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Modulated amplitude waves in Bose-Einstein condensates
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We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-
dimensional Bose-Einstein condensg8ECs with mean-field interactions. A coherent structure ansatz yields
a parametrically forced nonlinear oscillator, to which we apply Lindstedt’'s method and multiple-scale pertur-
bation theory to determine the dependence of the intensity of periodic ¢hmitslulated amplitude waveg”
on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and

supporting numerical simulations.
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At low temperatures, particles in a gas can reside in thestructure(2) is also spatially periodic, it is called modu-

same quantuniground state, forming a Bose-Einstein con-
densatd1-6]. When considering only two-body, mean-field

interactions, the condensate wave functignsatisfies the
Gross-Pitaevskii(GP) equation, a cubic nonlinear Schro
dinger equatiorlNLS) with an external potential
iy =—[H21(2mM) Jhest 9 |20+ V(X) ¢, 1)
wherem is the mass of a gas particlg(x) is an external
potential, g=[47%2a/m][1+0(:?)], a is the (two-body)
swave scattering length, and=\[¢|%[a|® is the dilute gas
parametef2,7]. The quantitya is determined by the atomic

lated amplitude wavéMAW). The orbital stability of coher-
ent structures$2) for the GP with elliptic potentials has been
studied by Bronski and co-authof8—10]. To obtain infor-
mation about sinusoidal potentials, one takes the limit as the
elliptic modulusk approaches zerfil1,12. When V(x) is
periodic, the resulting MAWs generalize the Bloch modes
that occur in linear systems with periodic potentials, as one is
considering a nonlinear Floquet-Bloch theory rather than a
linear one[13-17.

In this paper, we employ phase space methods and Hamil-
tonian perturbation theory to examine the band structure of
such MAWSs. Prior work in this area has utilized numerical

species in the condensate. Interactions between atonssmulations[15—-17.

are repulsive whem>0 and attractive whema<0. When
a~0, one is in the ideal gas regime.

The uniqueness of our work lies in its illumination of
BEC band structure through the use of perturbation theory

The gquasi-one-dimensionédjuasi-1D regime employed and supporting numerical simulations to examime 22 spa-
in Eg. (1) is suitable when the transverse dimensions of thdial subharmonic resonances in BECs in period lattices. Such
condensate are on the order of its healing length and its lorresonances correspond to spatially periodic solutions of pe-
gitudinal dimension is much larger than its transverse onesod 2n and generalize the “period doubled” statés | ¢|?)
[2,8—-10. In this situation, one employs the 1D limit of a 3D studied by Machholnet al.[18], which pertain to the experi-
mean-field theory rather than a true 1D mean-field theory, agental observations of Catalioti al. [19].
would be appropriate were the tranverse dimension on the Inserting Eq.(2) into the GP(1), equating real and imagi-

order of the atomic interaction length or the atomic size.

nary parts, and simplifying yields

In this paper, we examine uniformly propagating coherent

structures by applying the ansatzj(x—uvt,t)=R(X
—vt)expi[ 6(x—vt) — wt]), whereR=|y/| is the magnitude
(intensity) of the wave functionp is the velocity of the
coherent structuref(x) determines its phase, andis the
temporal frequencychemical potential Considering a coor-
dinate system that travels with speedby definingx’=x
—vt and relabeling«’ asx) yields
P(x,1)=R(x)expli[ 6(x) — wt]}. )
[From a physical perspective, we consider the ecas®, as
v(x")=V(x—wvt).] When the(temporally periodi¢ coherent
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The parametec is defined via the relatiord’ (x)=c/R?,
which is an expression of conservation of angular momen-
tum [8]. Null angular momentum solutions, which constitute
an important special case, satisfy 0.

WhenV(x)=0, the 2D dynamical systel8) is autono-
mous and hence integrable. Its equilibria and the stability
thereof are discussed in detail in R¢21]. When g>0,
>0, andc=0, which is the primary case for which we
study the band structure, one obtains a neutrally stable equi-
librium (a center at (R,S)=(0,0) and unstable equilibria
(saddleg at (= V2 w/g,0); see Fig. 1.

©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B9, 047201 (2004

15
| —
| —
| —
| —
S| | —
| —
| —
| —
| —
-15 | —
-4 4

R

FIG. 1. Phase portrait of a repulsive BEC with no external FIG. 2. An example of a spatially quasiperiodic coherent struc-

I . . . = - B
potential andw=10. In this plot, the two-body scattering length ture for °H in a sinusoidal lattice. As in Fig. 1y=10,a=0.072,

is a=0.072 nm, obtained for atomic hydrogefH) [20]. Orbits c=0, Ig1=_1/2d, fandh=hl. Adt::iitionally, Vo=10. This pl(?t’ ?’Vh‘Ch
inside the separatrix have bounded inten$t(x) with increasing was obtained from the coherent structure ansatz, depicig)Re

period as one approaches the separatrix. The variaRlemd with the initial point(R(0),S(0))=(0.05,0.05) inside the separatrix
S=R’ are scaled quantities obtained with=1/2 and# =1 in Fig. 1. The darkest portions are the most negative, and the light-
' est are the most positive. The quantitRsand S are defined as in

We employed Lindstedt’s method to study the dependencg'g' 1

of the wave number of periodic orbifsentered at the orig)n _ . 2_ A2
: . _ where Ry(&,7)=A(7)cosBé)+B(n)sin(B¢) and C=A
of Eq. (3) on the intensityR when V(x)=0 [13]. We as- + B2 is a constant,Note that in Eq(4) and in our forthcom-

sumedg=eg, wheres <1 andg=0(1). Thewave number ing discussion, the small paramatenas been absorbed back

, 1 A A2 2 _

is then a=1—3gA /(8_"%”0(8 ), where R(§)=Ro(£)  jnig the constants, so that we need not utilize bars over these

+0(e), &:=ax, Ro(§)=Acos(Bé), andB:=y2malhi.  quantities] When k=28, one obtains an extra term due to
To study the wave number-intensity relations of periodicy.1 rasonance

orbits in the presence of external potentials, we expand the

spatial variablex in multiple scales. We define “stretched Vo

space” é&:=ax as in the integrable situation and “slow aR(C)Za(C)imJFO(SZ), )
space” n:=ex. We consider potentials of the forid(x)

=eV(&, 1), where V(& 7)=Vesink(é—&)]+Vi(n) and  whereC is defined as before but is no longer constant, and

V1(7), which is of orderO(1), isarbitrary but slowly vary-  the sign ofVo/4w7 alternates depending on which equilib-
ing. Cases of particular interest includg(7)=0 (periodic rium of the slow dynamics of Eq3) one is considerin{21].

_ = = N i : To examine the band structure of BECs in periodic lat-
potentia) and Va(#) =Vn(7—10)" (superposition of peri- yices e expand Eq3) with V(x)=0, c=0 in terms of its

odic and harmonic potentialsWhenV, <V, this latter po-  exact elliptic function solutions, convert to action-angle vari-
tential is dominated by its periodic contribution for many aples, and apply several canonical transformations to obtain
periods[22,23. The wave number parameter is=27/T,  a “resonance Hamiltonian,” which we study both analyti-
whereT represents the periodicity of the underlying lattice. cally and numerically. Using elliptic functions rather than
Optical lattices with more than 20 periods have now beenrigonometric functions allows one to analyza:2 subhar-
created experimentally24]. Spatially periodic potentials, monic resonances with a leading-order perturbation expan-
which is the primary case we consider, have been employegion [21,28. We focus here on the cage>0, w>0. In Ref-

in experimental studies of BEC25,26. They have also erence[21], we also discuss the implication of the work of
been studied theoretica”y in R6f§—10,16,17,22,23,27 Zounes and Ranﬁzs] for the Ca5®<0, >0 and br|ef|y

An example of a coherent structure for hydrogen in the presgonsider the technically more complicated cgse0, w<O.
ence of a periodic lattice is depicted in Fig. 2. Coherentrefs. [15-17 concentrated on numerical studies of band
structures in other situations, such as fRb (for whicha  structure. In contrast, we employ Hamiltonian perturbation

=—0.9), are examined in Ref21]. theory and study the band structure of BECs in periodic po-
Whenk# =2, the wave number-intensity relation for pe- tentials both analytically and numerically.
riodic orbits of Eq.(3) is Let &=m/(2k) and V,(x)=0, so that V(x)

=V,coskx). Equation (3) is then written R”+ 6R+ aR®
+ eRcoskx)=0, wheres=2mw/A>0, a=—2mgh?<0,
ande=— (2m/42)V,. (Note that the perturbation parameter

O)=1- 2 ¢ Ly 0+ 0(s? 4
a( )_ 8wh 20h l(X) (8 )1 ( )
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FIG. 3. Resonance HamiltoniaK, for x=2.5, =1, and
€=0.01. The vertical axis is in units of actiofy and the horizontal
axis is in units ofé/J’ (). As discussed in the text, these quantities

are scaled and physically unitless.

eis not the same as the parametemployed earliey.When
Voz 0,

where

one obtains the exact elliptic function solution

R=up cn(u,k), (6)

U=ux+uy, U2=d+ap?

the equations of motion take the form

r"+r—r3+ed tcog k6 Y2)r=0, (7)

with the corresponding Hamiltoniausings:=r")

1 1
H(r,s,x)=58*+ 51—

14+62 K
25 T2 a5

K?=(ap?)/(2[ 6
+ap?]), u;=0, p=0, k?cR, and ue{—1,1. The initial
condition parameteun, can be set to 0 without loss of gen-
erality. We considen, e R in order to study periodic solu-
tions inside the separatrixiepicted in Fig. L One need not
retain the parametet to do this, so we set it to unity. Be-
causek?e[—,0], we utilized the reciprocal complemen-
tary modulus transformation in deriving E@) [29-31,21.
Defining y = \/6x andr == /aR and denoting’ :=d/dy,

8
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FIG. 4. Lower right corner of a Poincamection for k=2.5,
6=1, ande=0.01. Note that there is no 2:1 resonance band for this
choice of (k,8). The 4:1 resonance is depicted@hree additional
copies of this structure appear in the Poincseetion) Recall that
the scaled quantitieR and S are unitless.

The frequency of a given periodic orbit i€)(k)
=m\J1—p?/[2K(k)], whereK(k) is the complete elliptic
integral of the first kind32]. One thereby obtains the action
[33-36

J=4—Vl_p{E(k)—(l—p—>K(k)}, 9)
3 2

where E(K) is the complete elliptic integral of the second
kind, and the conjugate angte:=®(0)+ Q(k)x. The fre-
quencyQ (k) decreases monotonically &8 goes from—o

to O[as one goes from the separatrix(0)].

After applying several near-identity canonical transforma-
tions and expanding elliptic functions in Fourier sefi24],
one obtains an autonomous resonance HamiltoiglY, &)

(in action-angle coordinatg$or the 2n:1 resonance band,

KJ(Y)+iYBn(Y)cos( 2né ) (10

Y-Y?-
2nys 26 J'(Y)

Kn=

wherel3,, are obtained from Fourier coefficientzl,28. The
band associated withi21 subharmonic spatial resonances is
present wherk//6<2n.

To obtain an analytical description of these resonance
bands, we note that such bands emerge from the adtion
=Y,, the location of thenth resonance torus in phase space,
which is determined by/\/§=2nQ(Y,). The saddles and
centers of this resonance band are given, respectively, by
Y=Y,—|AY| andY =Y, +|AY],

_ € Bo(Yn)+YnBiy(Yy)
= 4+ — — ,
28| QY )V1-2Y,K'(Y,)—1

(11
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whereR’(Y):=2K’(k(Y))/w, K’ (k) ;=K(\/ﬁ2), AY>0 We note, finally, that to analyze three-body interactions
whenn is even, andAY<0 whenn is odd. The width of (which is necessary, for example, to examine Feshbach reso-
resonance bands is nanceq37]), one has to take dissipative effects into account
s [7,38]. In the present paper, we studied only two-body inter-
Yo Ba(Yn) actions.
W=2| e P (12 In sum, we employed Lindstedt’s method and multiple
Sl 1+ ——=7J"(Y,) scale analysis to establish wave number-intensity relations
2n\s for MAWSs of BECs in periodic lattices. With this approach,

: . : . we studied 2:1 spatial resonances and illustrated the utility
_ We compare our analytical results with numerical simula-¢ hase space analysis and perturbation theory for the study
tions in (R,S) coordinates withe=—1, m=1/2, andh=1. o hanq structure as well as the structure of modulated am-
For example, whe=2.5 andd=1, the 4:1 resonances are jiy,qe waves in BECs. Using a more technically demanding
the lowest-order resonances present. The resonance Ha”ﬁérturbative approach relying on the elliptic function struc-
tonianK, is depicted in Fig. 3 fore=0.01, and the corre- e of solutions of the integrable GP yields the: 2 spatial
sponding Poincarsection is shown in Fig. 4. Frof10), one resonancesband structureof MAWS, which we studied in

predicts that theR-axis saddles are located aR.8)=  gnsiderable detail both analytically and numerically.
(£0.86364,0), which is rather close to the true value of

about(*+0.88,0. The S-axis saddles are predicted to occur at  Valuable conversations with Eric Braaten, Michael Chap-
(R,S)=(0,=0.68389), whereas the true value is ab@@t man, Mark Edwards, Nicolas Garnier, Brian Kennedy, Panos
+0.687. Numerous other examples are studied in R21]. Kevrekidis, Yueheng Lan, Boris Malomed, Igor MezReter

At the center of the KAM islands, we observe ‘period- Mucha, and Dan Stamper-Kurn are gratefully acknowledged.
multiplied’ states. Whem=1, these correspond to period- We are especially grateful to Jared Bronski, Richard Rand,
doubled states i [18]. and Li You for several extensive discourses.
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