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Modulated amplitude waves in Bose-Einstein condensates
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We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-
dimensional Bose-Einstein condensates~BECs! with mean-field interactions. A coherent structure ansatz yields
a parametrically forced nonlinear oscillator, to which we apply Lindstedt’s method and multiple-scale pertur-
bation theory to determine the dependence of the intensity of periodic orbits~‘‘modulated amplitude waves’’!
on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and
supporting numerical simulations.
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At low temperatures, particles in a gas can reside in
same quantum~ground! state, forming a Bose-Einstein con
densate@1–6#. When considering only two-body, mean-fie
interactions, the condensate wave functionc satisfies the
Gross-Pitaevskii~GP! equation, a cubic nonlinear Schro¨-
dinger equation~NLS! with an external potential

i\c t52@\2/~2m!#cxx1gucu2c1V~x!c, ~1!

wherem is the mass of a gas particle,V(x) is an external
potential, g5@4p\2a/m#@11O(i2)#, a is the ~two-body!
s-wave scattering length, andi5Aucu2uau3 is the dilute gas
parameter@2,7#. The quantitya is determined by the atomi
species in the condensate. Interactions between at
are repulsive whena.0 and attractive whena,0. When
a'0, one is in the ideal gas regime.

The quasi-one-dimensional~quasi-1D! regime employed
in Eq. ~1! is suitable when the transverse dimensions of
condensate are on the order of its healing length and its
gitudinal dimension is much larger than its transverse o
@2,8–10#. In this situation, one employs the 1D limit of a 3
mean-field theory rather than a true 1D mean-field theory
would be appropriate were the tranverse dimension on
order of the atomic interaction length or the atomic size.

In this paper, we examine uniformly propagating coher
structures by applying the ansatzc(x2vt,t)5R(x
2vt)exp„i @u(x2vt)2vt#…, whereR[ucu is the magnitude
~intensity! of the wave function,v is the velocity of the
coherent structure,u(x) determines its phase, andv is the
temporal frequency~chemical potential!. Considering a coor-
dinate system that travels with speedv ~by definingx85x
2vt and relabelingx8 asx) yields

c~x,t !5R~x!exp$ i @u~x!2vt#%. ~2!

@From a physical perspective, we consider the casev50, as
v(x8)5V(x2vt).] When the~temporally periodic! coherent
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structure~2! is also spatially periodic, it is called amodu-
lated amplitude wave~MAW !. The orbital stability of coher-
ent structures~2! for the GP with elliptic potentials has bee
studied by Bronski and co-authors@8–10#. To obtain infor-
mation about sinusoidal potentials, one takes the limit as
elliptic modulusk approaches zero@11,12#. When V(x) is
periodic, the resulting MAWs generalize the Bloch mod
that occur in linear systems with periodic potentials, as on
considering a nonlinear Floquet-Bloch theory rather tha
linear one@13–17#.

In this paper, we employ phase space methods and Ha
tonian perturbation theory to examine the band structure
such MAWs. Prior work in this area has utilized numeric
simulations@15–17#.

The uniqueness of our work lies in its illumination o
BEC band structure through the use of perturbation the
and supporting numerical simulations to examine 2n:1 spa-
tial subharmonic resonances in BECs in period lattices. S
resonances correspond to spatially periodic solutions of
riod 2n and generalize the ‘‘period doubled’’ states~in ucu2)
studied by Machholmet al. @18#, which pertain to the experi-
mental observations of Cataliottiet al. @19#.

Inserting Eq.~2! into the GP~1!, equating real and imagi
nary parts, and simplifying yields

R85S,

S85
c2

R3
2

2mvR

\
1

2mg

\2
R31

2m

\2 V~x!R. ~3!

The parameterc is defined via the relationu8(x)5c/R2,
which is an expression of conservation of angular mom
tum @8#. Null angular momentum solutions, which constitu
an important special case, satisfyc50.

WhenV(x)[0, the 2D dynamical system~3! is autono-
mous and hence integrable. Its equilibria and the stab
thereof are discussed in detail in Ref.@21#. When g.0,
v.0, and c50, which is the primary case for which w
study the band structure, one obtains a neutrally stable e
librium ~a center! at (R,S)5(0,0) and unstable equilibria
~saddles! at (6A\v/g,0); see Fig. 1.
©2004 The American Physical Society01-1
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We employed Lindstedt’s method to study the depende
of the wave number of periodic orbits~centered at the origin!
of Eq. ~3! on the intensityR when V(x)[0 @13#. We as-
sumedg5«ḡ, where«!1 andḡ5O(1). Thewave number
is then a5123gA2/(8v\)1O(«2), where R(j)5R0(j)
1O(«), jªax, R0(j)5A cos(bj), andbªA2mv/\.

To study the wave number-intensity relations of perio
orbits in the presence of external potentials, we expand
spatial variablex in multiple scales. We define ‘‘stretche
space’’ jªax as in the integrable situation and ‘‘slow
space’’ hª«x. We consider potentials of the formV(x)
5«V̄(j,h), where V̄(j,h)5V̄0sin@k(j2j0)#1V̄1(h) and
V̄1(h), which is of orderO(1), is arbitrary but slowly vary-
ing. Cases of particular interest includeV̄1(h)50 ~periodic
potential! and V̄1(h)5V̄h(h2h0)2 ~superposition of peri-
odic and harmonic potentials!. WhenV̄h!V̄0, this latter po-
tential is dominated by its periodic contribution for man
periods@22,23#. The wave number parameter isk52p/T,
whereT represents the periodicity of the underlying lattic
Optical lattices with more than 20 periods have now be
created experimentally@24#. Spatially periodic potentials
which is the primary case we consider, have been emplo
in experimental studies of BECs@25,26#. They have also
been studied theoretically in Refs.@8–10,16,17,22,23,27#.
An example of a coherent structure for hydrogen in the pr
ence of a periodic lattice is depicted in Fig. 2. Coher
structures in other situations, such as for85Rb ~for which a
520.9), are examined in Ref.@21#.

WhenkÞ62b, the wave number-intensity relation for pe
riodic orbits of Eq.~3! is

a~C!512
3g

8v\
C22

1

2v\
V1~x!1O~«2!, ~4!

FIG. 1. Phase portrait of a repulsive BEC with no extern
potential andv510. In this plot, the two-body scattering leng
is a50.072 nm, obtained for atomic hydrogen (1H) @20#. Orbits
inside the separatrix have bounded intensityR(x) with increasing
period as one approaches the separatrix. The variablesR and
S5R8 are scaled quantities obtained withm51/2 and\51.
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where R0(j,h)5A(h)cos(bj)1B(h)sin(bj) and C25A2

1B2 is a constant.@Note that in Eq.~4! and in our forthcom-
ing discussion, the small paramater« has been absorbed bac
into the constants, so that we need not utilize bars over th
quantities.# Whenk562b, one obtains an extra term due
2:1 resonance

aR~C!5a~C!7
V0

4v\
1O~«2!, ~5!

whereC is defined as before but is no longer constant, a
the sign ofV0/4v\ alternates depending on which equilib
rium of the slow dynamics of Eq.~3! one is considering@21#.

To examine the band structure of BECs in periodic l
tices, we expand Eq.~3! with V(x)[0, c50 in terms of its
exact elliptic function solutions, convert to action-angle va
ables, and apply several canonical transformations to ob
a ‘‘resonance Hamiltonian,’’ which we study both analy
cally and numerically. Using elliptic functions rather tha
trigonometric functions allows one to analyze 2n:1 subhar-
monic resonances with a leading-order perturbation exp
sion @21,28#. We focus here on the caseg.0, v.0. In Ref-
erence@21#, we also discuss the implication of the work o
Zounes and Rand@28# for the caseg,0, v.0 and briefly
consider the technically more complicated caseg,0, v,0.
Refs. @15–17# concentrated on numerical studies of ba
structure. In contrast, we employ Hamiltonian perturbat
theory and study the band structure of BECs in periodic
tentials both analytically and numerically.

Let j05p/(2k) and V1(x)[0, so that V(x)
5V0cos(kx). Equation ~3! is then written R91dR1aR3

1eR cos(kx)50, whered52mv/\.0, a522mg/\2,0,
ande52(2m/\2)V0. ~Note that the perturbation paramet

l FIG. 2. An example of a spatially quasiperiodic coherent str
ture for 1H in a sinusoidal lattice. As in Fig. 1,v510, a50.072,
c50, m51/2, and\51. Additionally, V0510. This plot, which
was obtained from the coherent structure ansatz, depicts Re~c!,
with the initial point„R(0),S(0)…5(0.05,0.05) inside the separatri
in Fig. 1. The darkest portions are the most negative, and the li
est are the most positive. The quantitiesR andS are defined as in
Fig. 1.
1-2
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e is not the same as the parameter« employed earlier.! When
V050, one obtains the exact elliptic function solution

R5mr cn~u,k!, ~6!

where u5u1x1u0 , u1
25d1ar2, k25(ar2)/(2@d

1ar2#), u1>0, r>0, k2PR, and mP$21,1%. The initial
condition parameteru0 can be set to 0 without loss of gen
erality. We consideru1PR in order to study periodic solu
tions inside the separatrix~depicted in Fig. 1!. One need not
retain the parameterm to do this, so we set it to unity. Be
causek2P@2`,0#, we utilized the reciprocal complemen
tary modulus transformation in deriving Eq.~6! @29–31,21#.
Defining x5Adx and r 5A2d/aR and denoting8ªd/dx,
the equations of motion take the form

r 91r 2r 31ed21cos~kd21/2x!r 50, ~7!

with the corresponding Hamiltonian~usingsªr 8)

H~r ,s,x!5
1

2
s21

1

2
r 22

1

4
r 41

e

2d
r 2cosS k

Ad
x D . ~8!

FIG. 3. Resonance HamiltonianK2 for k52.5, d51, and
e50.01. The vertical axis is in units of actionY, and the horizontal
axis is in units ofj/J8(Y). As discussed in the text, these quantiti
are scaled and physically unitless.
04720
The frequency of a given periodic orbit isV(k)
5pA12r2/@2K(k)#, where K(k) is the complete elliptic
integral of the first kind@32#. One thereby obtains the actio
@33–36#

J5
4A12r2

3p FE~k!2S 12
r2

2 DK~k!G , ~9!

where E(k) is the complete elliptic integral of the secon
kind, and the conjugate angleFªF(0)1V(k)x. The fre-
quencyV(k) decreases monotonically ask2 goes from2`
to 0 @as one goes from the separatrix to~0,0!#.

After applying several near-identity canonical transform
tions and expanding elliptic functions in Fourier series@21#,
one obtains an autonomous resonance HamiltonianKn(Y,j)
~in action-angle coordinates! for the 2n:1 resonance band,

Kn5Y2Y22
kJ~Y!

2nAd
1

e

2d
YBn~Y!cosS 2nj

J8~Y!
D , ~10!

whereBn are obtained from Fourier coefficients@21,28#. The
band associated with 2n:1 subharmonic spatial resonances
present whenk/Ad<2n.

To obtain an analytical description of these resona
bands, we note that such bands emerge from the actioY
5Yn , the location of thenth resonance torus in phase spac
which is determined byk/Ad52nV(Yn). The saddles and
centers of this resonance band are given, respectively
Ys5Yn2uDYu andYc5Yn1uDYu,

DY57
e

2d F Bn~Yn!1YnBn8~Yn!

V~Yn!A122YnK̃8~Yn!21
G , ~11!

FIG. 4. Lower right corner of a Poincare´ section fork52.5,
d51, ande50.01. Note that there is no 2:1 resonance band for
choice of ~k,d!. The 4:1 resonance is depicted.~Three additional
copies of this structure appear in the Poincare´ section.! Recall that
the scaled quantitiesR andS are unitless.
1-3
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whereK̃8(Y)ª2K8(k(Y))/p, K8(k)ªK(A12k2), DY.0
when n is even, andDY,0 whenn is odd. The width of
resonance bands is

W52Ue
YnBn~Yn!

dS 11
k

2nAd
J9~Yn!DU

1/2

. ~12!

We compare our analytical results with numerical simu
tions in (R,S) coordinates witha521, m51/2, and\51.
For example, whenk52.5 andd51, the 4:1 resonances ar
the lowest-order resonances present. The resonance H
tonian K2 is depicted in Fig. 3 fore50.01, and the corre
sponding Poincare´ section is shown in Fig. 4. From~10!, one
predicts that theR-axis saddles are located at (R,S)5
(60.86364,0), which is rather close to the true value
about~60.88,0!. TheS-axis saddles are predicted to occur
(R,S)5(0,60.68389), whereas the true value is about~0,
60.687!. Numerous other examples are studied in Ref.@21#.

At the center of the KAM islands, we observe ‘perio
multiplied’ states. Whenn51, these correspond to period
doubled states inc @18#.
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We note, finally, that to analyze three-body interactio
~which is necessary, for example, to examine Feshbach r
nances@37#!, one has to take dissipative effects into accou
@7,38#. In the present paper, we studied only two-body int
actions.

In sum, we employed Lindstedt’s method and multip
scale analysis to establish wave number-intensity relati
for MAWs of BECs in periodic lattices. With this approac
we studied 2:1 spatial resonances and illustrated the ut
of phase space analysis and perturbation theory for the s
of band structure as well as the structure of modulated
plitude waves in BECs. Using a more technically demand
perturbative approach relying on the elliptic function stru
ture of solutions of the integrable GP yields the 2n:1 spatial
resonances~band structure! of MAWs, which we studied in
considerable detail both analytically and numerically.
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@7# T. Köhler, Phys. Rev. Lett.89, 210404~2002!.
@8# J.C. Bronskiet al., Phys. Rev. Lett.86, 1402~2001!.
@9# J.C. Bronskiet al., Phys. Rev. E63, 036612~2001!.

@10# J.C. Bronskiet al., Phys. Rev. E64, 056615~2001!.
@11# D.F. Lawden,Elliptic Functions and Applications, Applied

Mathematical Sciences Vol. 80~Springer-Verlag, New York,
NY, 1989!.

@12# R.H. Rand,Topics in Nonlinear Dynamics with Computer A
gebra, Computation in Education: Mathematics, Science a
Engineering Vol. 1~Gordon and Breach Science Publishe
New York, 1994!.

@13# R.H. Rand, a free online book available athttp://
www.tam.cornell.edu/randdocs/nlvibe45.pdf

@14# N.W. Ashcroft and N.D. Mermin,Solid State Physics~Brooks/
Cole, Australia, 1976!.

@15# P.J.Y. Louiset al., Phys. Rev. A67, 013602~2003!.
@16# K. Berg-So”rensenet al., Phys. Rev. A58, 1480~1998!.
@17# D.-I. Choi and Q. Niu, Phys. Rev. Lett.82, 2022~1999!.
@18# M. Machholm et al., Phys. Rev. A~to be published!, e-print

cond-mat/0307183v1.
@19# F.S. Cataliottiet al., New J. Phys.5, 71.1 ~2003!.
@20# D.G. Friedet al., Phys. Rev. Lett.81, 3811~1998!.
d
,

@21# M.A. Porter P. Cvitanovic´, Chaos~to be published!, e-print
nlin.CD/0308024.

@22# B. Deconincket al., J. Nonlinear Sci.12, 169 ~2002!.
@23# R. Carretero-Gonza´lez et al., Phys. Rev. A66, 033610~2002!.
@24# S. Burgeret al., Phys. Rev. Lett.86, 4447~2001!.
@25# E.W. Hagleyet al., Science283, 1706~1999!.
@26# B.P. Anderson and M.A. Kasevich, Science282, 1686~1998!.
@27# B.A. Malomedet al., J. Opt. Soc. Am. B16, 1197~1999!.
@28# R.S. Zouneset al., Int. J. Non-Linear Mech.37, 43 ~2002!.
@29# V.T. Coppolaet al., Nonlinear Dyn.1, 401 ~1990!.
@30# V.T. Coppola, Ph.D. thesis, Cornell University, 1989.
@31# Handbook of Mathematical Functions With Formulas, Graph

and Mathematical Tables, edited by M. Abramowitz and I.
Stegun, Applied Mathematics Series Vol.55~National Bureau
of Standards, Washington, D.C., 1964!.

@32# E.T. Whittaker and G.N. Watson,A Course of Modern Analy-
sis, 4th ed.~Cambridge University Press, Cambridge, 1927!.

@33# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,
Reading, MA, 1980!.

@34# J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields, Applied
Mathematical Sciences Vol. 42~Springer-Verlag, New York,
NY 1983!.

@35# S. Wiggins,Introduction to Applied Nonlinear Dynamical Sys
tems and Chaos, Texts in Applied Mathematics Vol. 42
~Springer-Verlag, New York, 1990!.

@36# A.J. Lichtenberg and M.A. Lieberman,Regular and Chaotic
Dynamics, 2nd ed., Applied Mathematical Sciences Vol. 3
~Springer-Verlag, New York, NY 1992!.

@37# E.A. Donleyet al., Nature~London! 412, 295 ~2001!.
@38# J.L. Robertset al., Phys. Rev. Lett.86, 4211~2001!.
1-4


