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Recycle... It’s the Law!
Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (17.9) and
dynamical zeta functions (17.15) are really only a shorthand notation
- the zeros of the individual factors are not the zeros of the zeta func-
tion, and convergence of such objects is far from obvious. Now we
shall give meaning to the dynamical zeta functions and spectral deter-
minants by expanding them as cycle expansions, series representations
ordered by increasing topological cycle length, with products in (17.9),
(17.15) expanded as sums over pseudocycles, products of tp’s. The zeros
of correctly truncated cycle expansions yield the desired eigenvalues,
and the expectation values of observables are given by the cycle aver-
aging formulas obtained from the partial derivatives of dynamical zeta
functions (or spectral determinants).

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (17.15) evaluated? We start by
computing the lengths and stability eigenvalues of the shortest cycles.
This always requires numerical work, such as the Newton’s method
searches for periodic solutions; we shall assume that the numerics is
under control, and that all short cycles up to a given (topological) length
have been found. Examples of the data required for application of peri-
odic orbit formulas are the lists of cycles given in Tables 20.3 and ??. It is
important not to miss any short cycles, as the calculation is as accurate
as the shortest cycle dropped - including cycles longer than the short-
est omitted does not improve the accuracy (more precisely, improves it,
but painfully slowly).

Expand the dynamical zeta function (17.15) as a formal power series,

1/ζ =
∏
p

(1 − tp) = 1 −
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk

(18.1)

where the prime on the sum indicates that the sum is over all distinct
non-repeating combinations of prime cycles. As we shall frequently use
such sums, let us denote by tπ = (−1)k+1tp1tp2 . . . tpk

an element of the
set of all distinct products of the prime cycle weights tp. The formal
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power series (18.1) is now compactly written as

1/ζ = 1 −
∑′

π

tπ . (18.2)

For k > 1, tπ are weights of pseudocycles; they are sequences of shorter
cycles that shadow a cycle with the symbol sequence p1p2 . . . pk along
segments p1, p2, . . ., pk.

∑′ denotes the restricted sum, for which any
given prime cycle p contributes at most once to a given pseudocycle
weight tπ.

The pseudocycle weight, i.e., the product of weights (17.10) of prime
cycles comprising the pseudocycle,

tπ = (−1)k+1 1
|Λπ|e

βAπ−sTπ znπ , (18.3)

depends on the pseudocycle topological length nπ, integrated observ-
able Aπ, period Tπ, and stability Λπ

nπ = np1 + . . . + npk
, Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk
, Λπ = Λp1Λp2 · · ·Λpk

. (18.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used
interchangeably; while “periodic orbit” is more precise, “cycle” (which
has many other uses in mathematics) is easier on the ear than “pseudo-
periodic-orbit.” While in Soviet times acronyms were a rage (and in
France they remain so), we shy away from acronyms such as UPOs
(Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described
by a complete binary symbolic dynamics. In this case the Euler product
(17.15) is given by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (18.5)
(1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)
(1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see Table 10.1), and the first few terms of the expansion (18.2) ordered
by increasing total pseudocycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1

−t0t01t1 − . . . (18.6)

We refer to such series representation of a dynamical zeta function or
a spectral determinant, expanded as a sum over pseudocycles, and or-
dered by increasing cycle length and instability, as a cycle expansion.
recycle - 30aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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The next step is the key step: regroup the terms into the dominant
fundamental contributions tf and the decreasing curvature corrections
ĉn, each ĉn split into prime cycles p of length np=n grouped together
with pseudocycles whose full itineraries build up the itinerary of p. For
the binary case this regrouping is given by

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)]− [(t001 − t01t0) + (t011 − t01t1)]
−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)] − . . .

= 1 −
∑

f

tf −
∑

n

ĉn . (18.7)

All terms in this expansion up to length np = 6 are given in Table 18.1.
We refer to such regrouped series as curvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle
expansions is possible only for dynamical systems whose symbolic dy-
namics has finite grammar. The fundamental cycles t0, t1 have no
shorter approximants; they are the “building blocks” of the dynam-
ics in the sense that all longer orbits can be approximately pieced to-
gether from them. The fundamental part of a cycle expansion is given
by the sum of the products of all non-intersecting loops of the associ-
ated Markov graph. The terms grouped in brackets are the curva- ⇒ Section 13.3

⇒ Section 18.4
ture corrections; the terms grouped in parenthesis are combinations of
longer cycles and corresponding sequences of “shadowing” pseudocy-
cles. If all orbits are weighted equally (tp = znp), such combinations
cancel exactly, and the dynamical zeta function reduces to the topolog-
ical polynomial (13.21). If the flow is continuous and smooth, orbits of
similar symbolic dynamics will traverse the same neighborhoods and
will have similar weights, and the weights in such combinations will al-
most cancel. The utility of cycle expansions of dynamical zeta functions
and spectral determinants, lies precisely in this organization into nearly
canceling combinations: cycle expansions are dominated by short cy-
cles, with long cycles giving exponentially decaying corrections.

In the case where we know of no finite grammar symbolic dynam-
ics that would help us organize the cycles, the best thing to use is a
stability cutoff which we shall discuss in Section 18.5. The idea is to
truncate the cycle expansion by including only the pseudocycles such
that |Λp1 · · ·Λpk

| ≤ Λmax, with the cutoff Λmax equal to or greater than
the most unstable Λp in the data set.

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numeri-
cally by first computing the weights tp = tp(β, s) of all prime cycles
p of topological length np ≤ N for given fixed β and s. Denote by
subscript (i) the ith prime cycle computed, ordered by the topological
ChaosBook.org version11.9.2, Aug 21 2007 recycle - 30aug2006



270 CHAPTER 18. CYCLE EXPANSIONS

- t0
- t1

- t10 + t1t0

- t100 + t10t0
- t101 + t10t1

- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1

- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1

- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

Table 18.1 The binary curvature expansion (18.7) up to length 6, listed in such
way that the sum of terms along the pth horizontal line is the curvature ĉp
associated with a prime cycle p, or a combination of prime cycles such as the
t100101 + t100110 pair.
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18.2. CONSTRUCTION OF CYCLE EXPANSIONS 271

length n(i) ≤ n(i+1). The dynamical zeta function 1/ζN truncated to the
np ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1 − t(i)z
n(i)) , (18.8)

and truncating the expansion at each step to a finite polynomial in zn,
n ≤ N . The result is the N th order polynomial approximation

1/ζN = 1−
N∑

n=1

cnzn . (18.9)

In other words, a cycle expansion is a Taylor expansion in the dummy
variable z raised to the topological cycle length. If both the number of
cycles and their individual weights grow not faster than exponentially
with the cycle length, and we multiply the weight of each cycle p by a
factor znp , the cycle expansion converges for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of
(18.9) as function of z yields the leading eigenvalue of the appropriate
evolution operator. For continuous time flows, z is a dummy variable
that we set to z = 1, and the leading eigenvalue of the evolution opera-
tor is given by the leading zero of (18.9) as function of s.

18.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det (1−Mp1p2) �= det (1−Mp1) det (1−Mp2) ,

the cycle expansions for the spectral determinant (17.9) are somewhat
less transparent than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectral determin-
ant by computing recursively the trace formula (16.10) truncated to all
prime cycles p and their repeats such that npr ≤ N :

tr
zL

1 − zL
∣∣∣∣
(i)

= tr
zL

1 − zL
∣∣∣∣
(i−1)

+ n(i)

n(i)r≤N∑
r=1

e(β·A(i)−sT(i))r∣∣∣∏(
1 − Λr

(i),j

)∣∣∣zn(i)r

tr
zL

1 − zL
∣∣∣∣
N

=
N∑

n=1

Cnzn , Cn = trLn . (18.10)

This is done numerically: the periodic orbit data set consists of the list
of the cycle periods Tp, the cycle stability eigenvalues Λp,1, Λp,2, . . . , Λp,d,
and the cycle averages of the observable Ap for all prime cycles p such
that np ≤ N . The coefficient of znpr is then evaluated numerically for
the given (β, s) parameter values. Now that we have an expansion for
the trace formula (16.9) as a power series, we compute the N th order
approximation to the spectral determinant (17.3),

det (1 − zL)|N = 1 −
N∑

n=1

Qnzn , Qn = nth cumulant , (18.11)

ChaosBook.org version11.9.2, Aug 21 2007 recycle - 30aug2006
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as follows. The logarithmic derivative relation (17.4) yields(
tr

zL
1 − zL

)
det (1 − zL) = −z

d

dz
det (1 − zL)

(C1z + C2z
2 + · · ·)(1 −Q1z −Q2z

2 − · · ·) = Q1z + 2Q2z
2 + 3Q3z

3 · · ·

so the nth order term of the spectral determinant cycle (or in this case,
the cumulant) expansion is given recursively by the trace formula ex-
pansion coefficients

Qn =
1
n

(Cn − Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (18.12)

Given the trace formula (18.10) truncated to zN , we now also have the
spectral determinant truncated to zN .

The same program can also be reused to compute the dynamical zeta
function cycle expansion (18.9), by replacing

∏(
1 − Λr

(i),j

)
in (18.10)

by the product of expanding eigenvalues Λ(i) =
∏

e Λ(i),e (see Sec-
tion 17.3).

The calculation of the leading eigenvalue of a given continuous flow
evolution operator is now straightforward. After the prime cycles and
the pseudocycles have been grouped into subsets of equal topological
length, the dummy variable can be set equal to z = 1. With z = 1,
expansion (18.11) is the cycle expansion for (17.6), the spectral deter-
minant det (s − A) . We vary s in cycle weights, and determine the
eigenvalue sα by finding s = sα for which (18.11) vanishes. As an
example, the convergence of a leading eigenvalue for a nice hyperbolic
system is illustrated in Table 18.2 by the listing of pinball escape rate γ
estimates computed from truncations of (18.7) and (18.11) to different
maximal cycle lengths.

The pleasant surprise is that the coefficients in these cycle expansions
can be proven to fall off exponentially or even faster, due to analyticityChapter ??

of det (s − A) or 1/ζ(s) for s values well beyond those for which the
corresponding trace formula diverges.

18.2.3 Newton algorithm for determination of the
evolution operator eigenvalues

The cycle expansions of spectral determinants yield the eigen-
values of the evolution operator beyond the leading one. A convenient
way to search for these is by plotting either the absolute magnitude
ln |det (s − A)| or the phase of spectral determinants and dynamical
zeta functions as functions of the complex variable s. The eye is guided
to the zeros of spectral determinants and dynamical zeta functions by
means of complex s plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different
colors; zeros emerge as centers of elliptic neighborhoods of rapidly
changing colors. Detailed scans of the whole area of the complex s
recycle - 30aug2006 ChaosBook.org version11.9.2, Aug 21 2007
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R:a N . det (s−A) 1/ζ(s) 1/ζ(s)3-disk

1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192

1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606

Table 18.2 3-disk repeller escape rates computed from the cycle expansions of the
spectral determinant (17.6) and the dynamical zeta function (17.15), as function
of the maximal cycle length N . The first column indicates the disk-disk center
separation to disk radius ratio R:a, the second column gives the maximal cycle
length used, and the third the estimate of the classical escape rate from the fun-
damental domain spectral determinant cycle expansion. As for larger disk-disk
separations the dynamics is more uniform, the convergence is better forR:a = 6
than forR:a = 3. For comparison, the fourth column lists a few estimates from
from the fundamental domain dynamical zeta function cycle expansion (18.7),
and the fifth from the full 3-disk cycle expansion (18.36). The convergence of
the fundamental domain dynamical zeta function is significantly slower than
the convergence of the corresponding spectral determinant, and the full (un-
factorized) 3-disk dynamical zeta function has still poorer convergence. (P.E.
Rosenqvist.)
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274 CHAPTER 18. CYCLE EXPANSIONS

Fig. 18.1 Examples of the complex s plane
scans: contour plots of the logarithm of
the absolute values of (a) 1/ζ(s), (b) spec-
tral determinant det (s − A) for the 3-
disk system, separation a : R = 6, A1

subspace are evaluated numerically. The
eigenvalues of the evolution operator L
are given by the centers of elliptic neigh-
borhoods of the rapidly narrowing rings.
While the dynamical zeta function is an-
alytic on a strip 	s ≥ −1, the spectral
determinant is entire and reveals further
families of zeros. (P.E. Rosenqvist)

plane under investigation and searches for the zeros of spectral deter-
minants, Fig. 18.1, reveal complicated patterns of resonances even for
something so simple as the 3-disk game of pinball. With a good starting
guess (such as a location of a zero suggested by the complex s scan of
Fig. 18.1), a zero 1/ζ(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (12.4), with
the mth Newton estimate given by

sm+1 = sm −
(

ζ(sm)
∂

∂s
ζ−1(sm)

)−1

= sm − 1/ζ(sm)
〈T〉ζ

. (18.13)

The dominator 〈T〉ζ required for the Newton iteration is given below,
by the cycle expansion (18.22). We need to evaluate it anyhow, as 〈T〉ζ
enters our cycle averaging formulas.

18.3 Cycle formulas for dynamical averages

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

Fig. 18.2 The eigenvalue condition is sat-
isfied on the curve F = 0 the (β, s) plane.
The expectation value of the observable
(15.12) is given by the slope of the curve.

The eigenvalue condition in any of the three forms that we have given
so far - the level sum (??), the dynamical zeta function (18.2), the spec-
tral determinant (18.11):

1 =
(n)∑
i

ti , ti = ti(β, s(β)) , ni = n , (18.14)

0 = 1 −
∑′

π

tπ , tπ = tπ(z, β, s(β)) (18.15)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (18.16)

is an implicit equation for the eigenvalue s = s(β) of form F (β, s(β)) =
0. The eigenvalue s = s(β) as a function of β is sketched in Fig. 18.2;
the eigenvalue condition is satisfied on the curve F = 0. The cycle av-
eraging formulas for the slope and the curvature of s(β) are obtained as
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in (15.12) by taking derivatives of the eigenvalue condition. Evaluated
along F = 0, the first derivative leads to

0 =
d

dβ
F (β, s(β))

=
∂F

∂β
+

ds

dβ

∂F

∂s

∣∣∣∣
s=s(β)

=⇒ ds

dβ
= −∂F

∂β
/
∂F

∂s
, (18.17)

and the second derivative of F (β, s(β)) = 0 yields

d2s

dβ2
= −

[
∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+
(

ds

dβ

)2
∂2F

∂s2

]
/
∂F

∂s
. (18.18)

Denoting by

〈A〉F = − ∂F

∂β

∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F

∂s

∣∣∣∣
β,s=s(β)

,

〈
(A − 〈A〉)2〉

F
=

∂2F

∂β2

∣∣∣∣
β,s=s(β)

(18.19)

respectively the mean cycle expectation value of A, the mean cycle pe-
riod, and the second derivative of F computed for F (β, s(β)) = 0, we
obtain the cycle averaging formulas for the expectation value of the ob-
servable (15.12), and its variance:

〈a〉 =
〈A〉F
〈T〉F

(18.20)

〈
(a − 〈a〉)2〉 =

1
〈T〉F

〈
(A − 〈A〉)2〉

F
. (18.21)

These formulas are the central result of the periodic orbit theory. As
we shall now show, for each choice of the eigenvalue condition function
F (β, s) in (??), (18.2) and (18.11), the above quantities have explicit cycle
expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (18.15), the cycle averaging
formulas (18.17), (18.21) require evaluation of the derivatives of dyn-
amical zeta function at a given eigenvalue. Substituting the cycle ex-
pansion (18.2) for dynamical zeta function we obtain

〈A〉ζ := − ∂

∂β

1
ζ

=
∑′

Aπtπ (18.22)

〈T〉ζ :=
∂

∂s

1
ζ

=
∑′

Tπtπ , 〈n〉ζ := −z
∂

∂z

1
ζ

=
∑′

nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function av-
erage over prime cycles, Aπ, Tπ, and nπ are evaluated on pseudocycles
ChaosBook.org version11.9.2, Aug 21 2007 recycle - 30aug2006
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(18.4), and pseudocycle weights tπ = tπ(z, β, s(β)) are evaluated at the
eigenvalue s(β). In most applications β = 0, and s(β) of interest is
typically the leading eigenvalue s0 = s0(0) of the evolution generator
A.

For bounded flows the leading eigenvalue (the escape rate) vanishes,
s(0) = 0, the exponent βAπ − sTπ in (18.3) vanishes, so the cycle expan-
sions take a simple form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · ·+ Apk

|Λp1 · · ·Λpk
| , (18.23)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary sym-
bolic dynamics the mean cycle period 〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0| +
T1

|Λ1| +
(

T01

|Λ01| −
T0 + T1

|Λ0Λ1|
)

(18.24)

+
(

T001

|Λ001| −
T01 + T0

|Λ01Λ0|
)

+
(

T011

|Λ011| −
T01 + T1

|Λ01Λ1|
)

+ . . . .

Note that the cycle expansions for averages are grouped into the same
shadowing combinations as the dynamical zeta function cycle expan-
sion (18.7), with nearby pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observ-
able 〈a〉 follow by substitution into (18.21). Assuming zero mean drift
〈a〉 = 0, the cycle expansion (18.11) for the variance

〈
(A − 〈A〉)2〉

ζ
is

given by

〈
A2
〉

ζ
=
∑′

(−1)k+1 (Ap1 + Ap2 · · · + Apk
)2

|Λp1 · · ·Λpk
| . (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly sim-
ple structure, with the shadowing apparent already by a term-by-term
inspection of Table 18.2. For “nice” hyperbolic systems the shadowing
ensures exponential convergence of the dynamical zeta function cycle
expansions. This, however, is not the best achievable convergence. As
has been explained in Chapter ??, for such systems the spectral det-
erminant constructed from the same cycle data base is entire, and its
cycle expansion converges faster than exponentially. In practice, the
best convergence is attained by the spectral determinant cycle expan-
sion (18.16) and its derivatives. The ∂/∂s, ∂/∂β derivatives are in this
case computed recursively, by taking derivatives of the spectral deter-
minant cycle expansion contributions (18.12) and (18.10).

The cycle averaging formulas are exact, and highly convergent for
nice hyperbolic dynamical systems. An example of its utility is the cy-
cle expansion formula for the Lyapunov exponent of Example 18.1. Fur-
ther applications of cycle expansions will be discussed in Chapter ??.
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18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a
flow, in continuous time, and sometimes it might be easier to compute it
in discrete time, from a Poincaré return map. Return times (3.1) might
vary wildly, and it is not at all clear that the continuous and discrete
time averages are related in any simple way. The relationship turns on
to be both elegantly simple, and totally general.

The mean cycle period 〈T〉ζ fixes the normalization of the unit of
time; it can be interpreted as the average near recurrence or the average
first return time. For example, if we have evaluated a billiard expecta-
tion value 〈a〉 in terms of continuous time, and would like to also have
the corresponding average 〈a〉dscr measured in discrete time, given by
the number of reflections off billiard walls, the two averages are related
by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (18.26)

where 〈n〉ζ is the average of the number of bounces np along the cycle
p.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In Section 15.3 we defined the Lyapunov exponent for a 1-d mapping, re-
lated it to the leading eigenvalue of an evolution operator and promised to
evaluate it. Now we are finally in position to deliver on our promise.
The cycle averaging formula (18.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1

〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (18.27)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (??)
exp(γnp)/|Λp|, where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such as
our game of pinball there is only one expanding eigenvalue and (18.27)
applies as it stands.

in depth:

Chapter ??, p. ??

18.4 Cycle expansions for finite alphabets

A finite Markov graph like the one given in Fig. 13.3.1 (d) is a
compact encoding of the transition or the Markov matrix for a given
subshift. It is a sparse matrix, and the associated determinant (13.17)
can be written down by inspection: it is the sum of all possible par-
titions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1−T ) = 1− t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001 (18.28)
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The simplest application of this determinant is to the evaluation of the
topological entropy; if we set tp = znp , where np is the length of the
p-cycle, the determinant reduces to the topological polynomial (13.18).

The determinant (18.28) is exact for the finite graph Fig. 13.3.1 (e), as
well as for the associated finite-dimensional transfer operator of Exam-
ple 15.1. For the associated (infinite dimensional) evolution operator, it
is the beginning of the cycle expansion of the corresponding dynamical
zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . .(18.29)

The cycles 0, 0001 and 0011 are the fundamental cycles introduced in
(18.7); they are not shadowed by any combinations of shorter cycles,
and are the basic building blocks of the dynamics. All other cycles
appear together with their shadows (for example, the t00011 − t0t0011
combination) and yield exponentially small corrections for hyperbolic
systems.

For the cycle counting purposes both tab and the pseudocycle com-
bination ta+b = tatb in (18.2) have the same weight zna+nb , so all cur-
vature combinations tab − tatb vanish exactly, and the topological poly-
nomial (13.21) offers a quick way of checking the fundamental part of a
cycle expansion.

Since for finite grammars the topological zeta functions reduce to
polynomials, we are assured that there are just a few fundamental cy-
cles and that all long cycles can be grouped into curvature combina-
tions. For example, the fundamental cycles in Exercise 9.2 are the three
2-cycles which bounce back and forth between two disks and the two
3-cycles which visit every disk. It is only after these fundamental cycles
have been included that a cycle expansion is expected to start converg-
ing smoothly, i.e., only for n larger than the lengths of the fundamen-
tal cycles are the curvatures ĉn (in expansion (18.7)), a measure of the
deviations between long orbits and their short cycle approximants, ex-
pected to fall off rapidly with n.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not even the
first chance.
John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, so at any
order in z a cycle expansion may contain unmatched terms which do
not fit neatly into the almost cancelling curvature corrections. Similarly,
for intermittent systems that we shall discuss in Chapter ??, curvature
corrections are in general not small, so again the cycle expansions may
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converge slowly. For such systems schemes which collect the pseudo-
cycle terms according to some criterion other than the topology of the
flow may converge more quickly than expansions based on the topo-
logical length.

All chaotic systems exhibit some degree of shadowing, and a good
truncation criterion should do its best to respect the shadowing at least
approximately. If a long cycle is shadowed by two or more shorter
cycles and the flow is smooth, the period and the action will be addi-
tive in sense that the period of the longer cycle is approximately the
sum of the shorter cycle periods. Similarly, stability is multiplicative,
so shadowing is approximately preserved by including all terms with
pseudocycle stability

|Λp1 · · ·Λpk
| ≤ Λmax (18.30)

and ignoring all more unstable pseudocycles.
Two such schemes for ordering cycle expansions which approximately

respect shadowing are truncations by the pseudocycle period (or ac-
tion) and the stability ordering that we shall discuss here. In these
schemes a dynamical zeta function or a spectral determinant is expanded
keeping all terms for which the period, action or stability for a combi-
nation of cycles (pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to
the ordering by topological cycle length are the cases of bad grammar
and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the state space
generates the “optimal” symbolic dynamics. Stability ordering does
not require understanding dynamics in such detail: if you can find the
cycles, you can use stability ordered cycle expansions. Stability trun-
cation is thus easier to implement for a generic dynamical system than
the curvature expansions (18.7) which rely on finite subshift approxi-
mations to a given flow.

Cycles can be detected numerically by searching a long trajectory for
near recurrences. The long trajectory method for detecting cycles pref-
erentially finds the least unstable cycles, regardless of their topological
length. Another practical advantage of the method (in contrast to New-
ton method searches) is that it only finds cycles in a given connected
ergodic component of state space, ignoring isolated cycles or other er-
godic regions elsewhere in the state space.

Why should stability ordered cycle expansion of a dynamical zeta
function converge better than the rude trace formula (??)? The argu-
ment has essentially already been laid out in Section 13.7: in truncations
that respect shadowing most of the pseudocycles appear in shadowing
combinations and nearly cancel, while only the relatively small subset
affected by the longer and longer pruning rules is not shadowed. So
the error is typically of the order of 1/Λ, smaller by factor ehT than
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the trace formula (??) error, where h is the entropy and T typical cycle
length for cycles of stability Λ.

18.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further
comment. Partial shadowing which may be present can be (partially)
restored by smoothing the stability ordered cycle expansions by re-
placing the 1/Λ weight for each term with pseudocycle stability Λ =
Λp1 · · ·Λpk

by f(Λ)/Λ. Here, f(Λ) is a monotonically decreasing func-
tion from f(0) = 1 to f(Λmax) = 0. No smoothing corresponds to a step
function.

A typical “shadowing error” induced by the cutoff is due to two
pseudocycles of stability Λ separated by ΔΛ, and whose contribution is
of opposite signs. Ignoring possible weighting factors the magnitude of
the resulting term is of order 1/Λ−1/(Λ+ΔΛ) ≈ ΔΛ/Λ2. With smooth-
ing there is an extra term of the form f ′(Λ)ΔΛ/Λ, which we want to
minimise. A reasonable guess might be to keep f ′(Λ)/Λ constant and
as small as possible, that is

f(Λ) = 1 −
(

Λ
Λmax

)2

The results of a stability ordered expansion (18.30) should always
be tested for robustness by varying the cutoff Λmax. If this introduces
significant variations, smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to
a cycle expansion than short but highly unstable cycles. In such situ-
ation truncation by length may require an exponentially large number
of very unstable cycles before a significant longer cycle is first included
in the expansion. This situation is best illustrated by intermittent maps
that we shall study in detail in Chapter ??, the simplest of which is the
Farey map

f(x) =
{

f0 = x/(1 − x) 0 ≤ x ≤ 1/2
f1 = (1 − x)/x 1/2 ≤ x ≤ 1 ,

(18.31)

a map which will reappear in the intermittency Chapter ??, and in
Chapter ??, in context of circle maps.

For this map the symbolic dynamics is of complete binary type, so
lack of shadowing is not due to lack of a finite grammar, but rather to
the intermittency caused by the existence of the marginal fixed point
x0 = 0, for which the stability equals Λ0 = 1. This fixed point does not
participate directly in the dynamics and is omitted from cycle expan-
sions. Its presence is felt in the stabilities of neighboring cycles with
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Fig. 18.3 Comparison of cycle expansion truncation schemes for the Farey map (18.31);
the deviation of the truncated cycles expansion for |1/ζN (0)| from the exact flow con-
servation value 1/ζ(0) = 0 is a measure of the accuracy of the truncation. The jagged
line is logarithm of the stability ordering truncation error; the smooth line is smoothed
according to Section 18.5.2; the diamonds indicate the error due the topological length
truncation, with the maximal cycle length N shown. They are placed along the stability
cutoff axis at points determined by the condition that the total number of cycles is the
same for both truncation schemes.

n consecutive repeats of the symbol 0’s whose stability falls of only as
Λ ∼ n2, in contrast to the most unstable cycles with n consecutive 1’s
which are exponentially unstable, |Λ01n | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count
in the style of Section 13.5.2 leads to a total of 74,248,450 prime cycles
of length 30 or less, not including the marginal point x0 = 0. Evalu-
ating a cycle expansion to this order would be no mean computational
feat. However, the least unstable cycle omitted has stability of roughly
Λ1030 ∼ 302 = 900, and so amounts to a 0.1% correction. The situation
may be much worse than this estimate suggests, because the next, 1031

cycle contributes a similar amount, and could easily reinforce the error.
Adding up all such omitted terms, we arrive at an estimated error of
about 3%, for a cycle-length truncated cycle expansion based on more
than 109 pseudocycle terms! On the other hand, truncating by stability
at say Λmax = 3000, only 409 prime cycles suffice to attain the same
accuracy of about 3% error, Fig. 18.5.3.

As the Farey map maps the unit interval onto itself, the leading eigen-
value of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) =
0. Deviation from this exact result serves as an indication of the con-
vergence of a given cycle expansion. The errors of different truncation
schemes are indicated in Fig. 18.5.3. We see that topological length trun-
cation schemes are hopelessly bad in this case; stability length trunca-
tions are somewhat better, but still rather bad. In simple cases like this
one, where intermittency is caused by a single marginal fixed point, the
convergence can be improved by going to infinite alphabets.
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18.6 Dirichlet series

The most patient reader will thank me for compressing so much
nonsense and falsehood into a few lines.
Gibbon

A Dirichlet series is defined as

f(s) =
∞∑

j=1

aje
−λjs (18.32)

where s, aj are complex numbers, and {λj} is a monotonically increas-
ing series of real numbers λ1 < λ2 < · · · < λj < · · ·. A classical exam-
ple of a Dirichlet series is the Riemann zeta function for which aj = 1,
λj = ln j. In the present context, formal series over individual pseudo-
cycles such as (18.2) ordered by the increasing pseudocycle periods are
often Dirichlet series. For example, for the pseudocycle weight (18.3),
the Dirichlet series is obtained by ordering pseudocycles by increasing
periods λπ = Tp1 + Tp2 + . . . + Tpk

, with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk

)

|Λp1Λp2 . . . Λpk
| dπ ,

where dπ is a degeneracy factor, in the case that dπ pseudocycles have
the same weight.

If the series
∑ |aj | diverges, the Dirichlet series is absolutely conver-

gent for �s > σa and conditionally convergent for �s > σc, where σa is
the abscissa of absolute convergence

σa = lim
N→∞

sup
1

λN
ln

N∑
j=1

|aj | , (18.33)

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1

λN
ln

∣∣∣∣∣∣
N∑

j=1

aj

∣∣∣∣∣∣ . (18.34)

We shall encounter another example of a Dirichlet series in the semi-
classical quantization Chapter ??, where the inverse Planck constant is
a complex variable s = i/�, λπ = Sp1 + Sp2 + . . . + Spk

is the pseudo-
cycle action, and aπ = 1/

√|Λp1Λp2 . . . Λpk
| (times possible degeneracy

and topological phase factors). As the action is in general not a lin-
ear function of energy (except for billiards and for scaling potentials,
where a variable s can be extracted from Sp), semiclassical cycle expan-
sions are Dirichlet series in variable s = i/� but not in E, the complex
energy variable.
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Summary

A cycle expansion is a series representation of a dynamical zeta func-
tion, trace formula or a spectral determinant, with products in (17.15),
(??) expanded as sums over pseudocycles, products of the prime cycle
weights tp.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a
subshift of finite type), the dynamical zeta functions are holomorphic,
the spectral determinants are entire, and the spectrum of the evolu-
tion operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no “abscissa of
absolute convergence” and no “entropy barier”, the exponential pro-
liferation of cycles is no problem, spectral determinants are entire and
converge everywhere, and the topology dictates the choice of cycles to
be used in cycle expansion truncations.

In that case, the basic observation is that the motion in dynamical
systems of few degrees of freedom is in this case organized around a
few fundamental cycles, with the cycle expansion of the Euler product

1/ζ = 1 −
∑

f

tf −
∑

n

ĉn,

regrouped into dominant fundamental contributions tf and decreasing
curvature corrections ĉn. The fundamental cycles tf have no shorter
approximants; they are the “building blocks” of the dynamics in the
sense that all longer orbits can be approximately pieced together from
them. A typical curvature contribution to ĉn is a difference of a long
cycle {ab} minus its shadowing approximation by shorter cycles {a}
and {b}:

tab − tatb = tab(1 − tatb/tab)

The orbits that follow the same symbolic dynamics, such as {ab} and a
“pseudocycle” {a}{b}, lie close to each other, have similar weights, and
for longer and longer orbits the curvature corrections fall off rapidly.
Indeed, for systems that satisfy the “axiom A” requirements, such as
the 3-disk billiard, curvature expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle pe-
riods, stabilities and integrated observable computed, the cycle aver-
aging formulas such as the ones associated with the dynamical zeta
function

〈a〉 = 〈A〉ζ / 〈T〉ζ
〈A〉ζ = − ∂

∂β

1
ζ

=
∑′

Aπtπ , 〈T〉ζ =
∂

∂s

1
ζ

=
∑′

Tπtπ

yield the expectation value (the chaotic, ergodic average over the non-
wandering set) of the observable a(x).
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Further reading

Pseudocycle expansions. Bowen’s introduction of shad-
owing ε-pseudoorbits [23] was a significant contribution
to Smale’s theory. Expression “pseudoorbits” seems to
have been introduced in the Parry and Pollicott’s 1983 pa-
per [5]. Following them M. Berry [9] had used the expres-
sion “pseudoorbits” in his 1986 paper on Riemann zeta
and quantum chaos. Cycle and curvature expansions of
dynamical zeta functions and spectral determinants were
introduced in Refs. [10, 2]. Some literature [14] refers to
the pseudoorbits as “composite orbits”, and to the cycle
expansions as “Dirichlet series” (see also Remark 18.6 and
Section 18.6).

Cumulant expansion. To a statistical mechanician
the curvature expansions are very reminiscent of cumu-
lant expansions. Indeed, (18.12) is the standard Plemelj-
Smithies cumulant formula (??) for the Fredholm determi-
nant, discussed in more detail in Appendix ??. The dif-
ference is that in cycle expansions each Qn coefficient is
expressed as a sum over exponentially many cycles.

Exponential growth of the number of cycles. Go-
ing from Nn ≈ Nn periodic points of length n to Mn

prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (Chap-
ter ??) reduces the number of nth level terms by another
factor. While the reformulation of the theory from the
trace (16.28) to the cycle expansion (18.7) thus does not
eliminate the exponential growth in the number of cycles,
in practice only the shortest cycles are used, and for them
the computational labor saving can be significant.

Shadowing cycle-by-cycle. A glance at the low
order curvatures in the Table 18.1 leads to the tempta-
tion of associating curvatures to individual cycles, such
as ĉ0001 = t0001 − t0t001. Such combinations tend to be nu-

merically small (see for example Ref. [3], table 1). How-
ever, splitting ĉn into individual cycle curvatures is not
possible in general [20]; the first example of such ambigu-
ity in the binary cycle expansion is given by the t100101,
t100110 0 ↔ 1 symmetric pair of 6-cycles; the counterterm
t001t011 in Table 18.1 is shared by the two cycles.

Stability ordering. The stability ordering was intro-
duced by Dahlqvist and Russberg [12] in a study of chaotic
dynamics for the (x2y2)1/a potential. The presentation
here runs along the lines of Dettmann and Morriss [13]
for the Lorentz gas which is hyperbolic but the sym-
bolic dynamics is highly pruned, and Dettmann and Cvi-
tanović [14] for a family of intermittent maps. In the appli-
cations discussed in the above papers, the stability order-
ing yields a considerable improvement over the topologi-
cal length ordering. In quantum chaos applications cycle
expansion cancelations are affected by the phases of pseu-
docycles (their actions), hence period ordering rather than
stability is frequently employed.

Are cycle expansions Dirichlet series?
Even though some literature [14] refers to cycle expan-

sions as “Dirichlet series”, they are not Dirichlet series.
Cycle expansions collect contributions of individual cycles
into groups that correspond to the coefficients in cumu-
lant expansions of spectral determinants, and the conver-
gence of cycle expansions is controlled by general prop-
erties of spectral determinants. Dirichlet series order cy-
cles by their periods or actions, and are only conditionally
convergent in regions of interest. The abscissa of absolute
convergence is in this context called the “entropy barrier”;
contrary to the frequently voiced anxieties, this number
does not necessarily has much to do with the actual con-
vergence of the theory.
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Exercises

(18.1) Cycle expansions. Write programs that imple-
ment binary symbolic dynamics cycle expansions
for (a) dynamical zeta functions, (b) spectral deter-
minants. Combined with the cycles computed for
a 2-branch repeller or a 3-disk system they will be
useful in problem that follow.

(18.2) Escape rate for a 1-d repeller. (Continuation of
Exercise 17.1 - easy, but long)
Consider again the quadratic map (17.31)

f(x) = Ax(1 − x)

on the unit interval, for definitiveness take A = 6.
Describing the itinerary of any trajectory by the bi-
nary alphabet {0, 1} (’0’ if the iterate is in the first
half of the interval and ’1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph of f and determine its two
fixed points 0 and 1, together with their stabil-
ities.

(b) Sketch the two branches of f−1. Determine
all the prime cycles up to topological length
4 using your pocket calculator and backwards
iteration of f (see Section 12.2.1).

(c) Determine the leading zero of the zeta func-
tion (17.15) using the weigths tp = znp/|Λp|
where Λp is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of
the repeller is 0.361509 . . . using the spectral
determinant, with the same cycle weight. If
you have taken A = 6, the escape rate is
in 0.83149298 . . ., as shown in Solution 18.2.
Compare the coefficients of the spectral det-
erminant and the zeta function cycle expan-
sions. Which expansion converges faster?

(Per Rosenqvist)
(18.3) Escape rate for the Ulam map. (medium) We will

try to compute the escape rate for the Ulam map
(12.22)

f(x) = 4x(1 − x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show that Λ0 = 4, Λ1 = −2, Λ01 = −4,
Λ001 = −8 and Λ011 = 8.

(b) Show that

Λε1...εn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function
for this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as func-
tion of the truncation cycle length is slow. Try
to fix that by treating the Λ0 = 4 cycle sepa-
rately.

(18.4) Pinball escape rate, semi-analytical. Estimate the
3-disk pinball escape rate for R : a = 6 by substi-
tuting analytical cycle stabilities and periods (Exer-
cise 9.3 and Exercise 9.4) into the appropriate binary
cycle expansion. Compare with the numerical esti-
mate Exercise 15.3

(18.5) Pinball escape rate, from numerical cycles. Com-
pute the escape rate for R : a = 6 3-disk pinball by
substituting list of numerically computed cycle sta-
bilities of Exercise 12.5 into the binary cycle expan-
sion.

(18.6) Pinball resonances, in the complex plane. Plot
the logarithm of the absolute value of the dynam-
ical zeta function and/or the spectral determinant
cycle expansion (18.5) as contour plots in the com-
plex s plane. Do you find zeros other than the one
corresponding to the complex one? Do you see ev-
idence for a finite radius of convergence for either
cycle expansion?

(18.7) Counting the 3-disk pinball counterterms. Ver-
ify that the number of terms in the 3-disk pinball
curvature expansion (18.35) is given by

∏
p

(1 + tp) =
1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z

This means that, for example, c6 has a total of 20
terms, in agreement with the explicit 3-disk cycle
expansion (18.36).

ChaosBook.org version11.9.2, Aug 21 2007 exerRecyc - 15nov2007



286 Exercises

(18.8) 3–disk unfactorized zeta cycle expansions.
Check that the curvature expansion (18.2) for the
3-disk pinball, assuming no symmetries between
disks, is given by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)

(1 − z3t123)(1 − z3t132)(1 − z4t1213)

(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·
= 1 − z2t12 − z2t23 − z2t31 − z3(t123 + t132)

−z4[(t1213 − t12t13) + (t1232 − t12t23) + (t1323 − t13t23)]

−z5[(t12123 − t12t123) + · · ·] − · · · (18.35)

The symmetrically arranged 3-disk pinball cycle ex-
pansion of the Euler product (18.2) (see Table 13.4
and Fig. 9.3) is given by:

1/ζ = (1 − z2t12)
3(1 − z3t123)

2(1 − z4t1213)
3

(1 − z5t12123)
6(1 − z6t121213)

6(1 − z6t121323)
3 . . .

= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t212) − 6z5 (t12123 − t12t123)

−z6 (6 t121213 + 3 t121323 + t312 − 9 t12t1213 − t2123)

−6z7 (t1212123 + t1212313 + t1213123 + t212t123 − 3 t12t12123 − t123t1213)

−3z8 (2 t12121213 + t12121313 + 2 t12121323 + 2 t12123123

+ 2 t12123213 + t12132123 + 3 t212t1213 + t12t
2
123

− 6 t12t121213 − 3 t12t121323 − 4 t123t12123 − t21213) − · · · (18.36)

Unsymmetrized cycle expansions. The above
3-disk cycle expansions might be useful for cross-
checking purposes, but, as we shall see in Chap-
ter ??, they are not recommended for actual compu-
tations, as the factorized zeta functions yield much
better convergence.

(18.9) 4–disk unfactorized dynamical zeta function cycle
expansions For the symmetriclly arranged 4-disk
pinball the symmetry group is C4v , of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8
(see Table 13.2):

1/ζ = (1 − z2t12)
4(1 − z2t13)

2(1 − z3t123)
8(1 − z4t1213)

8(1 − z4t1214)
4

(1 − z4t1234)
2(1 − z4t1243)

4(1 − z5t12123)
8(1 − z5t12124)

8(1 − z5t12134)
8

(1 − z5t12143)
8(1 − z5t12313)

8(1 − z5t12413)
8 · · · (18.37)

and the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243 − 6 t212 − t213 − 8 t12t13)

−8z5(t12123 + t12124 + t12134 + t12143 + t12313 + t12413 − 4 t12t123 − 2 t13t123)

−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t
2
13 − 8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243 − 4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2123) − · · · (18.38)

where in the coefficient to z6 the abbreviations S8

and S4 stand for the sums over the weights of the
12 orbits with multiplicity 8 and the 5 orbits of mul-
tiplicity 4, respectively; the orbits are listed in Ta-
ble 13.4.

(18.10) Tail resummations. A simple illustration of such
tail resummation is the ζ function for the Ulam map
(12.22) for which the cycle structure is exceptionally
simple: the eigenvalue of the x0 = 0 fixed point is
4, while the eigenvalue of any other n-cycle is ±2n.
Typical cycle weights used in thermodynamic av-
eraging are t0 = 4τz, t1 = t = 2τz, tp = tnp for
p �= 0. The simplicity of the cycle eigenvalues en-
ables us to evaluate the ζ function by a simple trick:
we note that if the value of any n-cycle eigenvalue
were tn, (17.21) would yield 1/ζ = 1 − 2t. There
is only one cycle, the x0 fixed point, that has a dif-
ferent weight (1 − t0), so we factor it out, multiply
the rest by (1 − t)/(1 − t), and obtain a rational ζ
function

1/ζ(z) =
(1 − 2t)(1 − t0)

(1 − t)
(18.39)

Consider how we would have detected the pole at
z = 1/twithout the above trick. As the 0 fixed point
is isolated in its stability, we would have kept the
factor (1− t0) in (18.7) unexpanded, and noted that
all curvature combinations in (18.7) which include
the t0 factor are unbalanced, so that the cycle ex-
pansion is an infinite series:

∏
p

(1 − tp) = (1 − t0)(1 − t− t2 − t3 − t4 − . . .)

(18.40)
(we shall return to such infinite series in Chap-
ter ??). The geometric series in the brackets sums
up to (18.39). Had we expanded the (1 − t0) factor,
we would have noted that the ratio of the succes-
sive curvatures is exactly cn+1/cn = t; summing
we would recover the rational ζ function (18.39).

(18.11) Escape rate for the Rössler system. (continuation
of Exercise 12.7) Try to compute the escape rate for
the Rössler system (2.15) using the method of cycle
expansions. The answer should be zero, as nothing
escapes. Ideally you should already have computed
the cycles and have an approximate grammar, but
failing that you can cheat a bit and peak into Ta-
ble ??.
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