1 - zto)(l - zti)(l - z2toi)(l - z3toot)(l - z3to11) 

(1 - z4 toood(l - z4too11)(l - z4toiu)(l - z5toooot)(l - z5tooo11) 

(1 - z5tooioi)(l - z5tooui)(l - z5toio11)(l - z5to1111)... . (23) 
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In the example at hand, with complete symbolic dynamics and no pruning rules, 
the cycle expanded zeta function is obtained by expanding the infinite product as 
a power senes m z : 

1 - zto - zt1 - z2 [(to1 - tito)] 

-z3 [(too1 - toito) + (ton - toitt)] 

-z4 [(tooo1 - totooi) + (to111 - to11ti) 

+(too11 - too1t1 - toto11 + totoiti)] - . . . . (24) 

For the A2 subspace cycles with an odd number of Os pick up an additional 
minus sign: 

1 + zto - zt1 + z2 [(to1 - tito)] 

-z3[(t001 - t01to) - (to11 - toitt)] 

+z4 [(tooo1 - totoot) + (to111 - to11tt) 

-(too11 - too1t1 - toton + totoitt)] - . . . . (25) 

The E subspace cycle expansion takes a somewhat less obvious form [19]: 

1/(n = (1 + zt1 + z2tj)(l - z2t5)(l + z3t100 + z6tj00)(1 - z4 tio) 

( 1 + z4 t1001 + z8ti00i)(l + z5t10000 + z10ti0000) 

(1 + z5t10101 + z10tj010i)(l - z10t10011)2 . . . 

1 + zt1 + z2(ti - t5) + z\too1 - t1t5) 

+z4 [too11 + (too1 - t1t5)t1 - t5i] 

+z5 [toooo1 + to1011 - 2too111 + (too11 - t5i)t1 + (ti - t5)t100] + ... (26) 

All our numerical results are obtained by determining the zeros of finite cycle 
length truncations of the above cycle expansions, or the corresponding ones 
for the Fredholm determinats and quantum Selberg zeta functions. The crucial 
question that we now turn to is - how good are such truncations? 

5 Convergence of cycle expansions 

While various periodic orbit formulas, such as the Gutzwiller trace formula 
and the quantum Selberg zeta function, are formally equivalent, in practice 
determinants have much better convergence properties than the traces. This can 
be understood on two levels: a geometrical one, as shadowing of long cycles 
by shorter ones, or more abstractly, as a consequence of analytic properties of 
the Fredholm determinants. Particularly strong results exist for nice, "Axiom A" 
hyperbolic systems, for which the dynamical zeta functions are holomorphic [9], 
and the Fredholm determinants are entire functions [20]. 
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Fig. 5. The coefficients of the cycle expansion for 1/(0 for six d : R ratios (from top to 
bottom: d : R = 6, 5, 4, 3, 2.8, 2.5). Clearly visible is the exponential decay; the slope 
yields the location of the leading pole of 1/(0• 

5 .1 Cycle shadowing and convergence 

The important feature to note in the cycle expansion (24) is that the contributions 
t0 and t 1 from the two fixed points stand isolated, while all others come in groups. 
This is seen particularly clearly if the weights are set to tP = 1; in this case the zeta 
function reduces to the topological polynomial, i.e., the generating polynomial 
for counting the numbers of topologically distinct cycles. For a complete binary 
coding without pruning rules, the topological polynomial is just 1 - 2z, so all 
longer orbits appear in groups with signs and the numbers of terms such that 
they cancel. The success of the cycle expansion relies on the extent to which these 
cancellations survive when tp are set equal to the true periodic orbit weights. 

The effect of such cancellations is illustrated by fig. 5 which demonstrates that 
the coefficients in the cycle expansion of the dynamical zeta function 1/(0 with 
quantum weights (19) fall off exponentially. The coefficients are evaluated for 
wave number k = 0 and for a range of d : R ratios. Note that also for the cases 
d : R = 2.5 and 2.8, which lie outside the domain of absolute convergence (see 
fig. 3), there is no qualitative change in the behaviour of the coefficients. 

The rate of fall-off of the cycle expansion coefficients can be estimated by 
observing that for subshifts of finite type [6, 7] the contributions from longer 
orbits can always be grouped in shadowing combinations such as taJb - tatai-'b, 
involving a long cycle aib and a pseudo-cycle built by shadowing aib by a followed 
by ai- 1 b. These orbits are periodic approximations to an orbit homoclinic to a. 
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Table 4. Demonstration of curvature compensations in tab - t0 tb for the three disk funda­
mental domain cycles at d : R = 6, table 1. 

n tab - tatb Lab - (La + Lb) log [ AaAb] Aab ab-a*b 

2 -5.23465150784x10-4 4.85802927371 X 10-2 -6.29365864467 X 10-2 01-0* 1 
3 -7.96028600139 X 10-6 5.21713101432x 10-3 -9.82663364947 X 10-3 001-0*01 
4 -1.03326529874x10-7 5.29858199419x 10-4 -1.26966635483 X 10-3 0001-0•001 
5 -1.27481522016x 10-9 5.35513574697x 10-5 -1.55176109954x10-4 00001-0*0001 
6 -1.52544704823 X 10-11 5 .40999882625 X 1 o-6 -1.83824278428 X 10-5 000001-0*00001 

2 -5.23465150784x 10-4 4.85802927371 X 10-2 -6.29365864467 X 10-2 01-0* 1 
3 5.30414752996x 10-6 -3.67093656690x 10-3 7.71831060288xl0-3 011-01*1 
4 -5.40934261680x 10-8 3.14925761316x 10-4 -9 .23436155345 X 10-4 0111-011*1 
5 4.99129508833x10-10 -2.67292822795x 10-5 1.00342411247x 10-4 01111-0111 *1 
6 -4.39246000586x 10-12 2.27087116266x 10-6 -1.03941678234x 10-5 011111-01111 *1 

Substituting taJb from (13) one finds 

taJb - tataHb = 1 - ei(Sa+Sa1-1b-SaJb)/Tie-i1t(J1a+µa1-1b-µaJb)/2 I AaAai-lb 1-1/2 
ta1b Aa1b 

The phase factors cancel since the number and the kind of symbols involved in 
both terms coincide (though for the E representation of C3v this is admittedly not 
obvious). Furthermore, since with increasing j segments of aj b come closer to a, 
the differences in action and the ratio of the eigenvalues converge exponentially 
with the eigenvalue of the orbit a, 

Sa+ SaHb - Sa1b::::; const x A;/, IAaAaJ-ib/ Aa1bl ::::; exp(-const x A;j) 

Expanding the exponentials one thus finds that this term in the cycle expansion 
is of the order of 

(27) 

Even though the number of terms in a cycle expansion grows exponentially [7], 
the shadowing cancellations improve the convergence by an exponential factor 
compared to trace formulas, and ex tend the radius of convergence of the periodic 
orbit sums. Table 4 shows some examples of such compensations between long 
cycles and their pseudo-cycle shadows. 

The shadowing cancellations require that a long cycle and the associated 
pseudo-cycles (products of shorter cycles following the same symbol sequence) 
have nearly the same weight and a relative minus sign. The first requirement 
is guaranteed by the hyperbolicity and the smoothness of the flow. The second 
requirement implies that, contrary to the "semi-classical" intuition, the cycle 
expansions are expected to converge for low energies. For sufficiently high wave 
numbers k the differences in actions Sp- Sshadow = k(Lp- Lshadow) can be of order 
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Fig. 6. Energy dependence of the cycle expansion coefficients for d : R = 6. Shown are 
(from top to bottom) the absolute values of the coefficients C4 , C6, C8, C10 and C12 (barely 
visible in the lower right corner) as a function of the wave number k. 

n or higher, in which case tp - tshadow ~ 2tp, rather than tp - tshadow ~ tp/JApl 
expected at k = 0. This is illustrated in fig. 6, which shows the energy dependence 
of the coefficients (Imk = 0) in the cycle expansion of the quantum Selberg zeta 
function (17). It is encouraging to note that the shadowing cancellations persist 
for very large intervals in k, so for the three-disk system studied here the lowest 
few terms in the cycle expansion suffice for evaluation of thousands of the lowest 
semiclassical resonaces. 

5.2 Convergence of Fredholm determinants 

While the above shadowing analysis of cycle expansions implies exponential con­
vergence, cycle expansions can actually converge even faster than exponentially. 
If the dynamical evolution can be cast in terms of a transfer operator multiplica­
tive along the flow, if the corresponding mapping (for example, the return map 
for a Poincare section of the flow) is analytic, and if the topology of the repeller 
is given by a finite Markov partition, then the Fredholm determinant (14) with 
classical weight (12) is entire. This has been recently proven by H.H. Rugh [20] 
(earlier mathematical literature dealt only with the expanding directions, not the 
full hyperbolic flow). In this case the cycle expansion coefficients (22) fall off 
asymptotically as Cn ~ A-n

312
• This estimate is in agreement with our numerical 

results for the three-disk repeller, see fig. 9. However, as it is not known how 
quickly the asymptotics should set in, such numerical results can be misleading, 
and preasymptotic oscillations can already be observed in simple one-dimensional 
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Fig. 7. The coefficients of the cycle expansion for the quantum Selberg zeta function Zqm(z) 
(connected with lines) and for 1/(o (not connected) for ratios d : R = 6 (diamonds), 3 
(squares) and 2.5 (triangles). Note that the asymptotic slopes for the quantum Selberg zeta 
functions and the dynamical zeta functions are the same; the double pole present in the 
dynamical zeta function persists as a single pole in the Selberg product. 

repellers. In the present case, such preasymptotic oscillations are noticable in data 
for larger disk-disk spacings. 

5.3 Poles of dynamical zeta functions 

The exponential decay of the coefficients for 1/(0 indicates the presence of a pole. 
Numerical investigations [21] of both the classical and the quantum dynamical 
1 / (j functions for two-dimensional Hamiltonian flows indicate that a 1 / (j function 
has a double pole coinciding with the leading zero of 1/(j+I• Consequently 1/(o, 
l/(0(1 and the quantum Selberg zeta function all have the same leading pole, and 
coefficients in their cycle expansions fall off exponentially with the same slope, 
fig. 7. Multiplying the quantum Selberg zeta function by (1 - z/zt), where z1 is 
the leading zero of 1/(1(z), one obtains faster, but still exponential decay in the 
coefficients, indicating further poles down in the complex plane (see fig. 8). 

The double pole is not as surprising as it might seem at first glance; indeed, 
the theorem that establishes that the classical Fredholm determinant (14) is entire 
implies that the poles in 1/(j must have right multiplicities in order that they be 
cancelled in the F = IT l/(j product [22]. More explicitly, 1/(j can be expressed 
in terms of weighted Fredholm determinants 

(28) 
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Fig. 8. The coefficients of the cycle expansion for the quantum Selberg zeta function 
Zqm(z) after multiplication with (1 - z/zi) where z1 is the zero of {11(z). The coefficients 
still decay only exponentially but with much steeper slope, indicating the presence of yet 
another pole. 

by inserting the identity 

1 2 1 1 1 
l = (1 - 1/ A)2 - A (1 - 1/ A)2 + A2 (1 - 1/ A)2 

into the exponential representation (13) of 1/(1. This yields 

l/r. = FjFj+2 
SJ F2 ' 

j+l 

(29) 

and we conclude that for two-dimensional Hamiltonian flows the dynamical zeta 
function 1/(1 has a double leading pole coinciding with the leading zero of the 
F1+1 Fredholm determinant. 

The effect of such convergence properties of the coefficients on the calculation 
of classical and quantum escape rates is demonstrated in table 5 and fig. 9. 

6 Conclusion 

As we have shown in the above, the three-disk system is an ideal model for tests 
of periodic orbit expansions in hyperbolic systems, not only in the classical but 
also in the semiclassical context. With a little bit of geometry one can obtain very 
good estimates for the classical and quantum escape rates as a function of the 
separation : radius ratio (fig. 3), demonstrating the accuracy of approximating the 
repeller by a few scales. With numerically obtained periodic orbits up to period 
14 one can test the analyticity properties of quantum Selberg zeta functions and 
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Table 5. Classical and quantum escape rates computed from the Fredholm deter­
minant Fc1 ( 11 ), the quantum Selberg zeta function Zqm ( 17), and the dynamical zeta 
function 1/(o, as function of the maximal cycle length. Due to the presence of the 
same pole in both quantum zeta functions, the convergence of the quantum Selberg 
zeta function is not significantly better than the convergence of the dynamical zeta 
function. See also fig. 9. 

d :R =6 

d :R = 3 

n 

1 0.39 
2 0.4105 
3 0.410338 
4 0.4103384074 
5 0.4103384077696 
6 0.410338407769346482 
7 0.4103384077693464892 
8 0.410338407769346489338468 
9 0.4103384077693464893384613074 

10 0.4103384077 693464893384613078 l 92 

1 0.41 
2 0.72 
3 0.675 
4 0.67797 
5 0.677921 
6 0.6779227 
7 0.6779226894 
8 0.6779226896002 
9 0.677922689599532 

10 0.67792268959953606 

1/(o 

0.11 0.119 
0.12153 0.12152 
0.1215574 0.121556 
0.121557625 0.12155760 
0.1215576283 0.121557627 
0.1215576284 0.1215576284 
0.1215576284 0.1215576284 

-0.076 0.019 
0.041 0.038 
0.04052 0.0403 
0.040575 0.04054 
0.0405789 0.040575 
0.04057935 0.040578 
0.040579405 0.0405793 
0.0405794102 0.04057940 
0.0405794108 0.0405794099 
0.0405794108 0.0405794107 

Fredholm determinants; to our surprise we found that quantum Selberg zeta 
functions have poles. Their presence spoils the faster than exponential conver­
gence typical of the classical Fredholm determinants; whether their analyticity 
can be improved is still being investigated. In the case of sufficiently separated 
three disks, this may not seem to be terribly important (one already has good 
exponential convergence), but the more poorly converging cycle expansions for 
spectra of bounded systems also seem to have poles. 

Quite generally, despite considerable progress (see, for example, the periodic or­
bit theory theme issue of CHAOS [23]), the semiclassical quantization of bounded 
systems is still not a routine calculation: all known bounded systems have ei­
ther pruning, marginally stable periodic orbits and/or accumulating sequences 
of orbits, and the quantum Selberg zeta functions have poles that degrade the 
convergence of cycle expansions. We remain optimistic, and believe that in the 
near future many of these problems will be overcome. 
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Fig. 9. Convergence of zeros of zeta functions towards the asymptotic values as more 
and more orbits are included. Shown are the convergence of the classical Fredholm 
determinant escape rate estimates, the quantum Selberg zeta function lowest resonance 
estimates, and the quantum 1/ (0 lowest resonance estimates for ratios d : R = 6 and 
d : R = 3. The zero obtained for n = 14 has been taken as the asymptotic value. Note 
the faster than exponential convergence for the classical Fredholm determinant, and the 
exponential approach for the quantum zeta functions. 
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APPENDIX 

A: Numerical determination of periodic orbits 

Fixed-point searches based on direct solution of the fixed-point condition (4) as 
an initial value problem are numerically rather unstable. Methods such as the 
multipoint shooting or orbit length minimization, described here, are considerably 
more robust and faster. Other methods for determination of n-disk periodic orbits 
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are given in refs. [24, 25]. A preliminary step to either calculation is preparation 
of a list of all distinct allowed prime periodic symbol sequences; an example of 
such list is given in table 1. 

Multipoint shooting method 

In the multipoint shooting approach one treats the N cycle points (for example, 
the five cyclic permutations of 00101) as independent degrees of freedom, and 
solves the system of equations 

T1x10100 - X0!OOl 

Toxo1001 - XtOOlO 

T1X10010 - xoo101 (Al) 

Toxoo101 XOlOlO 

Toxo1010 - Xt0100 

using the 2N-dimensional Newton method. 
In most of our computations, we fix the ratio d : R = 6 and use the fixed 

points of the maps Ti as starting guesses; the Newton method works quickly and 
reliably for all the period lengths tested ( all orbits of length N < 15). Once a 
periodic orbit has been found, orbits for different d : R ratios may be obtained 
by ( adiabatically) varying the ratio, and using the old orbit points as starting 
guesses in the Newton method. This works well for d : R larger than about 2.4. 
For smaller values, some orbits change rather quickly and require very small step 
sizes. In addition, for ratios below d : R = 2.04821419 ... one has to worry about 
pruning, i.e., the possibility that the minimal length trajectories are blocked by 
intervening disks. (This problem has no easy solution and is not treated here.) 

Orbit length minimization method 

The simplest method for determining billard cycles is given by the principle of 
least action, or, equivalently, by minimizing the length of an approximate orbit 
that visits a given sequence of disks. In contrast to the multipoint shooting 
method which requires variation of 2N phase-space points, minimization of the 
cycle length requires variation of only N bounce positions s;, i = 1, 2, ... , N. 

Let the points (xi, Yi) denote the centers of the N nonintersecting disks with 
radii R;. The length (or equivalently, the period or the action) of the approximate 
cycle is given by 

N N 

L =LI;= L[(~x;)2 + (~Y;)2]1;2 
i=l i=l 
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L\y;. The cycle length varies with variation of s; as 

(v .. L) _ oh-1 oli -R (. ( )(L\x; L\x;-•) ( )(L\y; L\y;_ 1)) i - -- + - - i Sill S; - - -- - COS S; - - --
OS; OS; l; li-l l; li-l 

(A2) 
The minimization is achieved by recursive implemention of the following 

algorithm: 
(i) Select an initial set of bounce positions s0. 

(ii) Evaluate V L ls=so• 
(iii) Minimize L along the tangent space spanned by the above gradient, i.e., 

minimize the function L(s0 + V L ls=so ·t) with respect to the variation 1. 
(iv) Use the bounce points s1 so determined as the starting point for the next 

iteration of the algorithm, until the desired accuracy is attained. 
(v) If the dynamics is pruned, check that the final minimal length orbit does 

not penetrate any of the disks. 
The orbit minimization algorithm works very well in practice. 

B: Cycle stability for billiards 

Consider a two-dimensional billiard with phase space coordinates (q1,q2,P1,P2). 
Let tk be the instant of the k-th collision of the billiard with the billiard boundary, 
and tr = tk + €, € positive and infinitesimal. Setting the mass and the velocity 
equal to 1, we impose energy conservation by parametrizing the momentum 
direction by angle 0, (q1,q2,sin0,cos0). Now parametrize the two-dimensional 
neighbourhood of a trajectory segment between (k - 1)-th and k-th collisions by 
Jx = (<50,Jz), where 

is the coordinate variation transverse to the k-th segment of the flow. Using 
dq;j dt = p;, we obtain the equations of motion for the linearized neighbourhood 

Let <50k = <50(tt) and Jzk = Jz(tt) be the local coordinates immediately after 
the k-th collision, and <50,; = <50(t,;), Jz,; = Jz(tk) immediately before. Integrating 
the free flight from tt_1 to t,; we obtain 

J0k J0k-l 

Jz,; - Jzk-1 + 'tk<50k-1' 

and the transverse jacobian is given by 

Jr(xk) = [ 1 0 l 
'tk 1 

(A3) 

At incidence angle <Pk (the angle between the outgoing particle and the outgoing 



Pinball scattering 431 

normal to the billiard edge), the incoming transverse variation f,z; projects 
onto an arc on the billiard boundary of length f,z-;: / cos ¢k• The corresponding 
incidence angle variation b<pk = f,z-;: / ~ cos ¢k, ~ = the local radius of curvature, 
increases the angular spread to 

() Zk - -()Zk ' 

so the jacobian associated with the reflection is 

2 
rk=---. 

~cos¢k 

The jacobian of a cycle p of length np is given by 

JP = (- l )"P [l [ 1 rk l [ 1 0 l 
k=l Q 1 'rk 1 

(A4) 

(A5) 

As det J = 1, the sign of the leading eigenvalue depends only on the trace of the 
determinant: A= ½(trJ + .Jtr2J -4), and by (A5) the trace after n compositions 
of the determinants has the sign (-1 t, i.e., the eigenvalues flip sign at each 
collision. This yields a convenient way of finding the correct sign of the stabilities 
in the fundamental domain, since a straight wall can be considered as the limit 
of a disk whose radius tends to infinity. 

An alternative approach to the eigenvalue evaluation is based on observa­
tion that the [2x2] volume preserving matrix multiplication can be achieved by 
iteration of linear fractional maps; 

[ 
c; a; l • 
d; b; 

detMi = 1, 

If we represent the translations and the reflections by 

the k-th segment of the trajectory is represented by 

1 
Tk~(z) = ---1 -

For the cycle p the iteration yields 

'rk +-­
rk +z 

ap + bpz 
z = T1R1 T2R2 · · · Tn R,, (z) = -'-----'--. 

p p C +dz p p 

(A6) 

(A7) 
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For dispersing billiards rm > 0, so all coefficients are positive. The expanding 
eigenvalue satisfies IAPI + 1/IAPI = bp + cp, so the cycle eigenvalue is a root of the 
quadratic equation 

IA I _ bp + Cp + J(bp + Cp)
2 -4 _ b -d 

p - 2 - p pZp. (A8) 

alternatively given as the root Zp of the linear fractional representation fixed point 
condition (A7). The sign of Ap is (-ltP. 

Eqs. (A3) and (A4) can be rewritten as 

leading to the continued fraction recursion (A6) 

1 
Kk-1 = 1 

Tk+---
rk + Kk 

(A9) 

(AlO) 

for the Sinai-Bunimovic curvatures [26, 27]. In other words, the Sinai-Bunimovic 
continued fraction method of evaluating curvatures (used, for example, in ref. [25]) 
is identical to multiplying [2x2] jacobian matrices, the method by which we 
evaluate the stabilities. 

Interpretation: imagine a set of projectiles leaving a point ( q1, q2) in all direc­
tions, parametrized by angle 0; they generate a "horocycle" in the configuration 
space, a set of all points reached by time t. A '50 wedge of angles stretches 
into a horocycle arc '5z = t'50, and '50/'5z = 1/t is the local curvature of the 
horocycle [26, 27]. 
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