Go with the flow

Poetry is what is lost in translation.
Robert Frost

(R. Mainieri, P. Cvitanovi¢ and E.A. Spiegel)

We start out with a recapitulation of the basic notions of dynamics. Our
aim is narrow; we keep the exposition focused on prerequisites to the ap-
plications to be developed in this text. We assume that the reader is
familiar with dynamics on the level of the introductory texts mentioned
in Section 7?7, and concentrate here on developing intuition about what a
dynamical system can do. It will be a coarse brush sketch—a full descrip-
tion of all possible behaviors of dynamical systems is beyond human ken.
Anyway, for a novice there is no shortcut through this lengthy detour;
a sophisticated traveler might prefer to skip this well-trodden territory
and embark upon the journey at Chapter ?7.

W fast track:
Chapter 77, p. 77
2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We
express our observations as numbers and record how they change with
time; given sufficiently detailed information and understanding of the
underlying natural laws, we see the future in the present as in a mirror.
The motion of the planets against the celestial firmament provides an
example. Against the daily motion of the stars from East to West,
the planets distinguish themselves by moving among the fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions—
latitudes and longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celes-
tial sphere suffices to completely specify the planet’s apparent motion.
All possible values for positions and velocities of the planets form the
phase space of the system. More generally, a state of a physical system,
at a given instant in time, can be represented by a single point in an ab-
stract space called state space or phase space M. As the system changes,
so does the representative point in state space. We refer to the evolution
of such points as dynamics, and the function f! which specifies where
the representative point is at time t as the evolution rule.

If there is a definite rule f that tells us how this representative point
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moves in M, the system is said to be deterministic. For a deterministic
dynamical system, the evolution rule takes one point of the state space
and maps it into exactly one point. However, this is not always possible.
For example, knowing the temperature today is not enough to predict
the temperature tomorrow; knowing the value of a stock today will not
determine its value tomorrow. The state space can be enlarged, in the
hope that in a sufficiently large state space it is possible to determine an
evolution rule, so we imagine that knowing the state of the atmosphere,
measured over many points over the entire planet should be sufficient to
determine the temperature tomorrow. Even that is not quite true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future,
so trajectories cannot intersect. We say ‘almost’ because there might
exist a set of measure zero (tips of wedges, cusps, etc.) for which a
trajectory is not defined. We may think such sets a nuisance, but it is
quite the contrary—they will enable us to partition state space, so that
the dynamics can be better understood.

Locally, the state space M looks like R?, meaning that d numbers
are sufficient to determine what will happen next. Globally, it may be a
more complicated manifold formed by patching together several pieces of
R?, forming a torus, a cylinder, or some other geometric object. When
we need to stress that the dimension d of M is greater than one, we may
refer to the point x € M as x; where i = 1,2,3,...,d. The evolution
rule f': M — M tells us where a point z is in M after a time interval
t.

The pair (M, f) constitute a dynamical system.

The dynamical systems we will be studying are smooth.  This is
expressed mathematically by saying that the evolution rule f! can be
differentiated as many times as needed. Its action on a point x is some-
times indicated by f(z,t) to remind us that f is really a function of two
variables: the time and a point in state space. Note that time is relative
rather than absolute, so only the time interval is necessary. This follows
from the fact that a point in state space completely determines all fu-
ture evolution, and it is not necessary to know anything else. The time
parameter can be a real variable (¢ € R), in which case the evolution is
called a flow, or an integer (¢ € Z), in which case the evolution advances
in discrete steps in time, given by iteration of a map. Actually, the
evolution parameter need not be the physical time; for example, a time-
stationary solution of a partial differential equation is parametrized by
spatial variables. In such situations one talks of a ‘spatial profile’ rather
than a ‘flow’.

Nature provides us with innumerable dynamical systems. They man-
ifest themselves through their trajectories: given an initial point xzq, the
evolution rule traces out a sequence of points x(t) = ft(zo), the trajec-
tory through the point zo = z(0). A trajectory is parameterized
by the time ¢ and thus belongs to (ff(xg),t) € M x R. By extension,
we can also talk of the evolution of a region M, of the state space: just
apply f! to every point in M; to obtain a new region f'(M;), as in



Fig. 2.1.

Because f! is a single-valued function, any point of the trajectory
can be used to label the trajectory. If we mark the trajectory by its
inital point zy, we are describing it in the Lagrangian coordinates. We
can regard the transport of the material point at ¢ = 0 to its current
point z(t) = f(z0) as a coordinate transformation from the Lagrangian
coordinates to the Fulerian coordinates.

The subset of points in M that belong to the (possibly infinite) tra-
jectory of a given point x is called the orbit of xy; we shall talk about
forward orbits, backward orbits, periodic orbits, etc.. For a flow, an
orbit is a smooth continuous curve; for a map, it is a sequence of points.

What are the possible trajectories? This is a grand question, and
there are many answers, chapters to follow offering some. Here is the
first attempt to classify all possible trajectories:

stationary:  fi(z) =z for all ¢
periodic:  fi(x) = fi*Tr(z) for a given minimum period T},
aperiodic:  ft(z) # f! (x) for all t # 1 .

The ancients tried to make sense of all dynamics in terms of periodic
motions; epicycles, integrable systems. The embarassing truth is that
for a generic dynamical systems almost all motions are aperiodic. So we
refine the classification by dividing aperiodic motions into two subtypes:
those that wander off, and those that keep coming back.

A point x € M is called a wandering point, if there exists an open
neighborhood M of x to which the trajectory never returns

fi(z) ¢ Mo for all ¢ >ty - (2.1)

In physics literature, the dynamics of such state is often referred to as
transient.

A periodic orbit (or a cycle) corresponds to a trajectory that returns
exactly to the initial point in a finite time. Periodic orbits form a very
small subset of the state space, in the same sense that rational numbers
are a set of zero measure on the unit interval.

Periodic orbits and stationary points are the simplest examples of
‘non-wandering’ invariant sets preserved by dynamics. Dynamics can
also preserve higher-dimensional smooth compact invariant manifolds;
most commonly encountered are the M-dimensional tori of Hamiltonian
dynamics, with notion of periodic motion generalized to quasiperiodic
(superposition of M incommesurate frequencies) motion on a smooth
torus, and families of solutions related by a continuous symmetry.

For times much longer than a typical ‘turnover’ time, it makes sense
to relax the notion of exact (quasi)periodicity, and replace it by the
notion of recurrence. A point is recurrent or non-wandering if for any
open neighborhood My of x and any time t,,;, there exists a later time
t, such that

fi(z) € My . (2.2)

In other words, the trajectory of a non-wandering point reenters the
neighborhood M, infinitely often. We shall denote by € the non-
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Fig. 2.1 (a) A trajectory traced out by
the evolution rule f*. Starting from the
state space point z, after a time ¢, the
point is at f¢(x). (b) The evolution rule
ftcan be used to map a region M; of
the state space into the region f(M;).
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wandering set of f, i.e., the union of all the non-wandering points of
M. The set €2, the non-wandering set of f, is the key to understanding
the long-time behavior of a dynamical system; all calculations under-
taken here will be carried out on non-wandering sets.

So much about individual trajectories. What about clouds of initial
points? If there exists a connected state space volume that maps into
itself under forward evolution (and you can prove that by the method
of Lyapunov functionals, or several other methods available in the lit-
erature), the flow is globally contracting onto a subset of M which we
shall refer to as the attractor. The attractor may be unique, or there can
coexist any number of distinct attracting sets, each with its own basin of
attraction, the set of all points that fall into the attractor under foward
evolution. The attractor can be a fixed point, a periodic orbit, aperiodic,
or any combination of the above. The most interesting case is that of an
aperiodic recurrent attractor, to which we shall refer loosely as a strange
attractor. We say ‘loosely’, as will soon become apparent that diagnos-
ing and proving existence of a genuine, card-carrying strange attractor
is a highly nontrivial undertaking.

Conversely, if we can enclose the non-wandering set €2 by a connected
state space volume Mg and then show that almost all points within My,
but not in €2, eventually exit M, we refer to the non-wandering set {2 as
a repeller. An example of a repeller is not hard to come by—the pinball
game of Section 1.3 is a simple chaotic repeller.

It would seem, having said that the periodic points are so exceptional
that almost all non-wandering points are aperiodic, that we have given
up the ancients’ fixation on periodic motions. Nothing could be further
from truth. As longer and longer cycles approximate more and more
accurately finite segments of aperiodic trajectories, we shall establish
control over non-wandering sets by defining them as the closures of the
union of all periodic points.

Before we can work out an example of a non-wandering set and get a
better grip on what chaotic motion might look like, we need to ponder
flows in a little more depth.

2.2 Flows

There is no beauty without some strangeness.
William Blake

A flow is a continuous-time dynamical system. The evolution rule f?is a
family of mappings of M — M parameterized by ¢ € R. Because t rep-
resents a time interval, any family of mappings that forms an evolution
rule must satisfy:

(a) f%x) =2 (in 0 time there is no motion)
(b) fi(ft (x)) = f(2)  (the evolution law is the same at all times)
(c) the mapping (z,t) — f*(z) from M x R into M is continuous.



The family of mappings f*(x) thus forms a continuous (forward semi-)
group. Why ‘semi-’group? It may fail to form a group if the dynamics is
not reversible, and the rule f*(x) cannot be used to rerun the dynamics
backwards in time, with negative ¢; with no reversibility, we cannot
define the inverse f~!(f!(x)) = f%(x) = x, in which case the family of
mappings f(x) does not form a group. In exceedingly many situations of
interest—for times beyond the Lyapunov time, for asymptotic attractors,
for dissipative partial differential equations, for systems with noise, for
non-invertible maps-the dynamics cannot be run backwards in time,
hence, the circumspect emphasis on semigroups. On the other hand,
there are many settings of physical interest, where dynamics is reversible
(such as finite-dimensional Hamiltonian flows), and where the family of
evolution maps f? does form a group.

For infinitesimal times, flows can be defined by differential equations.
We write a trajectory as

a(t+17) = fF7(x0) = f(f(wo,1),7) (2.3)
and express the time derivative of a trajectory at point x(¢),
dx .
S| = 0,70, 1),y = (1), (2.9
Tlr=0

as the time derivative of the evolution rule, a vector evaluated at the
same point. By considering all possible trajectories, we obtain the vector
Z(t) at any point x € M. This vector field is a (generalized) velocity

field:
v(x) = @(t). (2.5)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all famil-
iar procedures for obtaining a set of differential equations for the vector
field v(x) that describes the evolution of a mechanical system. Equations
of mechanics may appear different in form from (2.5), as they are often
involve higher time derivatives, but an equation that is second or higher
order in time can always be rewritten as a set of first order equations.

We are concerned here with a much larger world of general flows,
mechanical or not, all defined by a time-independent vector field (2.5).
At each point of the state space a vector indicates the local direction in
which the orbit evolves. The length of the vector |v(z)| is proportional
to the speed at the point z, and the direction and length of v(z) changes
from point to point. When the state space is a complicated manifold
embedded in R?, one can no longer think of the vector field as being
embedded in the state space. Instead, we have to imagine that each
point x of state space has a different tangent plane 7'M, attached to it.
The vector field lives in the union of all these tangent planes, a space
called the tangent bundle T M.

Example 2.1 A two-dimensional vector field v(z):
A simple example of a flow is afforded by the unforced Duffing system

a(t) = y(t)

y(t) —0.15y(t) + 2(t) — z(t)* (2.6)
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Fig. 2.2 (a) The two-dimensional vec-
tor field for the Duffing system (2.6),
together with a short trajectory seg-
ment. (b) The flow lines. Each ‘comet’
represents the same time interval of a
trajectory, starting at the tail and end-
itz at the head. The longer the comet,
g fasters tHRAE8W in that region.
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Fig. 2.3 A trajectory of the Rossler
flow at time ¢t = 250. (G. Simon)

B 2.5, page 41

plotted in Fig. 2.2. The velocity vectors are drawn superimposed over the
configuration coordinates (x(t),y(t)) of state space M, but they belong to a
different space, the tangent bundle T M.

If  o(ze) =0, (2.7)

x4 1s an equilibrium point (also referred to as a stationary, fized, critical,
stagnation point, zero of v, or steady state), and the trajectory remains
forever stuck at ;. Otherwise the trajectory passing through z( at time
t = 0 can be obtained by integrating the equations (2.5):

xm:f@@:%+ldmm@» 2(0) = a0, (28)

We shall consider here only autonomous flows, i.e., flows for which
the velocity field v; is stationary, not explicitly dependent on time. A
non-autonomous system

dy

— =w(y,7), 2.9

Y — () (29)
can always be converted into a system where time does not appear explic-
itly. To do so, extend (‘suspend’) state space to be (d 4 1)-dimensional
by defining x = {y, 7}, with a stationary vector field

v@)z{qﬁ%T)]. (2.10)

The new flow & = v(z) is autonomous, and the trajectory y(7) can be
read off z(t) by ignoring the last component of x.

Example 2.2 A flow with a strange attractor:

The Duffing flow of Fig. 2.2 is bit of a bore—every trajectory ends up in one
of the two attractive equilibrium points. Let’s construct a flow that does not
die out, but exhibits a recurrent dynamics. Start with a harmonic oscillator

r=-y, y=x. (2.11)
The solutions are re*, re™*, and the whole z-y plane rotates with constant
angular velocity 6 = 1, period T' = 2w. Now make the system unstable by
adding

r=-y, y=x+ay, a>0, (2.12)
or, in radial coordinates, © = arsin®6, § = 1 + (a/2)sin260. The plane is
still rotating with the same average angular velocity, but trajectories are now
spiraling out. Any flow in the plane either escapes, falls into an attracting
equilibrium point, or converges to a limit cycle. Richer dynamics requires at
least one more dimension. In order to prevent the trajectory from escaping to
00, kick it into 3rd dimension when z reaches some value ¢ by adding

z=b+z(zx—c), c>0. (2.13)

As x crosses ¢, z shoots upwards exponentially, z ~ et In order to bring
it back, start decreasing x by modifying its equation to

T=—-y—=z.



Large z drives the trajectory toward x = 0; there the exponential contraction
by e~ kicks in, and the trajectory drops back toward the z-y plane. This
frequently studied example of an autonomous flow is called the Réssler system
(for definitiveness we fix the parameters a, b, ¢ in what follows):

= —y—=z
T +ay
= b+zx—rc), a=b=02, c=5.T7. (2.14)

The system is as simple as they get—it would be linear, were it not for the
sole bilinear term zz. Even for so ‘simple’ a system the nature of long-time
solutions is far from obvious.

There are two repelling equilibrium points (2.7):

2 _
. ci\/ga 4ab(a7_171)
(z7,y",27) = (0.0070, —0.0351, 0.0351)
(9", 2T) = (5.6929, —28.464, 28.464 ) (2.15)

One is close to the origin by construction—the other, some distance away, exists
because the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical inte-
gration. A typical numerically integrated long-time trajectory is sketched in
Fig. 2.3.  As we shall show in Section 4.1, for this flow any finite volume of
initial conditions shrinks with time, so the flow is contracting. =~ Trajectories
that start out sufficiently close to the origin seem to converge to a strange
attractor. We say ‘seem’ as there exists no proof that such an attractor is
asymptotically aperiodic—it might well be that what we see is but a long tran-
sient on a way to an attractive periodic orbit. For now, accept that Fig. 2.3
and similar figures in what follows are examples of ‘strange attractors.” (con-
tinued in Exercise 2.8 and Example 3.3) (Rytis
Pagkauskas)

W fast track:
Chapter 3, p. 45
2.3 Computing trajectories

On two occasions I have been asked [by members of Parlia-
ment], 'Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?’ I am not able rightly
to apprehend the kind of confusion of ideas that could provoke
such a question.

Charles Babbage

You have not learned dynamics unless you know how to integrate nu-
merically whatever dynamical equations you face. Sooner or later, you
need to implement some finite time-step prescription for integration of
the equations of motion (2.5). The simplest is the Euler integrator which

4

4
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advances the trajectory by d7 x velocity at each time step:

x; — x; + v;(z)oT. (2.16)

This might suffice to get you started, but as soon as you need higher
numerical accuracy, you will need something better. There are many ex-
cellent reference texts and computer programs that can help you learn
how to solve differential equations numerically using sophisticated nu-

@ 2.6, page 41

merical tools, such as pseudo-spectral methods or implicit methods. If

a ‘sophisticated’ integration routine takes days and gobbles up terabits
of memory, you are using brain-damaged high level software. Try writing
a few lines of your own Runge-Kutta code in some mundane everyday

B 2.7, page 41 language.

While you absolutely need to master the requisite numer-

ical methods, this is neither the time nor the place to expound upon

@ 2.9, page 42

them; how you learn them is your business.

And if you have developed

some nice routines for solving problems in this text or can point another

B 2.10, page 42

Summary

student to some, let us know.

Chaotic dynamics with a low-dimensional attractor can be visualized as

The problems that you should do
have underlined titles. The rest
(smaller type) are optional. Difficult
problems are marked by any number
of *** gtars.

a succession of nearly periodic but unstable motions. In the same spirit,
turbulence in spatially extended systems can be described in terms of
recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system through a repertoire of unstable patterns; as
we watch a turbulent system evolve, every so often we catch a glimpse

of a familiar pattern. For any finite spatial resolution and finite time the
system follows approximately a pattern belonging to a finite repertoire
of possible patterns, and the long-term dynamics can be thought of as
a walk through the space of such patterns. Recasting this image into
mathematics is the subject of this book.

Further reading

Model ODE and PDE systems. The Duffing
system (2.6) arises in the study of electronic circuits [2].
Rossler system was introduced in Ref. [3] as a simplified
set of equations describing no particular physical system,
but capturing the essence of chaos in a simplest imagin-
able smooth flow. Otto Rossler, a man of classical ed-
ucation, was inspired in this quest by that rarely cited
grandfather of chaos, Anaxagoras (456 B.C.). This, and
references to earlier work can be found in Refs. [5,7, 8].
We recommend in particular the inimitable Abraham and
Shaw illustrated classic [6] for its beautiful sketches of the

Rossler and many other flows.

Diagnosing chaos. In Section 1.3.1 we have
stated that a deterministic system exhibits ‘chaos’ if its
dynamics is locally unstable (positive Lyapunov expo-
nent) and globally mixing (positive entropy). In Sec-
tion 7?7 we shall define Lyapunov exponents, and dis-
cuss their evaluation, but already at this point it would
be handy to have a few quick numerical methods to di-
agnose chaotic dynamics. Laskar’s frequency analysis
method [12] is useful for extracting quasi-periodic and
weakly chaotic regions of state space in Hamiltonian dy-



namics with many degrees of freedom. For references to
several other numerical methods, see Ref. [13].
Dynamical systems software: J.D. Meiss [10]
has many years maintained Sci.nonlinear FAQ which is
now in part superseded by the SIAM Dynamical Systems
website www.dynamicalsystems.org. The website glos-
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sary contains most of Meiss’s FAQ plus new ones, and a
up-to-date software list [11], with links to DSTool, xpp,
AUTO, etc.. Springer on-line Encyclopaedia of Math-
ematics maintains links to Dynamical systems software
packages on eom.springer.de/D/d130210.htm.

Exercises

(2.1) Trajectories do not intersect. A trajectory
in the state space M is the set of points one gets by
evolving z € M forwards and backwards in time:

Co={yeM: fi(z) =y fort € R}.

Show that if two trajectories intersect, then they
are the same curve.

(2.2) Evolution as a group. The trajectory evolu-

tion f! is a one-parameter semigroup where

ft+s — ft o fs
Show that it is a commutative semigroup.
In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter un-
der addition. Can you think of any other (semi-
)group replacing time?
Almost ODE’s.

(a) Consider the point x on R evolving according
& = e”. Is this an ordinary differential equa-
tion?
(b) Is & = z(x(t)) an ordinary differential equa-
tion?

(¢) What about © = x(t+1)?

All equilibrium points are fixed points.
Show that a point of a vector field v where the
velocity is zero is a fixed point of the dynamics f*.
Gradient systems. Gradient systems (or ‘po-
tential problems’) are a simple class of dynamical
systems for which the velocity field is given by the
gradient of an auxiliary function, the ‘potential’ ¢

& =—Vo(z)
where € R?%, and ¢ is a function from that space
to the reals R.

(a) Show that the velocity of the particle is in the
direction of most rapid decrease of the func-
tion ¢.

(b) Show that all extrema of ¢ are fixed points of
the flow.

(c) Show that it takes an infinite amount of time
for the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gra-
dient systems.

(2.6) Runge-Kutta integration. Implement the
fourth-order Runge-Kutta integration formula (see,
for example, Ref. [9]) for & = v(z):

ki ko ks ki

+0(87°)

Tnt1 A R R
ki = orv(za), ko = 01v(zn + k1/2)
ks = 01v(xn + k2/2)
ke = O01v(xn + k3). (2.17)

If you already know your Runge-Kutta, program

what you believe to be a better numerical integra-

tion routine, and explain what is better about it.
(2.7) Rossler system.  Use the result of Exercise 2.6
or some other integration routine to integrate nu-
merically the Rossler system (2.14). Does the result
look like a ‘strange attractor’?

(2.8) Equilibria of the Rossler system.

(a) Find all equilibrium points (z?,y9, 27) of the
Rossler system (2.14). How many are there?

(b) Assume that b = a. As we shall see, some sur-
prisingly large, adn surprisingly small num-
bers arise in this system. In order to under-
stand their size, introduce parameters

e=ajc, D=1—-14€, p* = (1+VD)/2.
(2.18)



(2.9) Can you integrate me?
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Express all the equilibria in terms of
(¢ ¢, D7pi). Expand equilibria to the first or-
der in e. Note that it makes sense because for
a=5b=02 ¢c=57in (2.14), ¢ ~ 0.03.
(continued as Exercise 3.1)

(Rytis Paskauskas)
Integrating equa-
tions numerically is not for the faint of heart. It is
not always possible to establish that a set of non-
linear ordinary differential equations has a solution
for all times and there are many cases were the so-
lution only exists for a limited time interval, as, for
example, for the equation & = 2%, z(0) = 1.

(a) For what times do solutions of
&= z(z(t))

exist? Do you need a numerical routine to
answer this question?

(b) Let’s test the integrator you wrote in Exer-

cise 2.6. The equation & = —x with initial
conditions z(0) = 2 and £ = 0 has as so-
lution x(t) = e (1 4+ ¢**). Can your inte-

grator reproduce this solution for the interval
t € [0,10]? Check you solution by plotting
the error as compared to the exact result.

(¢) Now we will try something a little harder.
The equation is going to be third order

#4063 +& — |z|+1=0,

which can be checked—numerically—to be
chaotic. As initial conditions we will always
use #(0) = #(0) = z(0) = 0. Can you re-
produce the result z(12) = 0.8462071873 (all
digits are significant)? Even though the equa-
tion being integrated is chaotic, the time in-
tervals are not long enough for the exponen-
tial separation of trajectories to be noticeble
(the exponential growth factor is ~ 2.4).

(d) Determine the time interval for which the so-
lution of & = 2, 2(0) = 1 exists.

(2.10) Classical collinear helium dynamics. In or-

der to apply periodic orbit theory to quantization
of helium we shall need to compute classical peri-
odic orbits of the helium system. In this exercise we
commence their evaluation for the collinear helium
atom (5.6)

12_2 Z+ 1
2 2 1 72 r1 1y

The nuclear charge for helium is Z = 2. Col-
inear helium has only 3 degrees of freedom and
the dynamics can be visualized as a motion in the
(r1,72), i > 0 quadrant. In (r1,72)-coordinates
the potential is singular for r; — 0 nucleus-electron
collisions. These 2-body collisions can be regu-
larized by rescaling the coordinates, with details
given in Section 7.3. In the transformed coordi-
nates (z1,w2,p1,p2) the Hamiltonian equations of
motion take the form

2 2
A= o 2- g+ 3]
2 2
P, = 2@{2—%— 2(1+%)}
Q1 = iPngy szisz%- (2.19)

where R = (QF + Q%)lm,

(a) Integrate the equations of motion by the
fourth order Runge-Kutta computer routine
of Exercise 2.6 (or whatever integration rou-
tine you like). A convenient way to visual-
ize the 3-d state space orbit is by projecting
it onto the 2-dimensional (r1(t),r2(t)) plane.
(continued as Exercise 3.4)

(Gregor Tanner, Per Rosenqvist)
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