

Figure S.17: (a) (b) A partition of the unit interval into three or five intervals, labeled by the order along the unit interval $\mathcal{A} = \{\mathcal{M}_1, \mathcal{M}_2 = \mathcal{M}_4 \cup (\frac{1}{2}) \cup \mathcal{M}_5, \mathcal{M}_3\}.$ The partition is Markov, as the critical point is also a fixed point. (c) the Markov graph for this Markov partition.

Chapter 25. Deterministic diffusion

Solution 25.1 - Diffusion for odd integer Λ . Consider first the case $\Lambda = 3$, illustrated in figure S.17. If $\beta = 0$, the dynamics in the elementary cell is simple enough; a partition can be constructed from three intervals, which we label $\{\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3\}$, with the alphabet ordered as the intervals are laid out along the unit interval. The Markov graph is figure S.17 (c), and the dynamical zeta function is

$$1/\zeta|_{\beta=0} = 1 - (t_1 + t_2 + t_3) = 1 - 3z/\Lambda$$

with eigenvalue z = 1 as required by the flow conservation.

However, description of global diffusion requires more care. As explained in the definition of the map (25.9), we have to split the partition $\mathcal{M}_2 = \mathcal{M}_4 \cup (\frac{1}{2}) \cup \mathcal{M}_5$, and exclude the fixed point $f(\frac{1}{2}) = \frac{1}{2}$, as the map $\hat{f}(\hat{x})$ is not defined at $\hat{f}(\frac{1}{2})$. (Are we to jump to the right or to the left at that point?) As we have $f(\mathcal{M}_4) = \mathcal{M}_1 \cup \mathcal{M}_4$, and similarly for $f(\mathcal{M}_5)$, the Markov graph figure S.17 (d) is infinite, and so is the dynamical zeta function:

$$1/\zeta = 1 - t_1 - t_{14} - t_{144} - t_{1444} \cdots - t_3 - t_{35} - t_{355} - t_{3555} \cdots$$

The infinite alphabet $\mathcal{A} = \{1, 14, 144, 1444 \cdots 3, 35, 355, 3555 \cdots\}$ is a consequence of the exclusion of the fixed point(s) x_4 , x_5 . As is customary in such situations (see sect. 22.3.1, exercise 18.10, and chapter 22, inter alia), we deal with this by dividing out the undesired fixed point from the dynamical zeta function. We can factorize and resum the weights using the piecewise linearity of (25.9)

↑

$$1/\zeta = 1 - \frac{t_1}{1 - t_4} - \frac{t_3}{1 - t_5}.$$

The diffusion constant is now most conveniently evaluated by evaluating the partial derivatives of $1/\zeta$ as in (18.19)

$$\langle T \rangle_{\zeta} = -z \frac{\partial}{\partial z} \frac{1}{\zeta} = 2 \left(\frac{t_1}{1 - t_4} + \frac{t_1 t_4}{(1 - t_4)^2} \right) \Big|_{z=1,\beta=0} = \frac{3}{4}$$

$$\langle \hat{x}^2 \rangle_{\zeta} \Big|_{z=1,\beta=0} = 2 \left(\frac{\hat{n}_1 (\hat{n}_1 + \hat{n}_4) \Lambda^2}{(1 - 1/\Lambda)^2} + 2 \frac{\hat{n}_4^2 / \Lambda^3}{(1 - 1/\Lambda)^3} \right) = \frac{1}{2}$$
(S.66)

yielding D = 1/3, in agreement with in (25.21) for $\Lambda = 3$.

Solution 25.6 - Accelerated diffusion. SUGGESTED STEPS

1. Show that the condition assuring that a trajectory indexed by (ϕ, α) hits the (m, n) disk (all other disks being transparent) is written as

$$\left|\frac{d_{m,n}}{R}\sin\left(\phi - \alpha - \theta_{m,n}\right) + \sin\alpha\right| \le 1$$
(S.67)

where $d_{m,n} = \sqrt{m^2 + n^2}$ and $\theta_{m,n} = \arctan(n/m)$. You can then use a small R expansion of (S.67).

2. Now call j_n the portion of the state space leading to a first collision with disk (n,1) (take into account screening by disks (1,0) or (n-1,1)). Denote by $J_n = \bigcup_{k=n+1}^{\infty} j_k$ and show that $J_n \sim 1/n^2$, from which the result for the distribution function follows.