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If I have seen less far than other men it is because I have stood
behind giants.

Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there
are holes large enough to steam a Eurostar train through them. Here we
learn about harmonic oscillators and Keplerian ellipses - but where is
the chapter on chaotic oscillators, the tumbling Hyperion? We have just
quantized hydrogen, where is the chapter on the classical 3-body prob-
lem and its implications for quantization of helium? We have learned
that an instanton is a solution of field-theoretic equations of motion,
but shouldn’t a strongly nonlinear field theory have turbulent solutions?
How are we to think about systems where things fall apart; the center
cannot hold; every trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the
book. We start out by making promises–we will right wrongs, no longer
shall you suffer the slings and arrows of outrageous Science of Perplex-
ity.

We relegate a historical overview of the development of chaotic dy-
namics to Appendix 10, and head straight to the starting line: A pinball
game is used to motivate and illustrate most of the concepts to be de-
veloped in ChaosBook. Throughout the book

indicates that the section re-
quires a hearty stomach and is
probably best skipped on first
reading

fast track points you where to
skip to

tells you where to go for more
depth on a particular topic

indicates an exercise that
might clarify a point in the
text

indicates that a figure is
still missing–you are urged to
fetch it

In the hyperlinked ChaosBook.pdf
these destinations are only a click
away.

This is a textbook, not a research monograph, and you should be
able to follow the thread of the argument without constant excursions
to sources. Hence there are no literature references in the text proper,
all learned remarks and bibliographical pointers are relegated to the
“Further reading” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with science,
we acquire a firmer hold over the vicissitudes of life and meet
them with greater calm, but in reality we have done no more
than to find a way to escape from our sorrows.

Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and un-
successful) crack at the 3-body problem, lunar dynamics. Nature is rich
in systems governed by simple deterministic laws whose asymptotic dy-
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namics are complex beyond belief, systems which are locally unstable
(almost) everywhere but globally recurrent. How do we describe their
long term dynamics?

The answer turns out to be that we have to evaluate a determinant,
take a logarithm. It would hardly merit a learned treatise, were it not
for the fact that this determinant that we are to compute is fashioned
out of infinitely many infinitely small pieces. The feel is of statistical
mechanics, and that is how the problem was solved; in the 1960’s the
pieces were counted, and in the 1970’s they were weighted and assembled
in a fashion that in beauty and in depth ranks along with thermody-
namics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book is not a book about periodic orbits. The red thread through-
out the text is the duality between the local, topological, short-time dy-
namically invariant compact sets (equilibria, periodic orbits, partially
hyperbolic invariant tori) and the global long-time evolution of densities
of trajectories. Chaotic dynamics is generated by the interplay of locally
unstable motions, and the interweaving of their global stable and unsta-
ble manifolds. These features are robust and accessible in systems as
noisy as slices of rat brains. Poincaré, the first to understand determinis-
tic chaos, already said as much (modulo rat brains). Once this topology
is understood, a powerful theory yields the observable consequences of
chaotic dynamics, such as atomic spectra, transport coefficients, gas
pressures.

That is what we will focus on in ChaosBook. The book is a self-
contained graduate textbook on classical and quantum chaos. Your pro-
fessor does not know this material, so you are on your own. We will
teach you how to evaluate a determinant, take a logarithm–stuff like
that. Ideally, this should take 100 pages or so. Well, we fail–so far we
have not found a way to traverse this material in less than a semester,
or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.

W.B. Yeats: The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with
the widespread use of the personal computer. Chaotic systems have been
studied for over 200 years. During this time many have contributed, and
the field followed no single line of development; rather one sees many
interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics
were a stroke of luck: a few integrable problems, such as the harmonic
oscillator and the Kepler problem, though ‘non-generic,’ have gotten us
very far. The success has lulled us into a habit of expecting simple
solutions to simple equations–an expectation tempered by our recently
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acquired ability to numerically scan the state space of non-integrable dy-
namical systems. The initial impression might be that all of our analytic
tools have failed us, and that the chaotic systems are amenable only to
numerical and statistical investigations. Nevertheless, a beautiful the-
ory of deterministic chaos, of predictive quality comparable to that of
the traditional perturbation expansions for nearly integrable systems,
already exists.

In the traditional approach the integrable motions are used as zeroth-
order approximations to physical systems, and weak nonlinearities are
then accounted for perturbatively. For strongly nonlinear, non-integrable
systems such expansions fail completely; at asymptotic times the dynam-
ics exhibits amazingly rich structure which is not at all apparent in the
integrable approximations. However, hidden in this apparent chaos is a
rigid skeleton, a self-similar tree of cycles (periodic orbits) of increasing
lengths. The insight of the modern dynamical systems theory is that the
zeroth-order approximations to the harshly chaotic dynamics should be
very different from those for the nearly integrable systems: a good start-
ing approximation here is the stretching and folding of baker’s dough,
rather than the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game
of pinball. The reminder of the chapter is a quick tour through the
material covered in ChaosBook. Do not worry if you do not understand
every detail at the first reading–the intention is to give you a feeling for
the main themes of the book. Details will be filled out later. If you want

Section 1.4
to get a particular point clarified right now, on the margin points
at the appropriate section.

Fig. 1.1 A physicist’s bare bones game
of pinball.

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand the
introduction you will first have to read the rest of the book.

Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who
has tried pool, billiards or snooker–the game is about beating chaos–so
we start our story about what chaos is, and what to do about it, with a
game of pinball. This might seem a trifle, but the game of pinball is to
chaotic dynamics what a pendulum is to integrable systems: thinking
clearly about what ‘chaos’ in a game of pinball is will help us tackle
more difficult problems, such as computing the diffusion constant of a
deterministic gas, the drag coefficient of a turbulent boundary layer, or
the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces
among the pinball machine’s disks, and only high-school level Euclidean
geometry is needed to describe its trajectory. A physicist’s pinball game
is the game of pinball stripped to its bare essentials: three equidistantly
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placed reflecting disks in a plane, Fig. 1.1. A physicist’s pinball is free,
frictionless, point-like, spin-less, perfectly elastic, and noiseless. Point-
like pinballs are shot at the disks from random starting positions and
angles; they spend some time bouncing between the disks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leib-
niz was confident that given the initial conditions one knew everything
a deterministic system would do far into the future. He wrote [1], antic-
ipating by a century and a half the oft-quoted Laplace’s “Given for one
instant an intelligence which could comprehend all the forces by which
nature is animated...”:

1

2

3

23132321

2313

Fig. 1.2 Sensitivity to initial condi-
tions: two pinballs that start out very
close to each other separate exponen-
tially with time.

That everything is brought forth through an established des-
tiny is just as certain as that three times three is nine. [. . . ] If,
for example, one sphere meets another sphere in free space and
if their sizes and their paths and directions before collision are
known, we can then foretell and calculate how they will rebound
and what course they will take after the impact. Very simple laws
are followed which also apply, no matter how many spheres are
taken or whether objects are taken other than spheres. From this
one sees then that everything proceeds mathematically–that is,
infallibly–in the whole wide world, so that if someone could have
a sufficient insight into the inner parts of things, and in addition
had remembrance and intelligence enough to consider all the cir-
cumstances and to take them into account, he would be a prophet
and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the
type of physical system that we shall use here as a paradigm of ‘chaos.’
His claim is wrong in a deep and subtle way: a state of a physical system
can never be specified to infinite precision, there is no way to take all the
circumstances into account, and a single trajectory cannot be tracked,
only a ball of nearby initial points makes physical sense.11 ‘Stochastic’ is derived from Greek

‘stochos’, meaning a target, as in shoot-
ing arrows at a target, and not always
hitting it; targeted flow, with a small
component of uncertainty. Today it
stands for deterministic drift + diffu-
sion. ‘Random’ stands for pure diffu-
sion, with a Gaussian profile. ‘Proba-
bilistic’ might have a distribution other
than a Gaussian one. Boltzmann’s ‘Er-
godic’ refers to the deterministic mi-
croscopic dynamics of many colliding
molecules. ‘Chaotic’ is the same thing,
but usually for a few degrees of free-
dom.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.

Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle
fully determined by its initial conditions, in contrast to a stochastic
system.

For a stochastic system the initial conditions determine the future
only partially, due to noise, or other external circumstances beyond our
control: the present state reflects the past initial conditions plus the
particular realization of the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can
fool us into regarding it as a stochastic one; disentangling the determin-
istic from the stochastic is the main challenge in many real-life settings,
from stock markets to palpitations of chicken hearts. So, what is ‘chaos’?
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In a game of pinball, any two trajectories that start out very close
to each other separate exponentially with time, and in a finite (and in
practice, a very small) number of bounces their separation δx(t) attains
the magnitude of L, the characteristic linear extent of the whole sys-
tem, Fig. 1.2. This property of sensitivity to initial conditions can be
quantified as

|δx(t)| ≈ eλt|δx(0)|
where λ, the mean rate of separation of trajectories of the system, is
called the Lyapunov exponent. For any finite accuracy δx = |δx(0)| of

Section ??
the initial data, the dynamics is predictable only up to a finite Lyapunov
time

TLyap ≈ − 1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws
that rule the pinball motion.

(a)

(b)

Fig. 1.3 Dynamics of a chaotic dy-
namical system is (a) everywhere lo-
cally unstable (positive Lyapunov ex-
ponent) and (b) globally mixing (posi-
tive entropy). (A. Johansen)

A positive Lyapunov exponent does not in itself lead to chaos. One
could try to play 1- or 2-disk pinball game, but it would not be much
of a game; trajectories would only separate, never to meet again. What
is also needed is mixing, the coming together again and again of tra-
jectories. While locally the nearby trajectories separate, the interesting
dynamics is confined to a globally finite region of the state space and
thus the separated trajectories are necessarily folded back and can re-
approach each other arbitrarily closely, infinitely many times. For the
case at hand there are 2n topologically distinct n bounce trajectories
that originate from a given disk. More generally, the number of distinct
trajectories with n bounces can be quantified as

N(n) ≈ ehn

where the topological entropy h (h = ln 2 in the case at hand) is the

Section ??

growth rate of the number of topologically distinct trajectories.

Section ??

The appellation ‘chaos’ is a confusing misnomer, as in deterministic
dynamics there is no chaos in the everyday sense of the word; everything
proceeds mathematically–that is, as Baron Leibniz would have it, infal-
libly. When a physicist says that a certain system exhibits ‘chaos,’ he
means that the system obeys deterministic laws of evolution, but that
the outcome is highly sensitive to small uncertainties in the specifica-
tion of the initial state. The word ‘chaos’ has in this context taken on a
narrow technical meaning. If a deterministic system is locally unstable
(positive Lyapunov exponent) and globally mixing (positive entropy) -
Fig. 1.3 - it is said to be chaotic.

While mathematically correct, the definition of chaos as ‘positive Lya-
punov + positive entropy’ is useless in practice, as a measurement of
these quantities is intrinsically asymptotic and beyond reach for systems
observed in nature. More powerful is Poincaré’s vision of chaos as the
interplay of local instability (unstable periodic orbits) and global mix-
ing (intertwining of their stable and unstable manifolds). In a chaotic
system any open ball of initial conditions, no matter how small, will in
finite time overlap with any other finite region and in this sense spread
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over the extent of the entire asymptotically accessible state space. Once
this is grasped, the focus of theory shifts from attempting to predict
individual trajectories (which is impossible) to a description of the ge-
ometry of the space of possible outcomes, and evaluation of averages
over this space. How this is accomplished is what ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Intuitively, the
word refers to irregular behavior of an infinite-dimensional dynamical
system described by deterministic equations of motion–say, a bucket of
sloshing water described by the Navier-Stokes equations. But in prac-
tice the word ‘turbulence’ tends to refer to messy dynamics which we
understand poorly. As soon as a phenomenon is understood better,
it is reclaimed and renamed: ‘a route to chaos’, ‘spatiotemporal chaos’,
and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low
dimensional attractors visualized as a succession of nearly periodic but
unstable motions. In the same spirit, we shall think of turbulence in spa-
tially extended systems in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system (clouds,
say) through a repertoire of unstable patterns; as we watch a turbulent
system evolve, every so often we catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for
a finite time a pattern belonging to a finite alphabet of admissible pat-
terns, and the long term dynamics can be thought of as a walk through
the space of such patterns. In ChaosBook we recast this image into
mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited mag-
nification range, Jones-Smith and Mathur would also dismiss
half the published investigations of physical fractals.

Richard P. Taylor [4,5]

When should we be mindful of chaos? The solar system is ‘chaotic’,
yet we have no trouble keeping track of the annual motions of planets.
The rule of thumb is this; if the Lyapunov time (1.1)–the time by which
a state space region initially comparable in size to the observational
accuracy extends across the entire accessible state space–is significantly
shorter than the observational time, you need to master the theory that
will be developed here. That is why the main successes of the theory
are in statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics.

In science popularizations too much has been made of the impact of
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‘chaos theory,’ so a number of caveats are already needed at this point.

Fig. 1.4 Katherine Jones-Smith, ‘Un-
titled 5,’ the drawing used by K. Jones-
Smith and R.P. Taylor to test the frac-
tal analysis of Pollock’s drip paint-
ings [3].

At present the theory is in practice applicable only to systems with a
low intrinsic dimension – the minimum number of coordinates necessary
to capture its essential dynamics. If the system is very turbulent (a
description of its long time dynamics requires a space of high intrinsic
dimension) we are out of luck. Hence insights that the theory offers in
elucidating problems of fully developed turbulence, quantum field theory
of strong interactions and early cosmology have been modest at best.
Even that is a caveat with qualifications. There are applications–such
as spatially extended (non-equilibrium) systems, plumber’s turbulent
pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to
the very noisy systems so important in the life sciences and in economics.
Even though we are often interested in phenomena taking place on time
scales much longer than the intrinsic time scale (neuronal inter-burst
intervals, cardiac pulses, etc.), disentangling ‘chaotic’ motions from the
environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is
an area of science where the advent of cheap computation had actually
subtracted from our collective understanding. The computer pictures
and numerical plots of fractal science of the 1980’s have overshadowed
the deep insights of the 1970’s, and these pictures have since migrated
into textbooks. By a regrettable oversight, ChaosBook has none, so
‘Untitled 5’ of Fig. 1.4 will have to do as the illustration of the power
of fractal analysis. Fractal science posits that certain quantities (Lya-
punov exponents, generalized dimensions, . . . ) can be estimated on a
computer. While some of the numbers so obtained are indeed mathe-
matically sensible characterizations of fractals, they are in no sense ob-
servable and measurable on the length-scales and time-scales dominated
by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of na-
ture is circumstantial [2], in studies of probabilistically assembled fractal
aggregates we know of nothing better than contemplating such quanti-
ties. In deterministic systems we can do much better.

Fig. 1.5 Binary labeling of the 3-disk
pinball trajectories; a bounce in which
the trajectory returns to the preceding
disk is labeled 0, and a bounce which
results in continuation to the third disk
is labeled 1.

1.4 A game of pinball

Formulas hamper the understanding.

S. Smale

We are now going to get down to the brass tacks. Time to fasten your
seat belts and turn off all electronic devices. But first, a disclaimer: If
you understand the rest of this chapter on the first reading, you either do
not need this book, or you are delusional. If you do not understand it, it
is not because the people who wrote it are smarter than you: the most
you can hope for at this stage is to get a flavor of what lies ahead. If a
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statement in this chapter mystifies/intrigues, fast forward to a section
indicated by on the margin, read only the parts that you feel you
need. Of course, we think that you need to learn ALL of it, or

Fig. 1.6 Some examples of 3-disk cy-
cles: (a) 12123 and 13132 are mapped
into each other by the flip across 1 axis.
Similarly (b) 123 and 132 are related
by flips, and (c) 1213, 1232 and 1323
by rotations. (d) The cycles 121212313
and 121212323 are related by rotaion
and time reversal. These symmetries
are discussed in more detail in Chap-
ter ??. (From Ref. [6])

otherwise we would not have included it in ChaosBook in the first place.
Confronted with a potentially chaotic dynamical system, we analyze

it through a sequence of three distinct stages; I. diagnose, II. count,
III. measure. First we determine the intrinsic dimension of the system–
the minimum number of coordinates necessary to capture its essential
dynamics. If the system is very turbulent we are, at present, out of
luck. We know only how to deal with the transitional regime between
regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame
front can turn out to have a very few chaotic degrees of freedom. In this
regime the chaotic dynamics is restricted to a space of low dimension,
the number of relevant parameters is small, and we can proceed to step
II; we count and classify all possible topologically distinct trajectories

Chapter ??

Chapter ??

of the system into a hierarchy whose successive layers require increased
precision and patience on the part of the observer. This we shall do in
Section 1.4.2. If successful, we can proceed with step III: investigate the
weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diag-
nose, count. We shall return to step III–measure–in Section 1.5.

Chapter ??

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensional system,
free motion in a plane. The motion of a point particle is such that
after a collision with one disk it either continues to another disk or it
escapes. If we label the three disks by 1, 2 and 3, we can associate
every trajectory with an itinerary, a sequence of labels indicating the
order in which the disks are visited; for example, the two trajectories in
Fig. 1.2 have itineraries 2313 , 23132321 respectively. The itinerary
is finite for a scattering trajectory, coming in from infinity and escaping
after a finite number of collisions, infinite for a trapped trajectory, and
infinitely repeating for a periodic orbit. Parenthetically, in this subject

1.1, page 23

the words ‘orbit’ and ‘trajectory’ refer to one and the same thing.

Section 2.1

Such labeling goes by the name symbolic dynamics. As the parti-
cle cannot collide two times in succession with the same disk, any two
consecutive symbols must differ. This is an example of pruning, a rule
that forbids certain subsequences of symbols. Deriving pruning rules
is in general a difficult problem, but with the game of pinball we are
lucky–for well-separated disks there are no further pruning rules.Chapter ??

The choice of symbols is in no sense unique. For example, as at
each bounce we can either proceed to the next disk or return to the
previous disk, the above 3-letter alphabet can be replaced by a binary
{0, 1} alphabet, Fig. 1.5. A clever choice of an alphabet will incorporate
important features of the dynamics, such as its symmetries.Section ??

Suppose you wanted to play a good game of pinball, that is, get the
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pinball to bounce as many times as you possibly can–what would be a
winning strategy? The simplest thing would be to try to aim the pinball

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

Fig. 1.7 (a) A pinball trajectory is
uniquely specified by noting the disk it
bounces off, the collision position along
the disk wall, and the outgoing an-
gle. (b) Collision sequence (s1, p1) �→
(s2, p2) �→ (s3, p3) from the boundary
of a disk to the boundary of the next
disk presented in the Poincaré section
coordinates.

so it bounces many times between a pair of disks–if you managed to shoot
it so it starts out in the periodic orbit bouncing along the line connecting
two disk centers, it would stay there forever. Your game would be just
as good if you managed to get it to keep bouncing between the three
disks forever, or place it on any periodic orbit. The only rub is that any
such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested
in playing well, unstable periodic orbits are important–they form the
skeleton onto which all trajectories trapped for long times cling.

Section ??

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momen-
tum. We shall refer to the set of periodic points that belong to a given
periodic orbit as a cycle.

Short periodic orbits are easily drawn and enumerated–some examples
are drawn in Fig. 1.6–but it is rather hard to perceive the systematics of
orbits from their shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two
distinct state space trajectories can intersect. Their projections onto
arbitrary subspaces, however, can and do intersect, in rather unillumi-
nating ways, as in Fig. 1.6 (d). In the pinball example the problem is
that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A
clearer picture of the dynamics is obtained by constructing a state space
Poincaré section.

Fig. 1.8 (a) A trajectory starting
out from disk 1 can either hit another
disk or escape. (b) Hitting two disks
in a sequence requires a much sharper
aim. The cones of initial conditions
that hit more and more consecutive
disks are nested within each other, as
in Fig. 1.9.

Suppose that the pinball has just bounced off disk 1. Depending
on its position and outgoing angle, it could proceed to either disk 2
or 3. Not much happens in between the bounces–the ball just travels
at constant velocity along a straight line–so we can reduce the four-
dimensional flow to a two-dimensional map f that takes the coordinates
of the pinball from one disk edge to another disk edge. Let us state
this more precisely: the trajectory just after the moment of impact is
defined by marking sn, the arc-length position of the nth bounce along
the billiard wall, and pn = p sinφn the momentum component parallel to
the billiard wall at the point of impact, Fig. 1.7. Such a section of a flow
is called a Poincaré section, and the particular choice of coordinates
(due to Birkhoff) is particularly smart, as it conserves the phase space
volume. In terms of the Poincaré section, the dynamics is reduced to
the return map P : (sn, pn) �→ (sn+1, pn+1) from the boundary of a disk
to the boundary of the next disk. The explicit form of this map is easily
written down, but it is of no importance right now.

Section 6

Next, we mark in the Poincaré section those initial conditions which
do not escape in one bounce. There are two strips of survivors, as
the trajectories originating from one disk can hit either of the other
two disks, or escape without further ado. We label the two strips M0,
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M1. Embedded within them there are four strips M00, M10, M01,
M11 of initial conditions that survive for two bounces, and so forth, see
Figs. 1.8 and 1.9. Provided that the disks are sufficiently separated, after
n bounces the survivors are divided into 2n distinct strips: the Mith
strip consists of all points with itinerary i = s1s2s3 . . . sn, s = {0, 1}.
The unstable cycles as a skeleton of chaos are almost visible here: each
such patch contains a periodic point s1s2s3 . . . sn with the basic block
infinitely repeated. Periodic points are skeletal in the sense that as we
look further and further, the strips shrink but the periodic points stay
put forever.

(a)
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Fig. 1.9 The 3-disk game of pinball
Poincaré section, trajectories emanat-
ing from the disk 1 with x0 = (ar-
clength, parallel momentum) = (s0, p0)
, disk radius : center separation ratio
a:R = 1:2.5. (a) Strips of initial points
M12, M13 which reach disks 2, 3 in
one bounce, respectively. (b) Strips of
initial points M121, M131 M132 and
M123 which reach disks 1, 2, 3 in two
bounces, respectively. The Poincaré
sections for trajectories originating on
the other two disks are obtained by the
appropriate relabeling of the strips. (Y.
Lan)

We see now why it pays to utilize a symbolic dynamics; it provides
a navigation chart through chaotic state space. There exists a unique
trajectory for every admissible infinite length itinerary, and a unique
itinerary labels every trapped trajectory. For example, the only trajec-
tory labeled by 12 is the 2-cycle bouncing along the line connecting the
centers of disks 1 and 2; any other trajectory starting out as 12 . . . either
eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

Example ??

What is a good physical quantity to compute for the game of pinball?
Such system, for which almost any trajectory eventually leaves a finite
region (the pinball table) never to return, is said to be open, or a re-
peller. The repeller escape rate is an eminently measurable quantity.
An example of such a measurement would be an unstable molecular or
nuclear state which can be well approximated by a classical potential
with the possibility of escape in certain directions. In an experiment
many projectiles are injected into a macroscopic ‘black box’ enclosing a
microscopic non-confining short-range potential, and their mean escape
rate is measured, as in Fig. 1.1. The numerical experiment might con-
sist of injecting the pinball between the disks in some random direction
and asking how many times the pinball bounces on the average before
it escapes the region between the disks.

1.2, page 23

For a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball. We now show
how periodic orbit theory accomplishes this for us. Each step will be
so simple that you can follow even at the cursory pace of this overview,
and still the result is surprisingly elegant.

Consider Fig. 1.9 again. In each bounce the initial conditions get
thinned out, yielding twice as many thin strips as at the previous bounce.
The total area that remains at a given time is the sum of the areas of the
strips, so that the fraction of survivors after n bounces, or the survival
probability is given by

Γ̂1 =
|M0|
|M| +

|M1|
|M| , Γ̂2 =

|M00|
|M| +

|M10|
|M| +

|M01|
|M| +

|M11|
|M| ,

Γ̂n =
1

|M|
(n)∑
i

|Mi| , (1.2)



1.5 Chaos for cyclists 11

where i is a label of the ith strip, |M| is the initial area, and |Mi| is
the area of the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a
binary number. Since at each bounce one routinely loses about the same
fraction of trajectories, one expects the sum (1.2) to fall off exponentially
with n and tend to the limit

Chapter ??

Γ̂n+1/Γ̂n = e−γn → e−γ . (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une so-
lution périodique (dont la période peut, il est vrai, étre trés
longue), telle que la différence entre les deux solutions soit
aussi petite qu’on le veut, pendant un temps aussi long qu’on
le veut. D’ailleurs, ce qui nous rend ces solutions périodiques
si précieuses, c’est qu’elles sont, pour ansi dire, la seule bréche
par où nous puissions esseyer de pénétrer dans une place
jusqu’ici réputée inabordable.

H. Poincaré, Les méthodes nouvelles de la méchanique céleste

We shall now show that the escape rate γ can be extracted from a highly
convergent exact expansion by reformulating the sum (1.2) in terms of
unstable periodic orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1,
center-center separation 6, velocity 1, you answer that the continuous
time escape rate is roughly γ = 0.4103384077693464893384613078192 . . .,
you do not need this book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological ordering of the
strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal
neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0)
to linear order, the evolution of the distance to a neighboring trajectory
xi(t) + δxi(t) is given by the fundamental matrix:

δxi(t) =
d∑

j=1

J t(x0)ijδx0j , J t(x0)ij =
∂xi(t)
∂x0j

.

A trajectory of a pinball moving on a flat surface is specified by two
position coordinates and the direction of motion, so in this case d = 3.
Evaluation of a cycle fundamental matrix is a long exercise - here we

Section 6.2
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just state the result. The fundamental matrix describes the deformation
of an infinitesimal neighborhood of x(t) along the flow; its eigenvectors
and eigenvalues give the directions and the corresponding rates of ex-
pansion or contraction, Fig. 4.1. The trajectories that start out in an
infinitesimal neighborhood separate along the unstable directions (those
whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than
unity in magnitude), and maintain their distance along the marginal di-
rections (those whose eigenvalues equal unity in magnitude). In our
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Fig. 1.10 The fundamental matrix Jt

maps an infinitesimal spherical neigh-
borhood of x0 into an ellipsoidal neigh-
borhood finite time t later.

game of pinball the beam of neighboring trajectories is defocused along
the unstable eigendirection of the fundamental matrix M .

As the heights of the strips in Fig. 1.9 are effectively constant, we can
concentrate on their thickness. If the height is ≈ L, then the area of the
ith strip is Mi ≈ Lli for a strip of width li.

Each strip i in Fig. 1.9 contains a periodic point xi. The finer the
intervals, the smaller the variation in flow across them, so the contribu-
tion from the strip of width li is well-approximated by the contraction
around the periodic point xi within the interval,

li = ai/|Λi| , (1.4)

where Λi is the unstable eigenvalue of the fundamental matrix J t(xi)
evaluated at the ith periodic point for t = Tp, the full period (due to the
low dimensionality, the Jacobian can have at most one unstable eigen-
value). Only the magnitude of this eigenvalue matters, we can disregard
its sign. The prefactors ai reflect the overall size of the system and the
particular distribution of starting values of x. As the asymptotic trajec-
tories are strongly mixed by bouncing chaotically around the repeller,
we expect their distribution to be insensitive to smooth variations in the
distribution of initial points.Section ??

To proceed with the derivation we need the hyperbolicity assumption:
for large n the prefactors ai ≈ O(1) are overwhelmed by the exponential
growth of Λi, so we neglect them. If the hyperbolicity assumption isSection ??

justified, we can replace |Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the
sum

Γn =
(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define
a generating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑

n=1

Γnzn . (1.5)

Recall that for large n the nth level sum (1.2) tends to the limit Γn →
e−nγ , so the escape rate γ is determined by the smallest z = eγ for which
(1.5) diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n =
ze−γ

1 − ze−γ
. (1.6)
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This is the property of Γ(z) that motivated its definition. Next, we
devise a formula for (1.5) expressing the escape rate in terms of periodic
orbits:

Γ(z) =
∞∑

n=1

zn

(n)∑
i

|Λi|−1

=
z

|Λ0| +
z

|Λ1| +
z2

|Λ00| +
z2

|Λ01| +
z2

|Λ10| +
z2

|Λ11|
+

z3

|Λ000| +
z3

|Λ001| +
z3

|Λ010| +
z3

|Λ100| + . . . (1.7)

For sufficiently small z this sum is convergent. The escape rate γ
Section ??

is now given by the leading pole of (1.6), rather than by a numerical
extrapolation of a sequence of γn extracted from (1.3). As any finite
truncation n < ntrunc of (1.7) is a polynomial in z, convergent for any
z, finding this pole requires that we know something about Γn for any
n, and that might be a tall order.

We could now proceed to estimate the location of the leading singu-
larity of Γ(z) from finite truncations of (1.7) by methods such as Padé
approximants. However, as we shall now show, it pays to first perform a
simple resummation that converts this divergence into a zero of a related
function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue
is Λr

p. A prime cycle p is a single traversal of the orbit; its label is a
non-repeating symbol string of np symbols. There is only one prime
cycle for each cyclic permutation class. For example, p = 0011 = 1001
= 1100 = 0110 is prime, but 0101 = 01 is not. By the chain rule

??, page ??

Section 4.5
for derivatives the stability of a cycle is the same everywhere along the
orbit, so each prime cycle of length np contributes np terms to the sum
(1.7). Hence (1.7) can be rewritten as

Γ(z) =
∑

p

np

∞∑
r=1

(
znp

|Λp|
)r

=
∑

p

nptp
1 − tp

, tp =
znp

|Λp| (1.8)

where the index p runs through all distinct prime cycles. Note that we
have resummed the contribution of the cycle p to all times, so truncating
the summation up to given p is not a finite time n ≤ np approximation,
but an asymptotic, infinite time estimate based by approximating sta-
bilities of all cycles by a finite number of the shortest cycles and their
repeats. The npz

np factors in (1.8) suggest rewriting the sum as a deriva-
tive

Γ(z) = −z
d

dz

∑
p

ln(1 − tp) .

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏
p

(1 − tp) , tp =
znp

|Λp| . (1.9)
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This function is called the dynamical zeta function, in analogy to the
Riemann zeta function, which motivates the ‘zeta’ in its definition as
1/ζ(z). This is the prototype formula of periodic orbit theory. The zero
of 1/ζ(z) is a pole of Γ(z), and the problem of estimating the asymptotic
escape rates from finite n sums such as (1.2) is now reduced to a study of
the zeros of the dynamical zeta function (1.9). The escape rate is relatedSection ??

by (1.6) to a divergence of Γ(z), and Γ(z) diverges whenever 1/ζ(z) hasSection ??
a zero.

Easy, you say: “Zeros of (1.9) can be read off the formula, a zero

zp = |Λp|1/np

for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numer-
ical work, such as the Newton’s method searches for periodic solutions;
we shall assume that the numerics are under control, and that all short
cycles up to given length have been found. In our pinball example thisChapter ??

can be done by elementary geometrical optics. It is very important not
to miss any short cycles, as the calculation is as accurate as the shortest
cycle dropped–including cycles longer than the shortest omitted does
not improve the accuracy (unless exponentially many more cycles are
included). The result of such numerics is a table of the shortest cycles,
their periods and their stabilities.Section ??

Now expand the infinite product (1.9), grouping together the terms
of the same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·
= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)
+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.10)

The virtue of the expansion is that the sum of all terms of the sameChapter ??

total length n (grouped in brackets above) is a number that is exponen-
tially smaller than a typical term in the sum, for geometrical reasons we
explain in the next section.Section ??

The calculation is now straightforward. We substitute a finite set of
the eigenvalues and lengths of the shortest prime cycles into the cycle
expansion (1.10), and obtain a polynomial approximation to 1/ζ. We
then vary z in (1.9) and determine the escape rate γ by finding the
smallest z = eγ for which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out
that the convergence is very impressive: only three input numbers (the
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two fixed points 0, 1 and the 2-cycle 10) already yield the pinball escape
rate to 3-4 significant digits! We have omitted an infinity of unstable

Section ??
cycles; so why does approximating the dynamics by a finite number of
the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a
consequence of the smoothness and analyticity of the underlying flow.
Intuitively, one can understand the convergence in terms of the geomet-
rical picture sketched in Fig. 1.11; the key observation is that the long
orbits are shadowed by sequences of shorter orbits.

A typical term in (1.10) is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −

∣∣∣∣ Λab

ΛaΛb

∣∣∣∣
)

, (1.11)

where a and b are symbol sequences of the two shorter cycles. If all
orbits are weighted equally (tp = znp), such combinations cancel exactly;
if orbits of similar symbolic dynamics have similar weights, the weights
in such combinations almost cancel.

Fig. 1.11 Approximation to (a) a
smooth dynamics by (b) the skeleton of
periodic points, together with their lin-
earized neighborhoods. Indicated are
segments of two 1-cycles and a 2-cycle
that alternates between the neighbor-
hoods of the two 1-cycles, shadowing
first one of the two 1-cycles, and then
the other.

This can be understood in the context of the pinball game as follows.
Consider orbits 0, 1 and 01. The first corresponds to bouncing between
any two disks while the second corresponds to bouncing successively
around all three, tracing out an equilateral triangle. The cycle 01 starts
at one disk, say disk 2. It then bounces from disk 3 back to disk 2
then bounces from disk 1 back to disk 2 and so on, so its itinerary is
2321. In terms of the bounce types shown in Fig. 1.5, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it
executes these bounces are very close to the corresponding angles for 0
and 1 cycles. Also the distances traversed between bounces are similar
so that the 2-cycle expanding eigenvalue Λ01 is close in magnitude to
the product of the 1-cycle eigenvalues Λ0Λ1.

To understand this on a more general level, try to visualize the par-
tition of a chaotic dynamical system’s state space in terms of cycle
neighborhoods as a tessellation (a tiling) of the dynamical system, with
smooth flow approximated by its periodic orbit skeleton, each ‘tile’ cen-
tered on a periodic point, and the scale of the ‘tile’ determined by the
linearization of the flow around the periodic point, Fig. 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and
a ‘pseudo orbit’ {a}{b}, lie close to each other in state space; long shad-
owing pairs have to start out exponentially close to beat the exponential
growth in separation with time. If the weights associated with the or-
bits are multiplicative along the flow (for example, by the chain rule for
products of derivatives) and the flow is smooth, the term in parenthesis
in (1.11) falls off exponentially with the cycle length, and therefore the
curvature expansions are expected to be highly convergent.

Chapter ??
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1.6 Evolution

The above derivation of the dynamical zeta function formula for the es-
cape rate has one shortcoming; it estimates the fraction of survivors as a
function of the number of pinball bounces, but the physically interesting
quantity is the escape rate measured in units of continuous time. For
continuous time flows, the escape rate (1.2) is generalized as follows.
Define a finite state space region M such that a trajectory that exits
M never reenters. For example, any pinball that falls of the edge of a
pinball table in Fig. 1.1 is gone forever. Start with a uniform distribu-
tion of initial points. The fraction of initial x whose trajectories remain
within M at time t is expected to decay exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral
over y tests whether this trajectory is still in M at time t. The kernel
of this integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.12)

is the Dirac delta function, as for a deterministic flow the initial point x
maps into a unique point y at time t. For discrete time, fn(x) is the nth
iterate of the map f . For continuous flows, f t(x) is the trajectory of the
initial point x, and it is appropriate to express the finite time kernel Lt

in terms of a generator of infinitesimal time translations

Lt = etA ,

very much in the way the quantum evolution is generated by the Hamil-Section ??

Chapter ?? tonian H , the generator of infinitesimal time quantum transformations.
As the kernel L is the key to everything that follows, we shall give it

a name, and refer to it and its generalizations as the evolution operator
for a d-dimensional map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle
length (in the case at hand, as 2n). As we have already seen, this expo-
nential proliferation of cycles is not as dangerous as it might seem; as a
matter of fact, all our computations will be carried out in the n → ∞
limit. Though a quick look at long-time density of trajectories might
reveal it to be complex beyond belief, this distribution is still generated
by a simple deterministic law, and with some luck and insight, our la-
beling of possible motions will reflect this simplicity. If the rule that
gets us from one level of the classification hierarchy to the next does not
depend strongly on the level, the resulting hierarchy is approximately
self-similar. We now turn such approximate self-similarity to our ad-
vantage, by turning it into an operation, the action of the evolution
operator, whose iteration encodes the self-similarity.



1.6 Evolution 17

1.6.1 Trace formula

In physics, when we do not understand something, we give it
a name.

Matthias Neubert

Fig. 1.12 The trace of an evolu-
tion operator is concentrated in tubes
around prime cycles, of length Tp and
thickness 1/|Λp|r for the rth repetition
of the prime cycle p.

Recasting dynamics in terms of evolution operators changes everything.
So far our formulation has been heuristic, but in the evolution operator
formalism the escape rate and any other dynamical average are given by
exact formulas, extracted from the spectra of evolution operators. The
key tools are trace formulas and spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The
explicit expression (1.12) for Lt(x, y) enables us to evaluate the trace.
Identify y with x and integrate x over the whole state space. The result
is an expression for trLt as a sum over neighborhoods of prime cycles p
and their repetitions

Section ??

trLt =
∑

p

Tp

∞∑
r=1

δ(t − rTp)∣∣det
(
1− M r

p

)∣∣ . (1.13)

This formula has a simple geometrical interpretation sketched in Fig. 1.12.
After the rth return to a Poincaré section, the initial tube Mp has been
stretched out along the expanding eigendirections, with the overlap with
the initial volume given by 1/

∣∣det
(
1− M r

p

)∣∣→ 1/|Λp|, the same weight
we obtained heuristically in Section 1.5.1.

The ‘spiky’ sum (1.13) is disquieting in the way reminiscent of the
Poisson resummation formulas of Fourier analysis; the left-hand side is
the smooth eigenvalue sum tr eAt =

∑
esαt, while the right-hand side

equals zero everywhere except for the set t = rTp. A Laplace trans-
form smooths the sum over Dirac delta functions in cycle periods and
yields the trace formula for the eigenspectrum s0, s1, · · · of the classical
evolution operator:∫ ∞

0+

dt e−st trLt = tr
1

s −A =

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− M r

p

)∣∣ . (1.14)

The beauty of trace formulas lies in the fact that everything on the right-
Section ??

hand-side–prime cycles p, their periods Tp and the stability eigenvalues
of Mp–is an invariant property of the flow, independent of any coordinate
choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the ap-
propriate determinant. One way to evaluate determinants is to expand
them in terms of traces, using the identities

4.1, page 70
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d

ds
ln det (s −A) = tr

d

ds
ln(s −A) = tr

1
s −A , (1.15)

and integrating over s. In this way the spectral determinant of an evolu-
tion operator becomes related to the traces that we have just computed:

Chapter ??

det (s −A) = exp

(
−
∑

p

∞∑
r=1

1
r

e−sTpr∣∣det
(
1− M r

p

)∣∣
)

. (1.16)

The 1/r factor is due to the s integration, leading to the replacement
det(1−zL)

z
= exp

⎛
⎜⎜⎝ z

trln(1−zL)

⎞
⎟⎟⎠

Fig. 1.13 Spectral determinant is
preferable to the trace as it vanishes
smoothly at the leading eigenvalue,
while the trace formula diverges.

Tp → Tp/rTp in the periodic orbit expansion (1.14).
The motivation for recasting the eigenvalue problem in this form is

sketched in Fig. 1.13; exponentiation improves analyticity and trades
in a divergence of the trace sum for a zero of the spectral determin-
ant. We have now retraced the heuristic derivation of the divergent

Section ??

sum (1.6) and the dynamical zeta function (1.9), but this time with no
approximations: formula (1.16) is exact. The computation of the zeros
of det (s−A) proceeds very much like the computations of Section 1.5.3.

1.7 From chaos to statistical mechanics

The replacement of dynamics of individual trajectories by evolution
operators which propagate densities feels like a bit of mathematical
voodoo. Actually, something very radical has taken place. Consider
a chaotic flow, such as the stirring of red and white paint by some de-
terministic machine. If we were able to track individual trajectories, the
fluid would forever remain a striated combination of pure white and pure
red; there would be no pink. What is more, if we reversed the stirring,
we would return to the perfect white/red separation. However, that
cannot be–in a very few turns of the stirring stick the thickness of the
layers goes from centimeters to Ångströms, and the result is irreversibly
pink.

Understanding the distinction between evolution of individual trajec-
tories and the evolution of the densities of trajectories is key to under-
standing statistical mechanics–this is the conceptual basis of the second
law of thermodynamics, and the origin of irreversibility of the arrow of
time for deterministic systems with time-reversible equations of motion:
reversibility is attainable for distributions whose measure in the space
of density functions goes exponentially to zero with time.

By going to a description in terms of the asymptotic time evolution
operators we give up tracking individual trajectories for long times, by
trading it in for a very effective description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for
transport coefficients such as the diffusion constants without any prob-Chapter ??

abilistic assumptions (in contrast to the stosszahlansatz of Boltzmann).

A century ago it seemed reasonable to assume that statistical mechan-
ics applies only to systems with very many degrees of freedom. More
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recent is the realization that much of statistical mechanics follows from
chaotic dynamics, and already at the level of a few degrees of freedom
the evolution of densities is irreversible. Furthermore, the theory that
we shall develop here generalizes notions of ‘measure’ and ‘averaging’
to systems far from equilibrium, and transports us into regions hitherto
inaccessible with the tools of equilibrium statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however,
to understand the ways in which the simple-minded periodic orbit theory
falters. A non-hyperbolicity of the dynamics manifests itself in power-
law correlations and even ‘phase transitions.’

Chapter ??

1.8 What is not in ChaosBook

This book offers a breach into a domain hitherto reputed unreachable,
a domain traditionally traversed only by mathematical physicists and
pure mathematicians. What distinguishes it from pure mathematics is
the insistence on computability and numerical convergence of methods
offered. A rigorous proof, the end of the story as far as a mathematician
is concerned, might state that in a given setting, for times in excess of
1032 years, turbulent dynamics settles onto an attractor of dimension
less than 600. Such a theorem is of a little use for a working scientist,
especially if a numerical experiment indicates that within the span of
the best simulation the dynamics seems to have settled on a (transient?)
attractor of dimension less than 3.

1.9 A guide to exercises

God can afford to make mistakes. So can Dada!

Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way
to develop intuition about chaotic dynamics is by computing, and the
reader is urged to try to work through the essential exercises. As not to
fragment the text, the exercises are indicated by text margin boxes such
as the one on this margin, and collected at the end of each chapter. The

??, page ??problems that you should do have underlined titles. The rest (smaller

type) are optional. Difficult problems are marked by any number of ***
stars. If you solve one of those, it is probably worth a publication.2 By 2 To keep you on your toes, some of the

problems are nonsensical, and some of
the solutions given are plainly wrong

the end of a (two-semester) course you should have completed at least
three small projects: (a) compute everything for a one-dimensional re-
peller, (b) compute escape rate for a 3-disk game of pinball, (c) compute
a part of the quantum 3-disk game of pinball, or the helium spectrum, or
if you are interested in statistical rather than the quantum mechanics,
compute a transport coefficient. The essential steps are:

• Dynamics

(1) count prime cycles, Exercise 1.1
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(2) pinball simulator, Exercise 6.1, Exercise ??

(3) pinball stability, Exercise 8.1, Exercise ??

(4) pinball periodic orbits, Exercise ??, Exercise ??

(5) helium integrator, Exercise 2.10, Exercise ??

(6) helium periodic orbits, Exercise ??, Exercise ??

• Averaging, numerical

(1) pinball escape rate, Exercise ??

(2) Lyapunov exponent, Exercise ??

• Averaging, periodic orbits

(1) cycle expansions, Exercise ??, Exercise ??

(2) pinball escape rate, Exercise ??, Exercise ??

(3) cycle expansions for averages, Exercise ??, Exercise ??

(4) cycle expansions for diffusion, Exercise ??

(5) desymmetrization Exercise ??

(6) semiclassical quantization Exercise ??

(7) ortho-, para-helium, lowest eigen-energies Exercise ??

Solutions for some of the problems are given in Appendix ??. A
clean solution, a pretty figure, or a nice exercise that you contribute
to ChaosBook will be gratefully acknowledged. Often going through a
solution is more instructive than reading the chapter that problem is
supposed to illustrate.

Summary

This text is an exposition of the best of all possible theories of deter-
ministic chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how
small, will spread over the entire accessible state space. Hence the theory
focuses on describing the geometry of the space of possible outcomes,
and evaluating averages over this space, rather than attempting the
impossible: precise prediction of individual trajectories. The dynamics
of densities of trajectories is described in terms of evolution operators.
In the evolution operator formalism the dynamical averages are given by
exact formulas, extracted from the spectra of evolution operators. The
key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators pre-
sented here is based on the observation that the motion in dynamical
systems of few degrees of freedom is often organized around a few fun-
damental cycles. These short cycles capture the skeletal topology of the
motion on a strange attractor/repeller in the sense that any long orbit
can approximately be pieced together from the nearby periodic orbits
of finite length. This notion is made precise by approximating orbits
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by prime cycles, and evaluating the associated curvatures. A curva-
ture measures the deviation of a longer cycle from its approximation by
shorter cycles; smoothness and the local instability of the flow implies
exponential (or faster) fall-off for (almost) all curvatures. Cycle ex-
pansions offer an efficient method for evaluating classical and quantum
observables.

The critical step in the derivation of the dynamical zeta function was
the hyperbolicity assumption, i.e., the assumption of exponential shrink-
age of all strips of the pinball repeller. By dropping the ai prefactors
in (1.4), we have given up on any possibility of recovering the precise
distribution of starting x (which should anyhow be impossible due to
the exponential growth of errors), but in exchange we gain an effective
description of the asymptotic behavior of the system. The pleasant sur-
prise of cycle expansions (1.9) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of
cycles and their curvatures by a pinball game, but topics covered in
ChaosBook – unstable flows, Poincaré sections, Smale horseshoes, sym-
bolic dynamics, pruning, discrete symmetries, periodic orbits, averaging
over chaotic sets, evolution operators, dynamical zeta functions, spectral
determinants, cycle expansions, quantum trace formulas, zeta functions,
and so on to the semiclassical quantization of helium – should give the
reader some confidence in the broad sway of the theory. The formal-
ism should work for any average over any chaotic set which satisfies two
conditions:

1. the weight associated with the observable under consideration is
multiplicative along the trajectory,

2. the set is organized in such a way that the nearby points in the
symbolic dynamics have nearby weights.
The theory is applicable to evaluation of a broad class of quantities
characterizing chaotic systems, such as the escape rates, Lyapunov expo-
nents, transport coefficients and quantum eigenvalues. A big surprise is
that the semi-classical quantum mechanics of systems classically chaotic
is very much like the classical mechanics of chaotic systems; both are
described by zeta functions and cycle expansions of the same form, with
the same dependence on the topology of the classical flow.
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But the power of instruction is seldom of much efficacy, except
in those happy dispositions where it is almost superfluous.

Gibbon

Further reading

Nonlinear dynamics texts: This text aims to bridge
the gap between the physics and mathematics dynami-
cal systems literature. The intended audience is Henri
Roux, the perfect physics graduate student with a theo-
retical bent who does not believe anything he is told. As
a complementary presentation we recommend Gaspard’s
monograph [8] which covers much of the same ground in
a highly readable and scholarly manner.

As far as the prerequisites are concerned–ChaosBook
is not an introduction to nonlinear dynamics. Nonlinear
science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the
textbook by Strogatz [9], an introduction to the applied
mathematician’s visualization of flows, fixed points, man-
ifolds, bifurcations. It is the most accessible introduction
to nonlinear dynamics–a book on differential equations in
nonlinear disguise, and its broadly chosen examples and
many exercises make it a favorite with students. It is not
strong on chaos. There the textbook of Alligood, Sauer
and Yorke [10] is preferable: an elegant introduction to
maps, chaos, period doubling, symbolic dynamics, frac-
tals, dimensions–a good companion to ChaosBook. In-
troductions more comfortable to physicists are the text-
books by Ott [12], with the baker’s map used to illustrate
many key techniques in analysis of chaotic systems, and
by Tél and M. Gruiz [11], where chaotic dynamics is in-
troduced through classical mechanics. They are perhaps
harder than the above two as first books on nonlinear dy-
namics. Sprott [13] and Jackson [14] textbooks are very
useful compendia of the ’70s and onward ‘chaos’ literature
which we, in the spirit of promises made in Section 1.1,
tend to pass over in silence.

An introductory course should give students skills in
qualitative and numerical analysis of dynamical systems
for short times (trajectories, fixed points, bifurcations)
and familiarize them with Cantor sets and symbolic dy-
namics for chaotic systems. A good introduction to
numerical experimentation with physically realistic sys-
tems is Tufillaro, Abbott, and Reilly [15]. Korsch and
Jodl [16] and Nusse and Yorke [17] also emphasize hands-
on approach to dynamics. With this, and a graduate

level-exposure to statistical mechanics, partial differen-
tial equations and quantum mechanics, the stage is set
for any of the one-semester advanced courses based on
ChaosBook. The courses taught so far start out with the
introductory chapters on qualitative dynamics, symbolic
dynamics and flows, and then continue in different direc-
tions:

Deterministic chaos: Chaotic averaging, evolu-
tion operators, trace formulas, zeta functions, cycle ex-
pansions, Lyapunov exponents, billiards, transport co-
efficients, thermodynamic formalism, period doubling,
renormalization operators.

A graduate level introduction to statistical mechanics
from the dynamical point view is given by Dorfman [32];
the Gaspard monograph [8] covers the same ground in
more depth. Driebe monograph [33] offers a nice intro-
duction to the problem of irreversibility in dynamics. The
role of ‘chaos’ in statistical mechanics is critically dis-
sected by Bricmont in his highly readable essay “Science
of Chaos or Chaos in Science?” [34].

Spatiotemporal dynamical systems: Partial
differential equations for dissipative systems, weak am-
plitude expansions, normal forms, symmetries and bifur-
cations, pseudospectral methods, spatiotemporal chaos,
turbulence.

Quantum chaos: Semiclassical propagators, den-
sity of states, trace formulas, semiclassical spectral de-
terminants, billiards, semiclassical helium, diffraction,
creeping, tunneling, higher-order � corrections. For more
on this topic, hop to the quantum chaos introduction,
Chapter ??.

Periodic orbit theory: This book puts more
emphasis on periodic orbit theory than any other cur-
rent nonlinear dynamics textbook. The role of un-
stable periodic orbits was already fully appreciated by
Poincaré [18,19], who noted that hidden in the apparent
chaos is a rigid skeleton, a tree of cycles (periodic or-
bits) of increasing lengths and self-similar structure, and
suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much
of the mathematical work on the theory of the classical
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and quantum dynamical systems ever since. We refer the
reader to the reprint selection [20] for an overview of some
of that literature.

If you seek rigor: If you find ChaosBook not
rigorous enough, you should turn to the mathematics lit-
erature. The most extensive reference is the treatise by
Katok and Hasselblatt [21], an impressive compendium of
modern dynamical systems theory. The fundamental pa-
pers in this field, all still valuable reading, are Smale [22],
Bowen [23] and Sinai [25]. Sinai’s paper is prescient and
offers a vision and a program that ties together dynamical
systems and statistical mechanics. It is written for read-
ers versed in statistical mechanics. For a dynamical sys-
tems exposition, consult Anosov and Sinai [24]. Markov
partitions were introduced by Sinai in Ref. [26]. The
classical text (though certainly not an easy read) on the
subject of dynamical zeta functions is Ruelle’s Statistical
Mechanics, Thermodynamic Formalism [27]. In Ruelle’s
monograph transfer operator technique (or the ‘Perron-
Frobenius theory’) and Smale’s theory of hyperbolic flows
are applied to zeta functions and correlation functions.
The status of the theory from Ruelle’s point of view is
compactly summarized in his 1995 Pisa lectures [28]. Fur-
ther excellent mathematical references on thermodynamic
formalism are Parry and Pollicott’s monograph [29] with
emphasis on the symbolic dynamics aspects of the for-

malism, and Baladi’s clear and compact reviews of the
theory of dynamical zeta functions [30,31].

If you seek magic: ChaosBook resolutely
skirts number-theoretical magic such as spaces of con-
stant negative curvature, Poincaré tilings, modular do-
mains, Selberg Zeta functions, Riemann hypothesis, . . .
Why? While this beautiful mathematics has been very in-
spirational, especially in studies of quantum chaos, almost
no powerful method in its repertoire survives a transplant
to a physical system that you are likely to care about.

Sorry, no shmactals: ChaosBook skirts math-
ematics and empirical practice of fractal analysis, such
as Hausdorff and fractal dimensions. Addison’s introduc-
tion to fractal dimensions [36] offers a well-motivated en-
try into this field. While in studies of probabilistically
assembled fractals such as Diffusion Limited Aggregates
(DLA) better measures of ‘complexity’ are lacking, for
deterministic systems there are much better, physically
motivated and experimentally measurable quantities (es-
cape rates, diffusion coefficients, spectrum of helium, ...)
that we focus on here.

Rat brains: If you were wandering while reading
this introduction ‘what’s up with rat brains?’, the answer
is yes indeed, there is a line of research in neuronal dy-
namics that focuses on possible unstable periodic states,
described for example in Ref. [37–40].

Exercises

(1.1) 3-disk symbolic dynamics. As periodic tra-
jectories will turn out to be our main tool to breach
deep into the realm of chaos, it pays to start famil-
iarizing oneself with them now by sketching and
counting the few shortest prime cycles (we return
to this in Section ??). Show that the 3-disk pinball
has 3·2n itineraries of length n. List periodic orbits
of lengths 2, 3, 4, 5, · · ·. Verify that the shortest
3-disk prime cycles are 12, 13, 23, 123, 132, 1213,
1232, 1323, 12123, · · ·. Try to sketch them.

(1.2) Sensitivity to initial conditions. Assume

that two pinball trajectories start out parallel, but
separated by 1 Ångström, and the disks are of
radius a = 1 cm and center-to-center separation
R = 6 cm. Try to estimate in how many bounces
the separation will grow to the size of system (as-
suming that the trajectories have been picked so
they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score
(number of bounces) in a game without cheating,
by hook or crook (by the end of Chapter ?? you
should be in position to make very accurate esti-
mates).
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