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Quantum Field Theory Mark Srednicki

33: Representations of the Lorentz Group

Prerequisite: 2

In section 2, we saw that we could define a unitary operator U(Λ) that

implemented a Lorentz transformation on a scalar field ϕ(x) via

U(Λ)−1ϕ(x)U(Λ) = ϕ(Λ−1x) . (1)

As shown in section 2, this implies that the derivative of the field transforms

as

U(Λ)−1∂µϕ(x)U(Λ) = Λµ
ρ∂̄

ρϕ(Λ−1x) , (2)

where the bar on he derivative means that it is with respect to the argument

x̄ = Λ−1x.

Eq. (2) suggests that we could define a vector field Aµ(x) which would

transform as

U(Λ)−1Aρ(x)U(Λ) = Λµ
ρA

ρ(Λ−1x) , (3)

or a tensor field Bµν(x) which would transform as

U(Λ)−1Bµν(x)U(Λ) = Λµ
ρΛ

ν
σB

ρσ(Λ−1x) . (4)

Note that if Bµν is either symmetric, Bµν(x) = Bνµ(x), or antisymmetric,

Bµν(x) = −Bνµ(x), then this symmetry property is preserved by the Lorentz

transformation. Also, if we take the trace to get T (x) ≡ gµνB
µν(x), then,

using gµνΛ
µ
ρΛ

ν
σ = gρσ, we find that T (x) transforms like a scalar field,

U(Λ)−1T (x)U(Λ) = T (Λ−1x) . (5)

Thus, given a tensor field Bµν(x) with no particular symmetry, we can write

Bµν(x) = Aµν(x) + Sµν(x) + 1
4
gµνT (x) , (6)
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where Aµν is antisymmetric (Aµν = −Aνµ) and Sµν is symmetric (Sµν = Sνµ)

and traceless (gµνS
µν = 0). The key point is that the fields Aµν , Sµν , and T

do not mix with each other under Lorentz transformations.

Is it possible to further break apart these fields into still smaller sets that

do not mix under Lorentz transformations? How do we make this decomposi-

tion into irreducible representations of the Lorentz group for a field carrying

n vector indices? Are there any other kinds of indices we could consistently

assign to a field? If so, how do these behave under a Lorentz transformation?

The answers to these questions are to be found in the theory of group

representations. Let us see how this works for the Lorentz group in four

spacetime dimensions.

For an infinitesimal transformation Λµ
ν = δµν + δωµν , we can write

U(1+δω) = I + i
2
δωµνM

µν , (7)

where Mµν = −Mνµ is a set of hermitian operators, the generators of the

Lorentz group. As shown in section 2, these obey the commutation relations

[Mµν ,Mρσ] = i
(
gµρMνσ − (µ↔ν)

)
− (ρ↔σ) . (8)

We can identify the components of the angular momentum operator ~J as

Ji ≡ 1
2
εijkM

jk and the components of the boost operator ~K as Ki ≡ M i0.

We then find from eq. (8) that

[Ji, Jj] = +iεijkJk , (9)

[Ji, Kj] = +iεijkKk , (10)

[Ki, Kj] = −iεijkJk . (11)

We would now like to find all the representations of eqs. (9–11). A repre-

sentation is a set of finite-dimensional matrices with the same commutation

relations. For example, if we restrict our attention to eq. (9) alone, we know

(from standard results in the quantum mechanics of angular momentum)

that we can find three (2j+1) × (2j+1) hermitian matrices J1, J2, and J3

that obey eq. (9), and that the eigenvalues of (say) J3 are −j,−j+1, . . . ,+j,

where j has the possible values 0, 1
2
, 1, . . . . We further know that these ma-

trices constitute all of the inequivalent, irreducible representations of SO(3),
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the rotation group in three dimensions. (Inequivalent means not related by

a unitary transformation; irreducible means cannot be made block-diagonal

by a unitary transformation.) We would like to extend these conclusions to

encompass the full set of eqs. (9–11).

In order to do so, it is helpful to define some nonhermitian operators

whose physical significance is obscure, but which simplify the commutation

relations. These are

Ni ≡ 1
2
(Ji − iKi) , (12)

N †i ≡ 1
2
(Ji + iKi) . (13)

In terms of Ni and N †i , eqs. (9–11) become

[Ni, Nj ] = iεijkNk , (14)

[N †i , N
†
j ] = iεijkN

†
k , (15)

[Ni, N
†
j ] = 0 . (16)

We recognize these as the commutation relations of two independent SO(3)

groups [or, equivalently, SU(2); see section 32]. Thus the Lorentz group in

four dimensions is equivalent to SO(3)×SO(3). And, as just discussed, we

are already familiar with the representation theory of SO(3). We therefore

conclude that the representations of the Lorentz group in four spacetime

dimensions are specified by two numbers n and n′, each a nonnegative integer

or half-integer.

This turns out to be correct, but there is a complication. To derive the

usual representation theory of SO(3), as is done in any text on quantum

mechanics, we need to use the fact that the components Ji of the angular

momentum operator are hermitian. The components Ni of eq. (13), on the

other hand, are not. This means that we have to redo the usual derivation

of the representations of SO(3), and see what changes.

As we have already noted, the final result is the naive one, that the

representations of the Lorentz group in four dimensions are the same as the

representations of SO(3)×SO(3). Those uninterested in the (annoyingly com-

plicated) details can skip ahead all the way ahead to the last four paragraphs

of this section.
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We begin by noting that ~N2 commutes with Ni; this is easily derived

from eq. (14). Similarly, ~N †2 commutes with N †i . Eq. (16) then implies that
~N2, N3, ~N †2, and N †3 are all mutually commuting. Therefore, we can define

a set of simultaneous eigenkets |n,m;n′, m′〉, where the eigenvalues of ~N2,

N3, ~N †2, and N †3 are f(n), m, f(n′), and m, respectively. [Later we will

see that n and n′ must be nonnegative integers or half-integers, and that

f(n) = n(n+1), as expected.] We also define a set of bra states 〈n,m;n′, m′|
that, by definition, obey

〈n2, m2;n
′
2, m

′
2|n1, m1;n′1, m

′
1〉 = δnß2nß1

δmß2mß1
δn′

ß2
n′

ß1
δm′

ß2
m′

ß1
≡ ∆21 (17)

and ∑
|n,m;n′, m′〉〈n,m;n′, m′| = 1 . (18)

In eq. (18), the sum is over all allowed values of n, m, n′, and m′; our goal is

to determine these allowed values.

From the discussion so far, we can conclude that

〈n2, m2;n
′
2, m

′
2| ~N2 |n1, m1;n′1, m

′
1〉 = f(n1) ∆21 , (19)

〈n2, m2;n
′
2, m

′
2|N3 |n1, m1;n′1, m

′
1〉 = m1 ∆21 , (20)

〈n2, m2;n′2, m
′
2| ~N †2 |n1, m1;n′1, m

′
1〉 = f(n′1) ∆21 , (21)

〈n2, m2;n
′
2, m

′
2|N3 |n1, m1;n′1, m

′
1〉 = m′1 ∆21 . (22)

Note that we have not yet made any assumptions about the properties of

the states under hermitian conjugation. From eqs. (14) and (15), we see that

hermitian conjugation exchanges the two SO(3) groups. Therefore, we must

have

|n,m;n′, m′〉† = 〈n′, m′;n,m| , (23)

〈n,m;n′, m′|† = |n′, m′;n,m〉 , (24)

up to a possible phase factor that turns out to be irrelevant. Compare the

ordering of the labels in eqs. (23) and (24) with those in eqs. (17) and (18); a

state |n,m;n′, m′〉 has zero inner product with its own hermitian conjugate

if n 6= n′ or m 6= m′.
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Next, take the hermitian conjugates of eqs. (19) and (20), using eqs. (23)

and (24). We get

〈n′1, m′1;n1, m1| ~N †2 |n′2, m′2;n2, m2〉 = [f(n1)]
∗∆21 , (25)

〈n′1, m′1;n1, m1|N †3 |n′2, m′2;n2, m2〉 = m∗1 ∆21 , (26)

Comparing eqs. (25) and (26) with eqs. (21) and (22), we find that the allowed

values of f(n) and m are real.

We now define the raising and lowering operators

N± ≡ N1 ± iN2 , (27)

(N †)± ≡ N †1 ± iN †2 ; (28)

note that

(N±)† = (N †)∓ . (29)

The commutation relations (14) become

[N3, N±] = ±N± , (30)

[N+, N−] = 2N3 , (31)

plus the equivalent with N → N †. By inserting a complete set of states

into eq. (30), and mimicking the usual procedure in quantum mechanics, it

is possible to show that

〈n2, m2+1;n′2, m
′
2|N+ |n1, m1;n′1, m

′
1〉 = λ+(n1, m1) ∆21 , (32)

〈n1, m1;n′1, m
′
1|N− |n2, m2+1;n′2, m

′
2〉 = λ−(n1, m1) ∆21 , (33)

where λ+(n,m) and λ−(n,m) are functions to be determined. By inserting

a complete set of states into eq. (31), and using eqs. (32) and (33), we can

show that

λ+(n,m−1)λ−(n,m−1) − λ+(n,m)λ−(n,m) = 2m . (34)

The solution of this recursion relation is

λ+(n,m)λ−(n,m) = C(n) −m(m+1) , (35)

7



where C(n) is an arbitrary function of n.

Next we need the parity operator P , introduced in section 23. From the

discussion there, we can conclude that

P−1MµνP = Pµ
ρPν

σM
ρσ , (36)

where

Pµ
ν =




+1
−1

−1
−1


 . (37)

Eq. (36) implies

P−1JiP = +Ji , (38)

P−1KiP = −Ki , (39)

or, equivalently,

P−1NiP = N †i , (40)

P−1N †i P = Ni . (41)

Since P exchanges Ni and N †i , it must be that

P |n,m;n′, m′〉 = |n′, m′;n,m〉 , (42)

P−1|n,m;n′, m′〉 = |n′, m′;n,m〉 , (43)

up to a possible phase factor that turns out to be irrelevant. Taking the

hermitian conjugate of eqs. (42) and (43), we get

〈n′, m′;n,m|P−1 = 〈n,m;n′, m′| , (44)

〈n′, m′;n,m|P = 〈n,m;n′, m′| , (45)

where we have used the fact that P is unitarity: P † = P−1.

Now we can take eq. (32) and insert PP−1 on either side of N+ to get

λ+(n1, m1) ∆21 = 〈n2, m2+1;n′2, m
′
2|PP−1N+PP

−1 |n1, m1;n′1, m
′
1〉

= 〈n′2, m′2;n2, m2+1|P−1N+P |n′1, m′1;n1, m1〉
= 〈n′2, m′2;n2, m2+1| (N †)+ |n′1, m′1;n1, m1〉 . (46)
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In the second line, we used eqs. (43) and (45). In the third, we used eq. (40).

Now taking the hermitian conjugate of eq. (46), and using eqs. (23), (24), and

(29), we find

〈n1, m1;n′1, m
′
1|N− |n2, m2+1;n′2, m

′
2〉 = [λ+(n1, m1)]∗∆21 . (47)

Comparing eq. (47) with eq. (33), we see that

λ−(n,m) = [λ+(n,m)]∗ . (48)

This is the final ingredient. Putting eq. (48) into eq. (35), we get

|λ+(n,m)|2 = C(n) −m(m+1) . (49)

From here, everything can be done by mimicking the usual procedure in the

quantum mechanics of angular momentum. We see that the left-hand side of

eq. (49) is real and nonnegative, while the right-hand side becomes negative

for sufficiently large |m|. This is not a problem if there are two values of

m, differing by an integer, for which λ+(n,m) is zero. From this we can

deduce that the allowed values of m are real integers or half-integers, and

that if we choose C(n) = n(n+1), then n is an integer or half-integer such

that the allowed values of m are −n, −n+1, . . . , +n. We can also show that

f(n) = C(n) = n(n+1). Thus the representations of the Lorentz group in

four dimensions are just the same as those of SO(3)×SO(3).

We will label these representations as (2n+1, 2n′+1); the number of com-

ponents of a representation is then (2n+1)(2n′+1). Different components

within a representation can also be labeled by their angular momentum rep-

resentations. To do this, we first note that, from eqs. (12) and (13), we have
~J = ~N + ~N †. Thus, deducing the allowed values of j given n and n′ becomes

a standard problem in the addition of angular momenta. The general result

is that the allowed values of j are |n−n′|, |n−n′|+1, . . . , n+n′, and each of

these values appears exactly once.

The four simplest and most often encountered representations are (1, 1),

(2, 1), (1, 2), and (2, 2). These are given special names:

(1, 1) = Scalar or singlet

9



(2, 1) = Left-handed spinor

(1, 2) = Right-handed spinor

(2, 2) = Vector (50)

It may seem a little surprising that (2, 2) is to be identified as the vector rep-

resentation. To see that this must be the case, we first note that the vector

representation is irreducible: all the components of a four-vector mix with

each other under a general Lorentz transformation. Secondly, the vector rep-

resentation has four components. Therefore, the only candidate irreducible

representations are (4, 1), (1, 4), and (2, 2). The first two of these contain

angular momenta j = 3
2

only, whereas (2, 2) contains j = 0 and j = 1. This

is just right for a four-vector, whose time component is a scalar under spatial

rotations, and whose space components are a three-vector.

In order to gain a better understanding of what it means for (2, 2) to be

the vector representation, we must first investigate the spinor representations

(1, 2) and (2, 1), which contain angular momenta j = 1
2

only.

Problems

33.1) Express Aµν(x), Sµν(x), and T (x) in terms of Bµν(x).

33.2) Verify that eqs. (14–16) follow from eqs. (9–11).
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Quantum Field Theory Mark Srednicki

34: Left- and Right-Handed Spinor Fields

Prerequisite: 33

Consider a left-handed spinor field ψa(x), also known as a left-handed

Weyl field, which is in the (2, 1) representation of the Lorentz group. Here

the index a is a left-handed spinor index that takes on two possible values.

Under a Lorentz transformation, we have

U(Λ)−1ψa(x)U(Λ) = La
b(Λ)ψb(Λ

−1x) , (51)

where La
b(Λ) is a matrix in the (2, 1) representation. These matrices satisfy

the group composition rule

La
b(Λ1)Lb

c(Λ2) = La
c(Λ1Λ2) . (52)

For an infinitesimal transformation Λµ
ν = δµν + δωµν , we can write

La
b(1+δω) = δa

b + i
2
δωµν(S

µν
L

)a
b , (53)

where (Sµν
L

)a
b = −(Sνµ

L
)a
b is a set of 2 × 2 matrices that obey the same

commutation relations as the generators Mµν , namely

[Sµν
L
, Sρσ

L
] = i

(
gµρSνσ

L
− (µ↔ν)

)
− (ρ↔σ) . (54)

Eq. (51) becomes

[ψa(x),Mµν ] = −i(xµ∂ν−xν∂µ)ψa(x) + (Sµν
L

)a
bψb(x) , (55)

where U(1+δω) = I + i
2
δωµνM

µν . The first term on the right-hand side of

eq. (55) would also be present for a scalar field, and is not the focus of our
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current interest; we will suppress it by evaluating the fields at the space-

time origin, xµ = 0. Recalling that M ij = εijkJk, where Jk is the angular

momentum operator, we have

εijk[ψa(0), Jk] = (Sij
L

)a
bψb(0) . (56)

Recall that the (2, 1) representation of the Lorentz group includes angular

momentum j = 1
2

only. For a spin-one-half operator, the standard convention

is that the matrix on the right-hand side of eq. (56) is 1
2
εijkσk, where σk is a

Pauli matrix:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (57)

We therefore conclude that

(Sij
L

)a
b = 1

2
εijkσk . (58)

Thus, for example, setting i=1 and j=2 yields (S12
L

)a
b = 1

2
ε12kσk = 1

2
σ3,

where the subscript a is the row index (and the superscript b is the column

index) of the matrix 1
2
σ3. Therefore, (S12

L
)1

1 = +1
2
, (S12

L
)2

2 = −1
2
, and

(S12
L

)1
2 = (S12

L
)2

1 = 0.

Once we have the (2, 1) representation matrices for the angular momen-

tum operator Ji, we can easily get them for the boost operator Kk = Mk0.

This is because Jk = Nk + N †k and Kk = i(Nk − N †k), and, in the (2, 1)

representation, N †k is zero. Therefore, the representation matrices for Kk are

simply i times those for Jk, and so

(Sk0
L

)a
b = 1

2
iσk . (59)

Now consider taking the hermitian conjugate of the left-handed spinor

field ψa(x). Recall that hermitian conjugation swaps the two SO(3) factors

in the Lorentz group. Therefore, the hermitian conjugate of a field in the

(2, 1) representation should be a field in the (1, 2) representation; such a field

is called a right-handed spinor field, or a right-handed Weyl field. We will

distinguish the indices of the (1, 2) representation from those of the (2, 1)

representation by putting dots over them. Thus, we write

[ψa(x)]† = ψ†ȧ(x) . (60)
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Under a Lorentz transformation, we have

U(Λ)−1ψ†ȧ(x)U(Λ) = Rȧ
ḃ(Λ)ψ†

ḃ
(Λ−1x) , (61)

where Rȧ
ḃ(Λ) is a matrix in the (1, 2) representation. These matrices satisfy

the group composition rule

Rȧ
ḃ(Λ1)Rḃ

ċ(Λ2) = Rȧ
ċ(Λ1Λ2) . (62)

For an infinitesimal transformation Λµ
ν = δµν + δωµν , we can write

Rȧ
ḃ(1+δω) = δȧ

ḃ + i
2
δωµν(S

µν
R

)ȧ
ḃ , (63)

where (Sµν
R

)ȧ
ḃ = −(Sνµ

R
)ȧ
ḃ is a set of 2 × 2 matrices that obey the same

commutation relations as the generators Mµν . We then have

[ψ†ȧ(0),Mµν ] = (Sµν
R

)ȧ
ḃψ†

ḃ
(0) . (64)

Taking the hermitian conjugate of this equation, we get

[Mµν , ψa(0)] = [(Sµν
R

)ȧ
ḃ]∗ψb(0) . (65)

Comparing this with eq. (55), we see that

(Sµν
R

)ȧ
ḃ = −[(Sµν

L
)a
b]∗ . (66)

In the previous section, we examined the Lorentz-transformation proper-

ties of a field carrying two vector indices. To help us get better acquainted

with the properties of spinor indices, let us now do the same for a field that

carries two (2, 1) indices. Call this field Cab(x). Under a Lorentz transfor-

mation, we have

U(Λ)−1Cab(x)U(Λ) = La
c(Λ)Lb

d(Λ)Ccd(Λ
−1x) . (67)

The question we wish to address is whether or not the four components of

Cab can be grouped into smaller sets that do not mix with each other under

Lorentz transformations.

To answer this question, recall from quantum mechanics that two spin-

one-half particles can be in a state of total spin zero, or total spin one.
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Furthermore, the single spin-zero state is the unique antisymmetric combi-

nation of the two spin-one-half states, and the three spin-one states are the

three symmetric combinations of the two spin-one-half states. We can write

this schematically as 2 ⊗ 2 = 1A ⊕ 3S, where we label the representation of

SO(3) by the number of its components, and the subscripts S and A indi-

cate whether that representation appears in the symmetric or antisymmetric

combination of the two 2’s. For the Lorentz group, the relevant relation is

(2, 1)⊗ (2, 1) = (1, 1)A⊕ (3, 1)S. This implies that we should be able to write

Cab(x) = εabD(x) +Gab(x) , (68)

where D(x) is a scalar field, εab = −εba is an antisymmetric set of constants,

andGab(x) = Gba(x). The symbol εab is uniquely determined by its symmetry

properties up to an overall constant; we will choose ε21 = −ε12 = +1.

Given that D(x) is a Lorentz scalar, eq. (68) is consistent with eq. (67)

only if

La
c(Λ)Lb

d(Λ)εcd = εab . (69)

This means that εab is an invariant symbol of the Lorentz group: it does not

change under a Lorentz transformation that acts on all of its indices. In this

way, εab is analogous to the metric gµν , which is also an invariant symbol,

since

Λµ
ρΛν

σgρσ = gµν . (70)

We use gµν and its inverse gµν to raise and lower vector indices, and we can

use εab and and its inverse εab to raise and lower left-handed spinor indices.

Here we define εab via

ε12 = ε21 = +1 , ε21 = ε12 = −1 . (71)

With this definition, we have

εabε
bc = δa

c , εabεbc = δac . (72)

We can then define

ψa(x) ≡ εabψb(x) . (73)

We also have (suppressing the spacetime argument of the field)

ψa = εabψ
b = εabε

bcψc = δa
cψc , (74)

14



as we would expect. However, the antisymmetry of εab means that we must

be careful with minus signs; for example, eq. (73) can be written in various

ways, such as

ψa = εabψb = −εbaψb = −ψbεba = ψbε
ab . (75)

We must also be careful about signs when we contract indices, since

ψaχa = εabψbχa = −εbaψbχa = −ψbχb . (76)

In section 35, we will (mercifully) develop an index-free notation that auto-

matically keeps track of these essential (but annoying) minus signs.

An exactly analogous discussion applies to the second SO(3) factor; from

the group-theoretic relation (1, 2) ⊗ (1, 2) = (1, 1)A ⊕ (1, 3)S, we can deduce

the existence of an invariant symbol εȧḃ = −εḃȧ. We will normalize εȧḃ

according to eq. (71). Then eqs. (72–76) hold if all the undotted indices are

replaced by dotted indices.

Now consider a field carrying one undotted and one dotted index, Aaȧ(x).

Such a field is in the (2, 2) representation, and in section 33 we concluded

that the (2, 2) representation was the vector representation. We would more

naturally write a field in the vector representation as Aµ(x). There must,

then, be a dictionary that gives us the components of Aaȧ(x) in terms of the

components of Aµ(x); we can write this as

Aaȧ(x) = σµaȧAµ(x) , (77)

where σµaȧ is another invariant symbol. That such a symbol must exist can

be deduced from the group-theoretic relation

(2, 1) ⊗ (1, 2) ⊗ (2, 2) = (1, 1) ⊕ . . . . (78)

As we will see in section 35, it turns out to be consistent with our already

established conventions for Sµν
L

and Sµν
R

to choose

σµaȧ = (I, ~σ) . (79)

Thus, for example, σ3
11̇

= +1, σ3
22̇

= −1, σ3
12̇

= σ3
21̇

= 0.
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In general, whenever the product of a set of representations includes the

singlet, there is a corresponding invariant symbol. For example, we can

deduce the existence of gµν = gνµ from

(2, 2) ⊗ (2, 2) = (1, 1)S ⊕ (1, 3)A ⊕ (3, 1)A ⊕ (3, 3)S . (80)

Another invariant symbol, the Levi-Civita symbol, follows from

(2, 2) ⊗ (2, 2) ⊗ (2, 2) ⊗ (2, 2) = (1, 1)A ⊕ . . . , (81)

where the subscript A denotes the completely antisymmetric part. The Levi-

Civita symbol is εµνρσ, which is antisymmetric on exchange of any pair of

its indices, and is normalized via ε0123 = +1. To see that εµνρσ is invariant,

we note that Λµ
αΛν

βΛρ
γΛ

σ
δε
αβγδ is antisymmetric on exchange of any two

of its uncontracted indices, and therefore must be proportional to εµνρσ. The

constant of proportionality works out to be det Λ, which is +1 for a proper

Lorentz transformation.

We are finally ready to answer a question we posed at the beginning of

section 33. There we considered a field Bµν(x) carrying two vector indices,

and we decomposed it as

Bµν(x) = Aµν(x) + Sµν(x) + 1
4
gµνT (x) , (82)

where Aµν is antisymmetric (Aµν = −Aνµ) and Sµν is symmetric (Sµν = Sνµ)

and traceless (gµνS
µν = 0). We asked whether further decomposition into

still smaller irreducible representations was possible. The answer to this

question can be found in eq. (80). Obviously, T (x) corresponds to (1, 1), and

Sµν(x) to (3, 3). [Note that a symmetric traceless tensor has three indepen-

dent diagonal components, and six independent off-diagonal components, for

a total of nine, the number of components of the (3, 3) representation.] But,

according to eq. (80), the antisymmetric field Aµν(x) should correspond to

(3, 1) ⊕ (1, 3). A field in the (3, 1) representation carries a symmetric pair

of left-handed (undotted) spinor indices; its hermitian conjugate is a field in

the (1, 3) representation that carries a symmetric pair of right-handed (dot-

ted) spinor indices. We should, then, be able to find a mapping, analogous

to eq. (77), that gives Aµν(x) in terms of a field Gab(x) and its hermitian

conjugate G†
ȧḃ

(x).
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This mapping is provided by the generator matrices Sµν
L

and Sµν
R

. We

first note that the Pauli matrices are traceless, and so eqs. (58) and (59)

imply that (Sµν
L

)a
a = 0. Using eq. (73), we can rewrite this as εab(Sµν

L
)ab = 0.

Since εab is antisymmetric, (Sµν
L

)ab must be symmetric on exchange of its two

spinor indices. An identical argument shows that (Sµν
R

)ȧḃ must be symmetric

on exchange of its two spinor indices. Furthermore, according to eqs. (58)

and (59), we have

(S10
L

)a
b = −i(S23

L
)a
b . (83)

This can be written covariantly with the Levi-Civita symbol as

(Sµν
L

)a
b = − i

2
εµνρσ(SL ρσ)a

b . (84)

Similarly,

(Sµν
R

)ȧ
ḃ = + i

2
εµνρσ(SR ρσ)ȧ

ḃ . (85)

Eq. (85) follows from taking the complex conjugate of eq. (84) and using

eq. (66).

Now, given a field Gab(x) in the (3, 1) representation, we can map it into

a self-dual antisymmetric tensor Gµν(x) via

Gµν(x) ≡ (Sµν
L

)abGab(x) . (86)

By self-dual, we mean that Gµν(x) obeys

Gµν(x) = − i
2
εµνρσGρσ(x) . (87)

Taking the hermitian conjugate of eq. (86), and using eq. (66), we get

G†µν(x) = −(Sµν
R

)ȧḃG†
ȧḃ

(x) , (88)

which is anti-self-dual,

G†µν(x) = + i
2
εµνρσG†ρσ(x) . (89)

Given a hermitian antisymmetric tensor field Aµν(x), we can extract its self-

dual and anti-self-dual parts via

Gµν(x) = 1
2
Aµν(x) − i

4
εµνρσAρσ(x) , (90)

G†µν(x) = 1
2
Aµν(x) + i

4
εµνρσAρσ(x) . (91)
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Then we have

Aµν(x) = Gµν(x) +G†µν(x) . (92)

The field Gµν(x) is in the (3, 1) representation, and the field G†µν(x) is in the

(1, 3) representation; these do not mix under Lorentz transformations.

Problems

34.1) Verify that eq. (55) follows from eq. (51).

34.2) Verify that eqs. (58) and (59) obey eq. (54).

34.3) Consider a field Ca...c ȧ...ċ(x), with N undotted indices and M dot-

ted indices, that is furthermore symmetric on exchange of any pair of un-

dotted indices, and also symmetric on exchange of any pair of dotted in-

dices. Show that this field corresponds to a single irreducible representation

(2n+1, 2n′+1) of the Lorentz group, and identify n and n′.
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35: Manipulating Spinor Indices

Prerequisite: 34

In section 34 we introduced the invariant symbols εab, ε
ab, εȧḃ, and εȧḃ,

where

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = +1 , ε21 = ε2̇1̇ = ε12 = ε1̇2̇ = −1 . (93)

We use the ε symbols to raise and lower spinor indices, contracting the second

index on the ε. (If we contract the first index instead, then there is an extra

minus sign).

Another invariant symbol is

σµaȧ = (I, ~σ) , (94)

where I is the 2 × 2 identity matrix, and

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(95)

are the Pauli matrices.

Now let’s consider some combinations of invariant symbols with some

indices contracted, such as gµνσ
µ
aȧσ

ν
bḃ

. This object must also be invariant.

Then, since it carries two undotted and two dotted spinor indices, it must

be proportional to εabεȧḃ. Using eqs. (93) and (94), we can laboriously check

this; it turns out to be correct. [If it wasn’t, then eq. (94) would not be

a tenable choice of numerical values for this symbol.] The proportionality

constant works out to be minus two:

σµaȧσµbḃ = −2εabεȧḃ . (96)
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Similarly, εabεȧḃσµaȧσ
ν
bḃ

must be proportional to gµν , and the proportionality

constant is again minus two:

εabεȧḃσµaȧσ
ν
bḃ

= −2gµν . (97)

Next, let’s see what we can learn about the generator matrices (Sµν
L

)a
b

and (Sµν
R

)ȧ
ḃ from the fact that εab, εȧḃ, and σµaȧ are all invariant symbols.

Begin with

εab = L(Λ)a
cL(Λ)b

dεcd , (98)

which expresses the Lorentz invariance of εab. For an infinitesimal transfor-

mation Λµ
ν = δµν + δωµν , we have

La
b(1+δω) = δa

b + i
2
δωµν(S

µν
L

)a
b , (99)

and eq. (98) becomes

εab = εab + i
2
δωµν

[
(Sµν

L
)a
cεcb + (Sµν

L
)b
dεad

]
+O(δω2)

= εab + i
2
δωµν

[
−(Sµν

L
)ab + (Sµν

L
)ba
]

+ O(δω2) . (100)

Since eq. (100) holds for any choice of δωµν , it must be that the factor in

square brackets vanishes. Thus we conclude that (Sµν
L

)ab = (Sµν
L

)ba, which we

had already deduced in section 34 by a different method. Similarly, starting

from the Lorentz invariance of εȧḃ, we can show that (Sµν
R

)ȧḃ = (Sµν
R

)ḃȧ.

Next, start from

σρaȧ = Λρ
τL(Λ)a

bR(Λ)ȧ
ḃστ
bḃ
, (101)

which expresses the Lorentz invariance of σρaȧ. For an infinitesimal transfor-

mation, we have

Λρ
τ = δρτ + 1

2
δωµν(g

µρδντ − gνρδµτ ) , (102)

La
b(1+δω) = δa

b + i
2
δωµν(S

µν
L

)a
b , (103)

Rȧ
ḃ(1+δω) = δȧ

ḃ + i
2
δωµν(S

µν
R

)ȧ
ḃ . (104)

Substituting eqs. (102–104) into eq. (101) and isolating the coefficient of δωµν
yields

(gµρδντ − gνρδµτ )σ
τ
aȧ + i(Sµν

L
)a
bσρbȧ + i(Sµν

R
)ȧ
ḃσρaḃ = 0 . (105)
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Now multiply by σρcċ to get

σµcċσ
ν
aȧ − σνcċσ

µ
aȧ + i(Sµν

L
)a
bσρbȧσρcċ + i(Sµν

R
)ȧ
ḃσρaḃσρcċ = 0 . (106)

Next use eq. (96) in each of the last two terms to get

σµcċσ
ν
aȧ − σνcċσ

µ
aȧ + 2i(Sµν

L
)acεȧċ + 2i(Sµν

R
)ȧċεac = 0 . (107)

If we multiply eq. (107) by εȧċ, and remember that εȧċ(Sµν
R

)ȧċ = 0 and that

εȧċεȧċ = −2, we get a formula for (Sµν
L

)ac, namely

(Sµν
L

)ac = i
4
εȧċ(σµaȧσ

ν
cċ − σνaȧσ

µ
cċ) . (108)

Similarly, if we multiply eq. (107) by εac, we get

(Sµν
R

)ȧċ = i
4
εac(σµaȧσ

ν
cċ − σνaȧσ

µ
cċ) . (109)

These formulae can be made to look a little nicer if we define

σ̄µȧa ≡ εabεȧḃσµ
bḃ
. (110)

Numerically, it turns out that

σ̄µȧa = (I,−~σ) . (111)

Using σ̄µ, we can write eqs. (108) and (109) as

(Sµν
L

)a
b = + i

4
(σµσ̄ν − σν σ̄µ)a

b , (112)

(Sµν
R

)ȧḃ = − i
4
(σ̄µσν − σ̄νσµ)ȧḃ . (113)

In eq. (113), we have suppressed a contracted pair of undotted indices ar-

ranged as c
c, and in eq. (112), we have suppressed a contracted pair of dotted

indices arranged as ċ
ċ.

We will adopt this as a general convention: a missing pair of contracted,

undotted indices is understood to be written as c
c, and a missing pair of

contracted, dotted indices is understood to be written as ċ
ċ. Thus, if χ and

ψ are two left-handed Weyl fields, we have

χψ = χaψa and χ†ψ† = χ†ȧψ
†ȧ . (114)
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We expect Weyl fields to describe spin-one-half particles, and (by the spin-

statistics theorem) these particles must be fermions. Therefore the corre-

spoding fields must anticommute, rather than commute. That is, we should

have

χa(x)ψb(y) = −ψb(y)χa(x) . (115)

Thus we can rewrite eq. (114) as

χψ = χaψa = −ψaχa = ψaχa = ψχ . (116)

The second equality follows from anticommutation of the fields, and the third

from switching a
a to a

a (which introduces an extra minus sign). Eq. (116)

tells us that χψ = ψχ, which is a nice feature of this notation. Furthermore,

if we take the hermitian conjugate of χψ, we get

(χψ)† = (χaψa)
† = (ψa)

†(χa)† = ψ†ȧχ
†ȧ = ψ†χ† . (117)

That (χψ)† = ψ†χ† is just what we would expect if we ignored the indices

completely. Of course, by analogy with eq. (116), we also have ψ†χ† = χ†ψ†.

In order to tell whether a spinor field is left-handed or right-handed when

its spinor index is suppressed, we will adopt the convention that a right-

handed field is always written as the hermitian conjugate of a left-handed

field. Thus, a right-handed field is always written with a dagger, and a

left-handed field is always written without a dagger.

Let’s try computing the hermitian conjugate of something a little more

complicated:

ψ†σ̄µχ = ψ†ȧ σ̄
µȧc χc . (118)

This behaves like a vector field under Lorentz transformations,

U(Λ)−1[ψ†σ̄µχ]U(Λ) = Λµ
ν [ψ
†σ̄νχ] . (119)

(To avoid clutter, we suppressed the spacetime argument of the fields; as

usual, it is x on the left-hand side and Λ−1x on the right.)

The hermitian conjugate of eq. (118) is

[ψ†σ̄µχ]† = [ψ†ȧ σ̄
µȧc χc]

†
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= χ†ċ (σ̄µaċ)∗ ψa

= χ†ċ σ̄
µċa ψa

= χ†σ̄µψ . (120)

In the third line, we used the hermiticity of the matrices σ̄µ = (I,−~σ).

We will get considerably more practice with this notation in the following

sections.

Problems

35.1) Verify that eq. (111) follows from eqs. (94) and (110).

35.2) Verify that eq. (112) is consistent with eqs. (58) and (59).

35.3) Verify that eq. (113) is consistent with eq. (66).

35.4) Verify eq. (97).

Hint for all problems: write everything in “matrix multiplication” or-

der, and note that, numerically, εab = −εab = iσ2. Then make use of the

properties of the Pauli matrices.
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36: Lagrangians for Spinor Fields

Prerequisite: 4, 22, 35

Suppose we have a left-handed spinor field ψa. We would like to find a

suitable lagrangian for it. This lagrangian must be Lorentz invariant, and it

must be hermitian. We would also like it to be quadratic in ψ and its hermi-

tian conjugate ψ†ȧ, because this will lead to a linear equation of motion, with

plane-wave solutions. We want plane-wave solutions because these describe

free particles, the starting point for a theory of interacting particles.

Let us begin with terms with no derivatives. The only possibility is

ψψ = ψaψa = εabψbψa, plus its hermitian conjugate. Alas, ψψ appears to be

zero, since ψbψa = ψaψb, while εab = −εba.
However, from the spin-statistics theorem, we expect that spin-one-half

particles must be fermions, described by fields that anticommute. Therefore,

we should have ψbψa = −ψaψb rather than ψbψa = +ψaψb. Then ψψ does

not vanish, and we can use it as a term in  L.

Next we need a term with derivatives. The obvious choice is ∂µψ∂µψ,

plus its hermitian conjugate. This, however, yields a hamiltonian that is

unbounded below, which is unacceptable. To get a bounded hamiltonian,

the kinetic term must involve both ψ and ψ†. A candidate is iψ†σ̄µ∂µψ. This

not hermitian, but

(iψ†σ̄µ∂µψ)† = (iψ†ȧ σ̄
µȧc∂µψc)

†

= −i∂µψ†ċ (σ̄µaċ)∗ψa

= −i∂µψ†ċ σ̄µċaψa
= iψ†ċ σ̄

µċa∂µψa − i∂µ(ψ†ċ σ̄
µċaψa).

= iψ†σ̄µ∂µψ − i∂µ(ψ†σ̄µψ) . (121)
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In the third line, we used the hermiticity of the matrices σ̄µ = (I,−~σ). In the

fourth line, we used A∂B = −(∂A)B + ∂(AB). In the last line, the second

term is a total divergence, and vanishes (with suitable boundary conditions

on the fields at infinity) when we integrate it over d4x to get the action S.

Thus iψ†σ̄µ∂µψ has the hermiticity properties necessary for a term in  L.

Our complete lagrangian for ψ is then

 L = iψ†σ̄µ∂µψ − 1
2
mψψ − 1

2
m∗ψ†ψ† , (122)

where m is a complex parameter with dimensions of mass. The phase of m is

actually irrelevant: if m = |m|eiα, we can set ψ = e−iα/2 ψ̃ in eq. (122); then

we get a lagrangian for ψ̃ that is identical to eq. (122), but with m replaced

by |m|. So we can, without loss of generality, take m to be real and positive

in the first place, and that is what we will do, setting m∗ = m in eq. (122).

The equation of motion for ψ is then

0 = − δS

δψ†
= −iσ̄µ∂µψ +mψ† , (123)

Restoring the spinor indices, this reads

0 = −iσ̄µȧc∂µψc +mψ†ȧ . (124)

Taking the hermitian conjugate (or, equivalently, computing −δS/δψ), we

get

0 = +i(σ̄µaċ)∗ ∂µψ
†
ċ +mψa

= +iσ̄µċa∂µψ
†
ċ +mψa

= −iσµaċ ∂µψ†ċ +mψa . (125)

In the second line, we used the hermiticity of the matrices σ̄µ = (I,−~σ). In

the third, we lowered the undotted index, and switched ċ
ċ to ċ

ċ, which gives

an extra minus sign.

Eqs. (125) and (124) can be combined to read

(
mδa

c −iσµaċ ∂µ
−iσ̄µȧc ∂µ mδȧċ

)(
ψc

ψ†ċ

)
= 0 . (126)

25



We can write this more compactly by introducing the 4× 4 gamma matrices

γµ ≡
(

0 σµaċ

σ̄µȧc 0

)
. (127)

Using the sigma-matrix relations,

(σµσ̄ν + σν σ̄µ)a
c = −2gµνδa

c ,

(σ̄µσν + σ̄νσµ)ȧċ = −2gµνδȧċ , (128)

which are most easily derived from the numerical formulae σµaȧ = (I, ~σ) and

σ̄µȧa = (I,−~σ), we see that the gamma matrices obey

{γµ, γν} = −2gµν , (129)

where {A,B} ≡ AB + BA denotes the anticommutator, and there is an

understood 4 × 4 identity matrix on the right-hand side. We also introduce

a four-component Majorana field

Ψ ≡
(
ψc

ψ†ċ

)
. (130)

Then eq. (126) becomes

(−iγµ∂µ +m)Ψ = 0 . (131)

This is the Dirac equation. We first encountered it in section 1, where the

gamma matrices were given different names (β = γ0 and αk = γ0γk). Also,

in section 1 we were trying (and failing) to interpret Ψ as a wave function,

rather than as a quantum field.

Now consider a theory of two left-handed spinor fields with an SO(2)

symmetry,

 L = iψ†i σ̄
µ∂µψi − 1

2
mψiψi − 1

2
mψ†iψ

†
i , (132)

where the spinor indices are suppressed and i = 1, 2 is implicitly summed.

As in the analogous case of two scalar fields discussed in sections 22 and 23,

this lagrangian is invariant under the SO(2) transformation
(
ψ1

ψ2

)
→
(

cosα sinα

− sinα cosα

)(
ψ1

ψ2

)
. (133)
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We can write the lagrangian so that the SO(2) symmetry appears as a U(1)

symmetry instead; let

χ = 1√
2
(ψ1 + iψ2) , (134)

ξ = 1√
2
(ψ1 − iψ2) . (135)

In terms of these fields, we have

 L = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −mχξ −mξ†χ† . (136)

Eq. (136) is invariant under the U(1) version of eq. (133),

χ → e−iαχ ,

ξ → e+iαξ ,

χ† → e+iαχ† ,

ξ† → e−iαξ† . (137)

Next, let us derive the equations of motion that we get from eq. (136),

following the same procedure that ultimately led to eq. (126). The result is

(
mδa

c −iσµaċ ∂µ
−iσ̄µȧc ∂µ mδȧċ

)(
χc

ξ†ċ

)
= 0 . (138)

We can now define a four-component Dirac field

Ψ ≡
(
χc

ξ†ċ

)
, (139)

which obeys the Dirac equation, eq. (131). (We have annoyingly used the

same symbol Ψ to denote both a Majorana field and a Dirac field; these are

different objects, and so we must always announce which is meant when we

write Ψ.)

We can also write the lagrangian, eq. (136), in terms of the Dirac field Ψ,

eq. (139). First we take the hermitian conjugate of Ψ to get

Ψ† = (χ†ȧ , ξ
a) . (140)
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Introduce the matrix

β ≡
(

0 δȧċ

δa
c 0

)
. (141)

Numerically, β = γ0. However, the spinor index structure of β and γ0 is

different, and so we will distinguish them. Given β, we define

Ψ ≡ Ψ†β = (ξa, χ†ȧ) . (142)

Then we have

ΨΨ = ξaχa + χ†ȧξ
†ȧ . (143)

Also,

Ψγµ∂µΨ = ξaσµaċ ∂µξ
†ċ + χ†ȧ σ̄

µȧc ∂µχc . (144)

Using A∂B = −(∂A)B + ∂(AB), the first term on the right-hand side of

eq. (144) can be rewritten as

ξaσµaċ ∂µξ
†ċ = −(∂µξ

a)σµaċ ξ
†ċ + ∂µ(ξaσµaċ ξ

†ċ) . (145)

The first term on the right-hand side of eq. (145) can be rewritten as

− (∂µξ
a)σµaċ ξ

†ċ = +ξ†ċσµaċ ∂µξ
a = +ξ†ċ σ̄

µċa∂µξa . (146)

Here we used anticommutation of the fields to get the first equality, and

switched ċ
ċ to ċ

ċ and a
a to a

a (thus generating two minus signs) to get the

second. Combining eqs. (144–146), we get

Ψγµ∂µΨ = χ†σ̄µ∂µχ+ ξ†σ̄µ∂µξ + ∂µ(ξσµξ†) . (147)

Therefore, up to an irrelevant total divergence, we have

 L = iΨγµ∂µΨ −mΨΨ . (148)

This form of the lagrangian is invariant under the U(1) transformation

Ψ → e−iα Ψ ,

Ψ → e+iα Ψ , (149)
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which, given eq. (139), is the same as eq. (137). The Noether current associ-

ated with this symmetry is

jµ = ΨγµΨ = χ†σ̄µχ− ξ†σ̄µξ . (150)

In quantum electrodynamics, the electromagnetic current is eΨγµΨ, where e

is the charge of the electron.

As in the case of a complex scalar field with a U(1) symmetry, there is an

additional discrete symmetry, called charge conjugation, that enlarges SO(2)

to O(2). Charge conjugation simply exchanges χ and ξ. We can define a

unitary charge conjugation operator C that implements this,

C−1χa(x)C = ξa(x) ,

C−1ξa(x)C = χa(x) , (151)

where, for the sake of precision, we have restored the spinor index and space-

time argument. We then have C−1  L(x)C =  L(x).

To express eq. (151) in terms of the Dirac field, eq. (139), we first introduce

the charge conjugation matrix

C ≡
(
εac 0

0 εȧċ

)
. (152)

Next we notice that, if we take the transpose of Ψ, eq. (142), we get

Ψ
T

=

(
ξa

χ†ȧ

)
. (153)

Then, if we multiply by C, we get a field that we will call ΨC, the charge

conjugate of Ψ,

ΨC ≡ CΨ
T

=

(
ξa

χ†ȧ

)
. (154)

We see that ΨC is the same as the original field Ψ, eq. (139), except that the

roles of χ and ξ have been switched.

The charge conjugation matrix has a number of useful properties. As a

numerical matrix, it obeys

CT = C† = C−1 = −C , (155)
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and we can also write it as

C =

(−εac 0

0 −εȧċ

)
. (156)

A result that we will need later is

C−1γµC =

(
εab 0

0 εȧḃ

)


0 σµbċ

σ̄µḃc 0



(
εce 0

0 εċė

)

=




0 εabσµbċε
ċė

εȧḃσ̄
µḃcεce 0




=

(
0 −σ̄µaė

−σµȧe 0

)
. (157)

The minus signs in the last line come from raising or lowering an index by

contracting with the first (rather than the second) index of an ε symbol.

Comparing with

γµ =

(
0 σµeȧ

σ̄µėa 0

)
, (158)

we see that

C−1γµC = −(γµ)T . (159)

Now let us return to the Majorana field, eq. (130). It is obvious that a

Majorana field is its own charge conjugate, that is, ΨC = Ψ. This condition

is analogous to the condition ϕ† = ϕ that is satisfied by a real scalar field. A

Dirac field, with its U(1) symmetry, is analogous to a complex scalar field,

while a Majorana field, which has no U(1) symmetry, is analogous to a real

scalar field.

We can write the lagrangian for a single left-handed spinor field, eq. (122),

in terms of a Majorana field, eq. (130), by retracing eqs. (140–148) with χ→
ψ and ξ → ψ. The result is

 L = i
2
Ψγµ∂µΨ − 1

2
mΨΨ . (160)

However, this expression is not yet useful for deriving the equations of motion,

because it does not yet incorporate the Majorana condition ΨC = Ψ. To
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remedy this, we use eq. (155) to write the Majorana condition Ψ = CΨ
T

as

Ψ = ΨTC. Then we can replace Ψ in eq. (160) by ΨTC to get

 L = i
2
ΨTCγµ∂µΨ − 1

2
mΨTCΨ . (161)

The equation of motion that follows from this lagrangian is once again the

Dirac equation.

We can also recover the Weyl components of a Dirac or Majorana field

by means of a suitable projection matrix. Define

γ5 ≡
(−δac 0

0 +δȧċ

)
, (162)

where the subscript 5 is simply part of the traditional name of this matrix,

rather than the value of some index. Then we can define left and right

projection matrices

PL ≡ 1
2
(1 − γ5) =

(
δa
c 0

0 0

)
,

PR ≡ 1
2
(1 + γ5) =

(
0 0

0 δȧċ

)
. (163)

Thus we have, for a Dirac field,

PLΨ =

(
χc

0

)
,

PRΨ =

(
0

ξ†ċ

)
. (164)

The matrix γ5 can also be expressed as

γ5 = iγ0γ1γ2γ3

= − i
24
εµνρσγ

µγνγργσ , (165)

where ε0123 = −1.
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Finally, let us consider the behavior of a Dirac or Majorana field under

a Lorentz transformation. Recall that left- and right-handed spinor fields

transform according to

U(Λ)−1ψa(x)U(Λ) = L(Λ)a
c ψc(Λ

−1x) , (166)

U(Λ)−1ψ†ȧ(x)U(Λ) = R(Λ)ȧ
ċ ψ†ċ(Λ

−1x) , (167)

where, for an infinitesimal transformation Λµ
ν = δµν + δωµν ,

L(1+δω)a
c = δa

c + i
2
δωµν(S

µν
L

)a
c , (168)

R(1+δω)ȧ
ċ = δȧ

ċ + i
2
δωµν(S

µν
R

)ȧ
ċ , (169)

and where

(Sµν
L

)a
c = + i

4
(σµσ̄ν − σν σ̄µ)a

c , (170)

(Sµν
R

)ȧċ = − i
4
(σ̄µσν − σ̄νσµ)ȧċ . (171)

From these formulae, and the definition of γµ, eq. (127), we can see that

i
4
[γµ, γν ] =

(
+(Sµν

L
)a
c 0

0 −(Sµν
R

)ȧċ

)
≡ Sµν . (172)

Then, for either a Dirac or Majorana field Ψ, we can write

U(Λ)−1Ψ(x)U(Λ) = D(Λ)Ψ(Λ−1x) , (173)

where, for an infinitesimal transformation, the 4 × 4 matrix D(Λ) is

D(1+δω) = 1 + i
2
δωµνS

µν , (174)

with Sµν given by eq. (172). The minus sign in front of Sµν
R

in eq. (172) is

compensated by the switch from a ċ
ċ contraction in eq. (169) to a ċ

ċ contrac-

tion in eq. (173).

Problems

32



36.1) Using the results of problem 2.8, show that, for a rotation by an

angle θ about the z axis, we have

D(Λ) = exp(−iθS12) , (175)

and that, for a boost by rapidity η in the z direction, we have

D(Λ) = exp(+iηS30) . (176)

36.2) Show that D(Λ)γµD(Λ) = Λµ
νγ

ν .
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Quantum Field Theory Mark Srednicki

37: Canonical Quantization of Spinor Fields I

Prerequisite: 36

Consider a left-handed Weyl field ψ with lagrangian

 L = iψ†σ̄µ∂µψ − 1
2
m(ψψ + ψ†ψ†) . (177)

The canonically conjugate momentum to the field ψa(x) is then

πa(x) ≡ ∂  L

∂(∂0ψa(x))

= iψ†ȧ(x)σ̄0ȧa . (178)

[Here we have glossed over a subtlety about differentiating with respect to

an anticommuting object; we will take up this topic in section 44, and here

simply assume that eq. (178) is correct.] The hamiltonian is

H = πa∂0ψa −  L

= iψ†ȧσ̄
0ȧaψa −  L

= −iψ†σ̄i∂iψ + 1
2
m(ψψ + ψ†ψ†) . (179)

The appropriate canonical anticommutation relations are

{ψa(x, t), ψc(y, t)} = 0 ,

{ψa(x, t), πc(y, t)} = iδa
c δ3(x − y) . (180)

Substituting in eq. (178) for πc, we get

{ψa(x, t), ψ†ċ(y, t)}σ̄0ċc = δa
c δ3(x − y) . (181)
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Then, using σ̄0 = σ0 = I, we have

{ψa(x, t), ψ†ċ(y, t)} = σ0
aċ δ

3(x − y) , (182)

or, equivalently,

{ψa(x, t), ψ†ċ(y, t)} = σ̄0ċa δ3(x − y) . (183)

We can also translate this into four-component notation for either a Dirac

or a Majorana field. A Dirac field is defined in terms of two left-handed Weyl

fields χ and ξ via

Ψ ≡
(
χc

ξ†ċ

)
. (184)

We also define

Ψ ≡ Ψ†β = (ξa, χ†ȧ) , (185)

where

β ≡
(

0 δȧċ

δa
c 0

)
. (186)

The lagrangian is

 L = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −m(χξ + ξ†χ†)

= iΨγµ∂µΨ −mΨΨ . (187)

The fields χ and ξ each obey the canonical anticommutation relations of

eq. (180). This translates into

{Ψα(x, t),Ψβ(y, t)} = 0 , (188)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (189)

where α and β are four-component spinor indices, and

γµ ≡
(

0 σµaċ

σ̄µȧc 0

)
. (190)

Eqs. (188) and (189) can also be derived directly from the four-component

form of the lagrangian, eq. (187), by noting that the canonically conjugate

momentum to the field Ψ is ∂  L/∂(∂0Ψ) = iΨγ0, and that (γ0)2 = 1.
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A Majorana field is defined in terms of a single left-handed Weyl field ψ

via

Ψ ≡
(
ψc

ψ†ċ

)
. (191)

We also define

Ψ ≡ Ψ†β = (ψa, ψ†ȧ) . (192)

A Majorana field obeys the Majorana condition

Ψ = ΨTC , (193)

where

C ≡
(−εac 0

0 −εȧċ

)
(194)

is the charge conjugation matrix. The lagrangian is

 L = iψ†σ̄µ∂µψ − 1
2
m(ψψ + ψ†ψ†)

= i
2
Ψγµ∂µΨ − 1

2
mΨΨ

= i
2
ΨTCγµ∂µΨ − 1

2
mΨTCΨ . (195)

The field ψ obeys the canonical anticommutation relations of eq. (180). This

translates into

{Ψα(x, t),Ψβ(y, t)} = (Cγ0)αβ δ
3(x − y) , (196)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (197)

where α and β are four-component spinor indices. To derive eqs. (196) and

(197) directly from the four-component form of the lagrangian, eq. (195),

requires new formalism for the quantization of constrained systems. This is

because the canonically conjugate momentum to the field Ψ is ∂  L/∂(∂0Ψ) =
i
2
ΨTCγ0, and this is linearly related to Ψ itself; this relation constitutes a

constraint that must be solved before imposition of the anticommutation

relations. In this case, solving the constraint simply returns us to the Weyl

formalism with which we began.
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The equation of motion that follows from either eq. (187) or eq. (195) is

the Dirac equation,

(−i/∂ +m)Ψ = 0 . (198)

Here we have introduced the Feynman slash: given any four-vector aµ, we

define

/a ≡ aµγ
µ . (199)

To solve the Dirac equation, we first note that if we act on it with i/∂+m,

we get

0 = (i/∂ +m)(−i/∂ +m)Ψ

= (/∂/∂ +m2)Ψ

= (−∂2 +m2)Ψ . (200)

Here we have used

/a/a = aµaνγ
µγν

= aµaν
(

1
2
{γµ, γν} + 1

2
[γµ, γν ]

)

= aµaν
(
−gµν + 1

2
[γµ, γν ]

)

= −aµaνgµν + 0

= −a2 . (201)

From eq. (200), we see that Ψ obeys the Klein-Gordon equation. Therefore,

the Dirac equation has plane-wave solutions. Let us consider a specific solu-

tion of the form

Ψ(x) = u(p)eipx + v(p)e−ipx . (202)

where p0 = ω ≡ (p2+m2)1/2, and u(p) and v(p) are four-component constant

spinors. Plugging eq. (202) into the eq. (198), we get

(/p+m)u(p)eipx + (−/p+m)v(p)e−ipx = 0 . (203)

Thus we require

(/p+m)u(p) = 0 ,

(−/p +m)v(p) = 0 . (204)
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Each of these equations has two linearly independent solutions that we will

call u±(p) and v±(p); their detailed properties will be worked out in the next

section. The general solution of the Dirac equation can then be written as

Ψ(x) =
∑

s=±

∫
d̃p

[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (205)

where the integration measure is

d̃p ≡ d3p

(2π)32ω
. (206)
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Quantum Field Theory Mark Srednicki

38: Spinor Technology

Prerequisite: 37

The four-component spinors us(p) and vs(p) obey the equations

(/p+m)us(p) = 0 ,

(−/p+m)vs(p) = 0 . (207)

Each of these equations has two solutions, which we label via s = + and

s = −. For m 6= 0, we can go to the rest frame, p = 0. We will then

distinguish the two solutions by the eigenvalue of the spin matrix

Sz = i
4
[γ1, γ2] = i

2
γ1γ2 =

( 1
2
σ3 0

0 1
2
σ3

)
. (208)

Specifically, we will require

Szu±(0) = ±1
2
u±(0) ,

Szv±(0) = ∓1
2
v±(0) . (209)

The reason for the opposite sign for the v spinor is that this choice results in

[Jz, b
†
±(0)] = ±1

2
b†±(0) ,

[Jz, d
†
±(0)] = ±1

2
d†±(0) , (210)

so that b†+(0) and d†+(0) each creates a particle with spin up along the z axis.

For p = 0, we have /p = −mγ0, where

γ0 =

(
0 I

I 0

)
. (211)
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Eqs. (207) and (209) are then easy to solve. Choosing (for later convenience)

a specific normalization and phase for each of u±(0) and v±(0), we get

u+(0) =
√
m




1
0
1
0


 , u−(0) =

√
m




0
1
0
1


 ,

v+(0) =
√
m




0
1
0
−1


 , v−(0) =

√
m




−1
0
1
0


 . (212)

For later use we also compute the barred spinors

us(p) ≡ u†s(p)β ,

vs(p) ≡ v†s(p)β , (213)

where

β = γ0 =

(
0 I

I 0

)
(214)

satisfies

βT = β† = β−1 = β . (215)

We get

u+(0) =
√
m (1, 0, 1, 0) ,

u−(0) =
√
m (0, 1, 0, 1) ,

v+(0) =
√
m (0, −1, 0, 1) ,

v−(0) =
√
m (1, 0, −1, 0) . (216)

We can now find the spinors corresponding to an arbitrary three-momentum

p by applying to us(0) and vs(0) the matrix D(Λ) that corresponds to an

appropriate boost. This is given by

D(Λ) = exp(iη p̂·K) , (217)
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where p̂ is a unit vector in the p direction, Kj = i
4
[γj , γ0] = i

2
γjγ0 is the

boost matrix, and η ≡ sinh−1(|p|/m) is the rapidity (see problem 2.8). Thus

we have

us(p) = exp(iη p̂·K)us(0) ,

vs(p) = exp(iη p̂·K)vs(0) . (218)

We also have

us(p) = us(0) exp(−iη p̂·K) ,

vs(p) = vs(0) exp(−iη p̂·K) . (219)

This follows from Kj = Kj , where for any general combination of gamma

matrices,

A ≡ βA†β . (220)

In particular, it turns out that

γµ = γµ ,

Sµν = Sµν ,

iγ5 = iγ5 ,

γµγ5 = γµγ5 ,

iγ5S
µν = iγ5S

µν . (221)

The barred spinors satisfy the equations

us(p)(/p+m) = 0 ,

vs(p)(−/p +m) = 0 . (222)

It is not very hard to work out us(p) and vs(p) from eq. (218), but it is

even easier to use various tricks that will sidestep any need for the explicit

formulae. Consider, for example, us′(p)us(p); from eqs. (218) and (219),

we see that us′(p)us(p) = us′(0)us(0), and this is easy to compute from

eqs. (212) and (216). We find

us′(p)us(p) = +2mδs′s ,

vs′(p)vs(p) = −2mδs′s ,

us′(p)vs(p) = 0 ,

vs′(p)us(p) = 0 . (223)
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Also useful are the Gordon identities,

2mus′(p
′)γµus(p) = us′(p

′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
us(p) ,

−2mvs′(p
′)γµvs(p) = vs′(p

′)
[
(p′ + p)µ − 2iSµν(p′ − p)ν

]
vs(p) . (224)

To derive them, start with

γµ/p = 1
2
{γµ, /p} + 1

2
[γµ, /p]

= −pµ − 2iSµνpν . (225)

Similarly,

/p ′γµ = 1
2
{γµ, /p ′} − 1

2
[γµ, /p ′]

= −p′µ + 2iSµνp′ν . (226)

Add eqs. (225) and (226), sandwich them between u ′ and u spinors (or v ′

and v spinors), and use eqs. (207) and (222). An important special case is

p′ = p; then, using eq. (223), we find

us′(p)γµus(p) = 2pµδs′s ,

vs′(p)γµvs(p) = 2pµδs′s . (227)

With a little more effort, we can also show

us′(p)γ0vs(−p) = 0 ,

vs′(p)γ0us(−p) = 0 . (228)

We will need eqs. (227) and (228) in the next section.

Consider now the spin sums
∑
s=± us(p)us(p) and

∑
s=± vs(p)vs(p), each

of which is a 4×4 matrix. The sum over eigenstates of Sz should remove any

memory of the spin-quantization axis, and so the result should be expressible

in terms of the four-vector pµ and various gamma matrices, with all vector

indices contracted. In the rest frame, /p = −mγ0, and it is easy to check that
∑
s=± us(0)us(0) = mγ0 +m and

∑
s=± vs(0)vs(0) = mγ0 −m. We therefore

conclude that
∑

s=±
us(p)us(p) = −/p +m ,

∑

s=±
vs(p)vs(p) = −/p−m . (229)
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We will make extensive use of eq. (229) when we calculate scattering cross

sections for spin-one-half particles.

From eq. (229), we can get u+(p)u+(p), etc, by applying appropriate spin

projection matrices. In the rest frame, we have

1
2
(1 + 2sSz)us′(0) = δss′ us′(0) ,

1
2
(1 − 2sSz)vs′(0) = δss′ vs′(0) . (230)

In order to boost these projection matrices to a more general frame, we first

recall that

γ5 ≡ iγ0γ1γ2γ3 =

(−I 0

0 I

)
. (231)

This allows us to write Sz = i
2
γ1γ2 as Sz = −1

2
γ5γ

3γ0. In the rest frame, we

can write γ0 as −/p/m, and γ3 as /z, where zµ = (0, ẑ); thus we have

Sz = 1
2m
γ5/z/p . (232)

Now we can boost Sz to any other frame simply by replacing /z and /p with

their values in that frame. (Note that, in any frame, zµ satisfies z2 = 1 and

z ·p = 0.) Boosting eq. (230) then yields

1
2
(1 − sγ5/z)us′(p) = δss′ us′(p) ,

1
2
(1 − sγ5/z)vs′(p) = δss′ vs′(p) , (233)

where we have used eq. (207) to eliminate /p. Combining eqs. (229) and (233)

we get

us(p)us(p) = 1
2
(1 − sγ5/z)(−/p +m) ,

vs(p)vs(p) = 1
2
(1 − sγ5/z)(−/p−m) . (234)

It is interesting to consider the extreme relativistic limit of this formula.

Let us take the three-momentum to be in the z direction, so that it is parallel

to the spin-quantization axis. The component of the spin in the direction

of the three-momentum is called the helicity. A fermion with helicity +1/2

is said to be right-handed, and a fermion with helicity −1/2 is said to be

left-handed. For rapidity η, we have

1
m
pµ = (cosh η, 0, 0, sinh η) ,

zµ = (sinh η, 0, 0, cosh η) . (235)
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The first equation is simply the definition of η, and the second follows from

z2 = 1 and p·z = 0 (along with the knowledge that a boost of a four-vector

in the z direction does not change its x and y components). In the limit of

large η, we see that

zµ = 1
m
pµ +O(e−η) . (236)

Hence, in eq. (234), we can replace /z with /p/m, and then use (/p/m)(−/p±m) =

∓(−/p±m), which holds for p2 = −m2. For consistency, we should then also

drop the m relative to /p, since it is down by a factor of O(e−η). We get

us(p)us(p) → 1
2
(1 + sγ5)(−/p) ,

vs(p)vs(p) → 1
2
(1 − sγ5)(−/p) . (237)

The spinor corresponding to a right-handed fermion (helicity +1/2) is u+(p)

for a b-type particle and v−(p) for a d-type particle. According to eq. (237),

either of these is projected by 1
2
(1 + γ5) = diag(0, 0, 1, 1) onto the lower two

components only. In terms of the Dirac field Ψ(x), this is the part that

corresponds to the right-handed Weyl field. Similarly, left-handed fermions

are projected (in the extreme relativistic limit) onto the upper two spinor

components only, corresponding to the left-handed Weyl field.

The case of a massless particle follows from the extreme relativistic limit

of a massive particle. In particular, eqs. (207), (222), (223), (227), (228), and

(229) are all valid with m = 0, and eq. (237) becomes exact.

Finally, for our discussion of parity, time reversal, and charge conjugation

in section 40, we will need a number of relationships among the u and v

spinors. First, note that βus(0) = +us(0) and βvs(0) = −vs(0). Also,

βKj = −Kjβ. We then have

us(−p) = +βus(p) ,

vs(−p) = −βvs(p) . (238)

Next, we need the charge conjugation matrix

C =




0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0


 , (239)
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which obeys

CT = C† = C−1 = −C , (240)

βC = −Cβ , (241)

C−1γµC = −(γµ)T . (242)

Using eqs. (212), (216), and (239), we get Cus(0)T = vs(0) and Cvs(0)T =

us(0). Also, eq. (242) implies C−1KjC = −(Kj)T. From this we can conclude

that

Cus(p)T = vs(p) ,

Cvs(p)T = us(p) . (243)

Taking the complex conjugate of eq. (243), and using uT∗ = u† = βu, we get

u∗s(p) = Cβvs(p) ,

v∗s(p) = Cβus(p) . (244)

Next, note that γ5us(0) = +s v−s(0) and γ5vs(0) = −s u−s(0), and that

γ5K
j = Kjγ5. Therefore

γ5us(p) = +s v−s(p) ,

γ5vs(p) = −s u−s(p) . (245)

Combining eqs. (238), (244), and (245) results in

u∗−s(−p) = −s Cγ5us(p) ,

v∗−s(−p) = −s Cγ5vs(p) . (246)

We will need eq. (238) in our discussion of parity, eq. (243) in our discussion

of charge conjugation, and eq. (246) in our discussion of time reversal.

Problems

38.1) Use eq. (218) to compute us(p) and vs(p) explicity. Hint: show

that the matrix 2ip̂·K has eigenvalues ±1, and that, for any matrix A with
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eigenvalues ±1, ecA = (cosh c) + (sinh c)A, where c is an arbitrary complex

number.

38.2) Verify eq. (221).

38.3) Verify eq. (228).
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39: Canonical Quantization of Spinor Fields II

Prerequisite: 38

A Dirac field Ψ with lagrangian

 L = iΨ/∂Ψ −mΨΨ (247)

obeys the canonical anticommutation relations

{Ψα(x, t),Ψβ(y, t)} = 0 , (248)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (249)

and has the Dirac equation

(−i/∂ +m)Ψ = 0 (250)

as its equation of motion. The general solution is

Ψ(x) =
∑

s=±

∫
d̃p

[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (251)

where bs(p) and d†s(p) are operators; the properties of the four-component

spinors us(p) and vs(p) were belabored in the previous section.

Let us express bs(p) and d†s(p) in terms of Ψ(x) and Ψ(x). We begin with
∫
d3x e−ipxΨ(x) =

∑

s′=±

[
1
2ω
bs′(p)us′(p) + 1

2ω
e2iωtd†s′(−p)vs′(−p)

]
. (252)

Next, multiply on the left by us(p)γ0, and use us(p)γ0us′(p) = 2ωδss′ and

us(p)γ0vs′(−p) = 0 from section 38. The result is

bs(p) =
∫
d3x e−ipx us(p)γ0Ψ(x) . (253)
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Note that bs(p) is time independent.

To get b†s(p), take the hermitian conjugate of eq. (253), using

[
us(p)γ0Ψ(x)

]†
= us(p)γ0Ψ(x)

= Ψ(x)γ0us(p)

= Ψ(x)γ0us(p) , (254)

where, for any general combination of gamma matrices A,

A ≡ βA†β . (255)

Thus we find

b†s(p) =
∫
d3x eipx Ψ(x)γ0us(p) . (256)

To extract d†s(p) from Ψ(x), we start with

∫
d3x eipxΨ(x) =

∑

s′=±

[
1
2ω
e−2iωtbs′(−p)us′(−p) + 1

2ω
d†s′(p)vs′(p)

]
. (257)

Next, multiply on the left by vs(p)γ0, and use vs(p)γ0vs′(p) = 2ωδss′ and

vs(p)γ0us′(−p) = 0 from section 38. The result is

d†s(p) =
∫
d3x eipx vs(p)γ0Ψ(x) . (258)

To get ds(p), take the hermitian conjugate of eq. (258), which yields

ds(p) =
∫
d3x e−ipx Ψ(x)γ0vs(p) . (259)

Next, let us work out the anticommutation relations of the b and d op-

erators (and their hermitian conjugates). From eq. (248), it is immediately

clear that

{bs(p), bs′(p
′)} = 0 ,

{ds(p), ds′(p
′)} = 0 ,

{bs(p), d†s′(p
′)} = 0 , (260)
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because these involve only the anticommutator of Ψ with itself, and this

vanishes. Of course, hermitian conjugation also yields

{b†s(p), b†s′(p
′)} = 0 ,

{d†s(p), d†s′(p
′)} = 0 ,

{b†s(p), ds′(p
′)} = 0 . (261)

Now consider

{bs(p), b†s′(p
′)} =

∫
d3x d3y e−ipx+ip

′y us(p)γ0{Ψ(x),Ψ(y)}γ0us′(p
′)

=
∫
d3x e−i(p−p

′)x us(p)γ0γ0γ0us′(p
′)

= (2π)3δ3(p− p′) us(p)γ0us′(p)

= (2π)3δ3(p− p′) 2ωδss′ . (262)

In the first line, we are free to set x0 = y0 because bs(p) and b†s′(p
′) are

actually time independent. In the third, we used (γ0)2 = 1, and in the

fourth, us(p)γ0us′(p) = 2ωδss′.

Similarly,

{d†s(p), ds′(p
′)} =

∫
d3x d3y eipx−ip

′y vs(p)γ0{Ψ(x),Ψ(y)}γ0vs′(p
′)

=
∫
d3x ei(p−p

′)x vs(p)γ0γ0γ0vs′(p
′)

= (2π)3δ3(p− p′) vs(p)γ0vs′(p)

= (2π)3δ3(p− p′) 2ωδss′ . (263)

And finally,

{bs(p), ds′(p
′)} =

∫
d3x d3y e−ipx−ip

′y us(p)γ0{Ψ(x),Ψ(y)}γ0vs′(p
′)

=
∫
d3x e−i(p+p

′)x us(p)γ0γ0γ0vs′(p
′)

= (2π)3δ3(p + p′) us(p)γ0vs′(−p)

= 0 . (264)
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According to the discussion in section 3, eqs. (260–264) are exactly what we

need to describe the creation and annihilation of fermions. In this case, we

have two different kinds: b-type and d-type, each with two possible spin

states, s = + and s = −.

Next, let us evaluate the hamiltonian

H =
∫
d3x Ψ(−iγi∂i +m)Ψ (265)

in terms of the b and d operators. We have

(−iγi∂i +m)Ψ =
∑

s=±

∫
d̃p
(
−iγi∂i +m

)(
bs(p)us(p)eipx

+ d†s(p)vs(p)e−ipx
)

=
∑

s=±

∫
d̃p
[
bs(p)(+γipi +m)us(p)eipx

+ d†s(p)(−γipi +m)vs(p)e−ipx
]

=
∑

s=±

∫
d̃p
[
bs(p)(γ0ω)us(p)eipx

+ d†s(p)(−γ0ω)vs(p)e−ipx
]
. (266)

Therefore

H =
∑

s,s′

∫
d̃p d̃p ′ d3x

(
b†s′(p

′)us′(p
′)e−ip

′x + ds′(p
′)vs′(p

′)eip
′x
)

× ω
(
bs(p)γ0us(p)eipx − d†s(p)γ0vs(p)e−ipx

)

=
∑

s,s′

∫
d̃p d̃p ′ d3x ω

[
b†s′(p

′)bs(p) us′(p
′)γ0us(p) e−i(p

′−p)x

− b†s′(p
′)d†s(p) us′(p

′)γ0vs(p) e−i(p
′+p)x

+ ds′(p
′)bs(p) vs′(p

′)γ0us(p) e+i(p
′+p)x

− ds′(p
′)d†s(p) vs′(p

′)γ0vs(p) e+i(p
′−p)x

]

=
∑

s,s′

∫
d̃p 1

2

[
b†s′(p)bs(p) us′(p)γ0us(p)

− b†s′(−p)d†s(p) us′(−p)γ0vs(p) e+2iωt

+ ds′(−p)bs(p) vs′(−p)γ0us(p) e−2iωt
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− ds′(p)d†s(p) vs′(p)γ0vs(p)
]

=
∑

s

∫
d̃p ω

[
b†s(p)bs(p) − ds(p)d†s(p)

]
. (267)

Using eq. (263), we can rewrite this as

H =
∑

s=±

∫
d̃p ω

[
b†s(p)bs(p) + d†s(p)ds(p)

]
− 4E0V , (268)

where E0 = 1
2

∫
d3k ω is the zero-point energy per unit volume that we found

for a real scalar field in section 3, and V = (2π)3δ3(0) =
∫
d3x is the vol-

ume of space. That the zero-point energy is negative rather than positive is

characteristic of fermions; that it is larger in magnitude by a factor of four is

due to the four types of particles that are associated with a Dirac field. We

can cancel off this constant energy by including a constant term −4E0 in the

original lagrangian density; from here on, we will assume that this has been

done.

The ground state of the hamiltonian (268) is the vacuum state |0〉 that

is annihilated by every bs(p) and ds(p),

bs(p)|0〉 = ds(p)|0〉 = 0 . (269)

Then, we can interpret the b†s(p) operator as creating a b-type particle with

momentum p, energy ω = (p2 + m2)1/2, and spin Sz = 1
2
s, and the d†s(p)

operator as creating a d-type particle with the same properties. The b-type

and d-type particles are distinguished by the value of the charge Q =
∫
d3x j0,

where jµ = ΨγµΨ is the Noether current associated with the invariance of  L

under the U(1) transformation Ψ → e−iαΨ, Ψ → e+iαΨ. Following the same

procedure that we used for the hamiltonian, we can show that

Q =
∫
d3x Ψγ0Ψ

=
∑

s=±

∫
d̃p
[
b†s(p)bs(p) + ds(p)d†s(p)

]

=
∑

s=±

∫
d̃p
[
b†s(p)bs(p) − d†s(p)ds(p)

]
+ constant ; (270)

Thus the conserved charge Q counts the total number of b-type particles

minus the total number of d-type particles. (We are free to shift the overall
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value of Q to remove the constant term, and so we shall.) In quantum

electrodynamics, we will identify the b-type particles as electrons and the

d-type particles as positrons.

Now consider a Majorana field Ψ with lagrangian

 L = i
2
ΨTC/∂Ψ − 1

2
mΨTCΨ . (271)

The equation of motion for Ψ is once again the Dirac equation, and so the

general solution is once again given by eq. (251). However, Ψ must also obey

the Majorana condition Ψ = CΨ
T
. Starting from the barred form of eq. (251),

Ψ(x) =
∑

s=±

∫
d̃p

[
b†s(p)us(p)e−ipx + ds(p)vs(p)eipx

]
, (272)

we have

CΨ
T
(x) =

∑

s=±

∫
d̃p

[
b†s(p) CuT

s (p)e−ipx + ds(p) CvT

s (p)eipx
]
. (273)

From section 38, we have

Cus(p)T = vs(p) ,

Cvs(p)T = us(p) , (274)

and so

CΨ
T
(x) =

∑

s=±

∫
d̃p

[
b†s(p)vs(p)e−ipx + ds(p)us(p)eipx

]
. (275)

Comparing eqs. (251) and (275), we see that we will have Ψ = CΨ
T

if

ds(p) = bs(p) . (276)

Thus a free Majorana field can be written as

Ψ(x) =
∑

s=±

∫
d̃p

[
bs(p)us(p)eipx + b†s(p)vs(p)e−ipx

]
. (277)

The anticommutation relations for a Majorana field,

{Ψα(x, t),Ψβ(y, t)} = (Cγ0)αβ δ
3(x − y) , (278)

{Ψα(x, t),Ψβ(y, t)} = (γ0)αβ δ
3(x − y) , (279)
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can be used to show that

{bs(p), bs′(p
′)} = 0 ,

{bs(p), b†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (280)

as we would expect.

The hamiltonian for the Majorana field Ψ is

H = 1
2

∫
d3x ΨTC(−iγi∂i +m)Ψ

= 1
2

∫
d3x Ψ(−iγi∂i +m)Ψ , (281)

and we can work through the same manipulations that led to eq. (267); the

only differences are an extra overall factor of one-half, and ds(p) = bs(p).

Thus we get

H = 1
2

∑

s=±

∫
d̃p ω

[
b†s(p)bs(p) − bs(p)b†s(p)

]
. (282)

Note that this would reduce to a constant if we tried to use commutators

rather than anticommutators in eq. (280), a reflection of the spin-statistics

theorem. Using eq. (280) as it is, we find

H =
∑

s=±

∫
d̃p ω b†s(p)bs(p) − 2E0V. (283)

Again, we can (and will) cancel off the zero-point energy by including a term

−2E0 in the original lagrangian density.

The Majorana lagrangian has no U(1) symmetry. Thus there is no asso-

ciated charge, and only one kind of particle (with two possible spin states).

Problems

39.1) Verify eq. (270).
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39.2) Show that

U(Λ)−1b†s(p)U(Λ) = b†s(Λ
−1p) ,

U(Λ)−1d†s(p)U(Λ) = d†s(Λ
−1p) , (284)

and hence that

U(Λ)|p, s, q〉 = |Λp, s, q〉 , (285)

where

|p, s,+〉 ≡ b†s(p)|0〉 ,
|p, s,−〉 ≡ d†s(p)|0〉 (286)

are single-particle states.
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40: Parity, Time Reversal, and Charge Conjugation

Prerequisite: 39

Recall that, under a Lorentz transformation Λ implemented by the uni-

tary operator U(Λ), a Dirac (or Majorana) field transforms as

U(Λ)−1Ψ(x)U(Λ) = D(Λ)Ψ(Λ−1x) . (287)

For an infinitesimal transformation Λµ
ν = δµν + δωµν , the matrix D(Λ) is

given by

D(1+δω) = I + i
2
δωµνS

µν , (288)

where the Lorentz generator matrices are

Sµν = i
4
[γµ, γν ] . (289)

In this section, we will consider the two Lorentz transformations that cannot

be reached via a sequence of infinitesimal transformations away from the

identity: parity and time reversal. We begin with parity.

Define the parity transformation

Pµ
ν = (P−1)µν =




+1
−1

−1
−1


 (290)

and the corresponding unitary operator

P ≡ U(P) . (291)

Now we have

P−1Ψ(x)P = D(P)Ψ(Px) . (292)
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The question we wish to answer is, what is the matrix D(P)?

First of all, if we make a second parity transformation, we get

P−2Ψ(x)P 2 = D(P)2Ψ(x) , (293)

and it is tempting to conclude that we should have D(P)2 = 1, so that we

return to the original field. This is correct for scalar fields, since they are

themselves observable. With fermions, however, it takes an even number of

fields to construct an observable. Therefore we need only require the weaker

condition D(P)2 = ±1.

We will also require the particle creation and annihilation operators to

transform in a simple way. Because

P−1PP = −P , (294)

P−1JP = +J , (295)

where P is the total three-momentum operator and J is the total angu-

lar momentum operator, a parity transformation should reverse the three-

momentum while leaving the spin direction unchanged. We therefore require

P−1b†s(p)P = η b†s(−p) ,

P−1d†s(p)P = η d†s(−p) , (296)

where η is a possible phase factor that (by the previous argument about

observables) should satisfy η2 = ±1. We could in principle assign different

phase factors to the b and d operators, but we choose them to be the same

so that the parity transformation is compatible with the Majorana condition

ds(p) = bs(p). Writing the mode expansion of the free field

Ψ(x) =
∑

s=±

∫
d̃p
[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (297)

the parity transformation reads

P−1Ψ(x)P =
∑

s=±

∫
d̃p
[(
P−1bs(p)P

)
us(p)eipx +

(
P−1d†s(p)P

)
vs(p)e−ipx

]

=
∑

s=±

∫
d̃p
[
η∗bs(−p)us(p)eipx + ηd†s(−p)vs(p)e−ipx

]

=
∑

s=±

∫
d̃p
[
η∗bs(p)us(−p)eipPx + ηd†s(p)vs(−p)e−ipPx

]
. (298)
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In the last line, we have changed the integration variable from p to −p. We

now use a result from section 38, namely that

us(−p) = +βus(p) ,

vs(−p) = −βvs(p) , (299)

where

β =

(
0 I

I 0

)
. (300)

Then, if we choose η = −i, eq. (298) becomes

P−1Ψ(x)P =
∑

s=±

∫
d̃p
[
ibs(p)βus(p)eipPx + id†s(p)βvs(p)e−ipPx

]

= iβΨ(Px) . (301)

Thus we see that D(P) = iβ. (We could also have chosen η = i, resulting in

D(P) = −iβ; either choice is acceptable.)

The factor of i has an interesting physical consequence. Consider a state

of an electron and positron with zero center-of-mass momentum,

|φ〉 =
∫
d̃p φ(p)b†s(p)d†s′(−p)|0〉 ; (302)

here φ(p) is the momentum-space wave function. Let us assume that the

vacuum is parity invariant: P |0〉 = P−1|0〉 = |0〉. Let us also assume that

the wave function has definite parity: φ(−p) = (−)ℓφ(p). Then, applying

the inverse parity operator on |φ〉, we get

P−1|φ〉 =
∫
d̃p φ(p)

(
P−1b†s(p)P

)
(P−1d†s′(−p)P

)
P−1|0〉 .

= (−i)2
∫
d̃p φ(p)b†s(−p)d†s′(p)|0〉

= (−i)2
∫
d̃p φ(−p)b†s(p)d†s′(−p)|0〉

= −(−)ℓ|φ〉 . (303)

Thus, the parity of this state is opposite to that of its wave function; an

electron-positron pair has an intrinsic parity of −1. This also applies to a
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pair of Majorana fermions. This influences the selection rules for fermion

pair annihilation in theories which conserve parity. (A pair of electrons also

has negative intrinsic parity, but this is not interesting because the electrons

are prevented from annihilating by charge conservation.)

It is interesting to see what eq. (301) implies for the two Weyl fields that

comprise the Dirac field. Recalling that

Ψ =

(
χa

ξ†ȧ

)
, (304)

we see from eqs. (300) and (301) that

P−1χa(x)P = iξ†ȧ(Px) ,

P−1ξ†ȧ(x)P = iχa(Px) . (305)

Thus a parity transformation exchanges a left-handed field for a right-handed

one.

If we take the hermitian conjugate of eq. (305), then raise the index on

one side while lowering it on the other (and remember that this introduces

a relative minus sign!), we get

P−1χ†ȧ(x)P = iξa(Px) ,

P−1ξa(x)P = iχ†ȧ(Px) . (306)

Comparing eqs. (305) and (306), we see that they are compatible with the

Majorana condition χa(x) = ξa(x).

Next we take up time reversal. Define the time-reversal transformation

T µ
ν = (T −1)µν =




−1
+1

+1
+1


 (307)

and the corresponding operator

T ≡ U(T ) . (308)
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Now we have

T−1Ψ(x)T = D(T )Ψ(T x) . (309)

The question we wish to answer is, what is the matrix D(T )?

As with parity, we can conclude that D(T )2 = ±1, and we will require

the particle creation and annihilation operators to transform in a simple way.

Because

T−1PT = −P , (310)

T−1JT = −J , (311)

where P is the total three-momentum operator and J is the total angular mo-

mentum operator, a time-reversal transformation should reverse the direction

of both the three-momentum and the spin. We therefore require

T−1b†s(p)T = ζs b
†
−s(−p) ,

T−1d†s(p)T = ζs d
†
−s(−p) . (312)

This time we allow for possible s-dependence of the phase factor, which

should satisfy ζ∗s ζ−s = ±1. Also, we recall from section 23 that T must be

an antiunitary operator, so that T−1iT = −i. Then we have

T−1Ψ(x)T =
∑

s=±

∫
d̃p
[(
T−1bs(p)T

)
u∗s(p)e−ipx +

(
T−1d†s(p)T

)
v∗s (p)eipx

]

=
∑

s=±

∫
d̃p
[
ζ∗s b−s(−p)u∗s(p)e−ipx + ζsd

†
−s(−p)v∗s(p)eipx

]
(313)

=
∑

s=±

∫
d̃p
[
ζ∗−sbs(p)u∗−s(−p)eipT x + ζ−sd

†
s(p)v∗−s(−p)e−ipT x

]
.

In the last line, we have changed the integration variable from p to −p, and

the summation variable from s to −s. We now use a result from section 38,

namely that

u∗−s(−p) = −s Cγ5us(p) ,

v∗−s(−p) = −s Cγ5vs(p) . (314)

Then, if we choose ζs = s, eq. (313) becomes

T−1Ψ(x)T = Cγ5Ψ(T x) . (315)
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Thus we see that D(T ) = Cγ5. (We could also have chosen ζs = −s, resulting

in D(T ) = −Cγ5; either choice is acceptable.)

As with parity, we can consider the effect of time reversal on the Weyl

fields. Using eqs. (304), (315),

C =

(−εab 0

0 −εȧḃ

)
, (316)

and

γ5 =

(−δac 0

0 +δȧċ

)
, (317)

we see that

T−1χa(x)T = +χa(T x) ,

T−1ξ†ȧ(x)T = −ξ†ȧ(T x) . (318)

Thus left-handed Weyl fields transform into left-handed Weyl fields (and

right-handed into right-handed) under time reversal.

If we take the hermitian conjugate of eq. (318), then raise the index on

one side while lowering it on the other (and remember that this introduces

a relative minus sign!), we get

T−1χ†ȧ(x)T = −χ†ȧ(T x) ,

T−1ξa(x)T = +ξa(T x) . (319)

Comparing eqs. (318) and (319), we see that they are compatible with the

Majorana condition χa(x) = ξa(x).

It is interesting and important to evaluate the transformation properties

of fermion bilinears of the form ΨAΨ, where A is some combination of gamma

matrices. We will consider A’s that satisfy A = A, where A ≡ βA†β; in this

case, ΨAΨ is hermitian.

Let us begin with parity transformations. From Ψ = Ψ†β and eq. (301)

we get

P−1Ψ(x)P = −iΨ(Px)β , (320)
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Combining eqs. (301) and (320) we find

P−1
(
ΨAΨ

)
P = Ψ

(
βAβ

)
Ψ , (321)

where we have suppressed the spacetime arguments (which transform in the

obvious way). For various particular choices of A we have

β1β = +1 ,

βiγ5β = −iγ5 ,

βγ0β = +γ0 ,

βγiβ = −γi ,
βγ0γ5β = −γ0γ5 ,

βγiγ5β = +γiγ5 . (322)

Therefore, the corresponding hermitian bilinears transform as

P−1
(
ΨΨ

)
P = + ΨΨ ,

P−1
(
Ψiγ5Ψ

)
P = −Ψiγ5Ψ ,

P−1
(
ΨγµΨ

)
P = +Pµ

νΨγ
νΨ ,

P−1
(
Ψγµγ5Ψ

)
P = −Pµ

νΨγ
νγ5Ψ , (323)

Thus we see that ΨΨ and ΨγµΨ are even under a parity transformation,

while Ψiγ5Ψ and Ψγµγ5Ψ are odd. We say that ΨΨ is a scalar, ΨγµΨ is a

vector or polar vector, Ψiγ5Ψ is a pseudoscalar, and Ψγµγ5Ψ is a pseudovector

or axial vector.

Turning to time reversal, from eq. (315) we get

T−1Ψ(x)T = Ψ(T x)γ5C−1 . (324)

Combining eqs. (315) and (324), along with T−1AT = A∗, we find

T−1
(
ΨAΨ

)
T = Ψ

(
γ5C−1A∗Cγ5

)
Ψ , (325)

where we have suppressed the spacetime arguments (which transform in the

obvious way). Recall that C−1γµC = −(γµ)T and that C−1γ5C = γ5. Also,
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γ0 and γ5 are real, hermitian, and square to one, while γi is antihermitian.

Finally, γ5 anticommutes with γµ. Using all of this info, we find

γ5C−11∗Cγ5 = +1 ,

γ5C−1(iγ5)
∗Cγ5 = −iγ5 ,

γ5C−1(γ0)∗Cγ5 = +γ0 ,

γ5C−1(γi)∗Cγ5 = −γi ,
γ5C−1(γ0γ5)

∗Cγ5 = +γ0γ5 ,

γ5C−1(γiγ5)
∗Cγ5 = −γiγ5 . (326)

Therefore,

T−1
(
ΨΨ

)
T = + ΨΨ ,

T−1
(
Ψiγ5Ψ

)
T = −Ψiγ5Ψ ,

T−1
(
ΨγµΨ

)
T = −T µ

νΨγ
νΨ ,

T−1
(
Ψγµγ5Ψ

)
T = −T µ

νΨγ
νγ5Ψ . (327)

Thus we see that ΨΨ is even under time reversal, while Ψiγ5Ψ, ΨγµΨ, and

Ψγµγ5Ψ are odd.

For completeness we will also consider the transformation properties of

bilinears under charge conjugation. Recall that

C−1Ψ(x)C = CΨ
T
(x) ,

C−1Ψ(x)C = ΨT(x)C . (328)

The bilinear ΨAΨ therefore transforms as

C−1
(
ΨAΨ

)
C = ΨTCACΨ

T
. (329)

Since all indices are contracted, we can rewrite the right-hand side as its

transpose, with an extra minus sign for exchanging the order of the two

fermion fields. We get

C−1
(
ΨAΨ

)
C = −ΨCTATCTΨ . (330)
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Recalling that CT = C−1 = −C, we have

C−1
(
ΨAΨ

)
C = Ψ

(
C−1ATC

)
Ψ . (331)

Once again we can go through the list:

C−11TC = +1 ,

C−1(iγ5)TC = +iγ5 ,

C−1(γµ)TC = −γµ ,
C−1(γµγ5)

TC = +γµγ5 . (332)

Therefore,

C−1
(
ΨΨ

)
C = + ΨΨ ,

C−1
(
Ψiγ5Ψ

)
C = + Ψiγ5Ψ ,

C−1
(
ΨγµΨ

)
C = −ΨγµΨ ,

C−1
(
Ψγµγ5Ψ

)
C = + Ψγµγ5Ψ . (333)

Thus we see that ΨΨ, Ψiγ5Ψ, and Ψγµγ5Ψ are even under charge conjugation,

while ΨγµΨ is odd. For a Majorana field, this implies ΨγµΨ = 0.

Let us consider the combined effects of the three transformations (C, P ,

and T ) on the bilinears. From eqs. (323), (327), and (333), we have

(CPT )−1
(
ΨΨ

)
CPT = + ΨΨ ,

(CPT )−1
(
Ψiγ5Ψ

)
CPT = + Ψiγ5Ψ ,

(CPT )−1
(
ΨγµΨ

)
CPT = −ΨγµΨ ,

(CPT )−1
(
Ψγµγ5Ψ

)
CPT = −Ψγµγ5Ψ , (334)

where we have used Pµ
νT ν

ρ = −δµρ. We see that ΨΨ and Ψiγ5Ψ are both

even under CPT , while ΨγµΨ and Ψγµγ5Ψ are both odd. These are (it turns

out) examples of a more general rule: a fermion bilinear with n vector indices

(and no uncontracted spinor indices) is even (odd) under CPT if n is even

(odd). This also applies if we allow derivatives acting on the fields, since

each factor of ∂µ is odd under the combination PT and even under C.
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For scalar and vector fields, it is always possible to choose the phase

factors in the C, P , and T transformations so that, overall, they obey the

same rule: a hermitian combination of fields and derivatives is even or odd

depending on the total number of uncontracted vector indices. Putting this

together with our result for fermion bilinears, we see that any hermitian

combination of any set of fields (scalar, vector, Dirac, Majorana) and their

derivatives that is a Lorentz scalar (and so carries no indices) is even under

CPT . Since the lagrangian must be formed out of such combinations, we

have  L(x) →  L(−x) under CPT , and so the action S =
∫
d4x  L is invariant.

This is the CPT theorem.

Problems

40.1) Find the transformation properties of ΨSµνΨ and ΨiSµνγ5Ψ under

P , T , and C. Verify that they are both even under CPT , as claimed.
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Quantum Field Theory Mark Srednicki

41: LSZ Reduction for Spin-One-Half Particles

Prerequisite: 39

Let us now consider how to construct appropriate initial and final states

for scattering experiments. We will first consider the case of a Dirac field Ψ,

and assume that its interactions respect the U(1) symmetry that gives rise

to the conserved current jµ = ΨγµΨ and its associated charge Q.

In the free theory, we can create a state of one particle by acting on the

vacuum state with a creation operator:

|p, s,+〉 = b†s(p)|0〉 , (335)

|p, s,−〉 = d†s(p)|0〉 , (336)

where the label ± on the ket indicates the value of the U(1) charge Q, and

b†s(p) =
∫
d3x eipx Ψ(x)γ0us(p) , (337)

d†s(p) =
∫
d3x eipx vs(p)γ0Ψ(x) . (338)

Recall that b†s(p) and d†s(p) are time independent in the free theory. The

states |p, s,±〉 have the Lorentz-invariant normalization

〈p, s, q|p′, s′, q′〉 = (2π)3 2ω δ3(p− p′) δss′ δqq′ , (339)

where ω = (p2 +m2)1/2.

Let us consider an operator that (in the free theory) creates a particle

with definite spin and charge, localized in momentum space near p1, and

localized in position space near the origin:

b†1 ≡
∫
d3p f1(p)b†s1(p) , (340)
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where

f1(p) ∝ exp[−(p − p1)
2/4σ2] (341)

is an appropriate wave packet, and σ is its width in momentum space. If

we time evolve (in the Schrödinger picture) the state created by this time-

independent operator, then the wave packet will propagate (and spread out).

The particle will thus be localized far from the origin as t → ±∞. If we

consider instead an initial state of the form |i〉 = b†1b
†
2|0〉, where p1 6= p2,

then we have two particles that are widely separated in the far past.

Let us guess that this still works in the interacting theory. One compli-

cation is that b†s(p) will no longer be time independent, and so b†1, eq. (340),

becomes time dependent as well. Our guess for a suitable initial state for a

scattering experiment is then

|i〉 = lim
t→−∞

b†1(t)b†2(t)|0〉 . (342)

By appropriately normalizing the wave packets, we can make 〈i|i〉 = 1, and

we will assume that this is the case. Similarly, we can consider a final state

|f〉 = lim
t→+∞

b†1′(t)b
†
2′(t)|0〉 , (343)

where p′1 6= p′2, and 〈f |f〉 = 1. This describes two widely separated particles

in the far future. (We could also consider acting with more creation operators,

if we are interested in the production of some extra particles in the collision

of two, or using d† operators instead of b† operators for some or all of the

initial and final particles.) Now the scattering amplitude is simply given by

〈f |i〉.
We need to find a more useful expression for 〈f |i〉. To this end, let us

note that

b†1(−∞) − b†1(+∞)

= −
∫ +∞

−∞
dt ∂0b

†
1(t)

= −
∫
d3p f1(p)

∫
d4x ∂0

(
eipx Ψ(x)γ0us1(p)

)
.

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − iγ0p0

)
us1(p)eipx
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= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − iγipi − im

)
us1(p)eipx

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 − γi

→
∂ i − im

)
us1(p)eipx

= −
∫
d3p f1(p)

∫
d4x Ψ(x)

(
γ0
←
∂ 0 + γi

←
∂ i − im

)
us1(p)eipx

= i
∫
d3p f1(p)

∫
d4x Ψ(x)(+i

←
/∂ +m)us(p)eipxus1(p)eipx .(344)

The first equality is just the fundamental theorem of calculus. To get the

second, we substituted the definition of b†1(t), and combined the d3x from

this definition with the dt to get d4x. The third comes from straightforward

evaluation of the time derivatives. The fourth uses (/p + m)us(p) = 0. The

fifth writes ipi as ∂i acting on eipx. The sixth uses integration by parts to

move the ∂i onto the field Ψ(x); here the wave packet is needed to avoid a

surface term. The seventh simply identifies γ0∂0 + γi∂i as /∂.

In free-field theory, the right-hand side of eq. (344) is zero, since Ψ(x)

obeys the Dirac equation, which, after barring it, reads

Ψ(x)(+i
←
/∂ +m) = 0 . (345)

In an interacting theory, however, the right-hand side of eq. (344) will not be

zero.

We will also need the hermitian conjugate of eq. (344), which (after some

slight rearranging) reads

b1(+∞) − b1(−∞)

= i
∫
d3p f1(p)

∫
d4x e−ipx us1(p)(−i/∂ +m)Ψ(x) , (346)

and the analogous formulae for the d operators,

d†1(−∞) − d†1(+∞)

= −i
∫
d3p f1(p)

∫
d4x eipx vs1(p)(−i/∂ +m)Ψ(x) , (347)

d1(+∞) − d1(−∞)

= −i
∫
d3p f1(p)

∫
d4x Ψ(x)(+i

←
/∂ +m)vs1(p)e−ipx . (348)
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Let us now return to the scattering amplitude we were considering,

〈f |i〉 = 〈0|b2′(+∞)b1′(+∞)b†1(−∞)b†2(−∞)|0〉 . (349)

Note that the operators are in time order. Thus, if we feel like it, we can put

in a time-ordering symbol without changing anything:

〈f |i〉 = 〈0|T b2′(+∞)b1′(+∞)b†1(−∞)b†2(−∞)|0〉 . (350)

The symbol T means the product of operators to its right is to be ordered,

not as written, but with operators at later times to the left of those at earlier

times. However, there is an extra minus sign if this rearrangement involves

an odd number of exchanges of these anticommuting operators.

Now let us use eqs. (344) and (346) in eq. (350). The time-ordering symbol

automatically moves all bi′(−∞)’s to the right, where they annihilate |0〉.
Similarly, all b†i (+∞)’s move to the left, where they annihilate 〈0|.

The wave packets no longer play a key role, and we can take the σ → 0

limit in eq. (341), so that f1(p) = δ3(p − p1). The initial and final states

now have a delta-function normalization, the multiparticle generalization of

eq. (339). We are left with the Lehmann-Symanzik-Zimmerman reduction

formula for spin-one-half particles,

〈f |i〉 = i4
∫
d4x1 d

4x2 d
4x1′ d

4x2′

× e−ip
′
1
x′
1 [us1′ (p1′)(−i/∂1′ +m)]α1′

× e−ip
′
2
x′
2 [us2′ (p2′)(−i/∂2′ +m)]α2′

× 〈0|T Ψα2′
(x2′)Ψα1′

(x1′)Ψα1
(x1)Ψα2

(x2)|0〉

× [(+i
←
/∂ 1 +m)us1(p1)]α1

eip1x1

× [(+i
←
/∂ 2 +m)us2(p2)]α2

eip2x2 . (351)

The generalization of the LSZ formula to other processes should be clear;

insert a time-ordering symbol, and make the following replacements:

b†s(p)in → +i
∫
d4x Ψ(x)(+i

←
/∂ +m)us(p) e+ipx , (352)
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bs(p)out → +i
∫
d4x e−ipx us(p)(−i/∂ +m)Ψ(x) , (353)

d†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) , (354)

ds(p)out → −i
∫
d4x Ψ(x)(+i

←
/∂ +m)vs(p) e−ipx , (355)

where we have used the subscripts “in” and “out” to denote t → −∞ and

t→ +∞, respectively.

All of this holds for a Majorana field as well. In that case, ds(p) = bs(p),

and we can use either eq. (352) or eq. (354) for the incoming particles, and

either eq. (353) or eq. (355) for the outgoing particles, whichever is more

convenient. The Majorana condition Ψ = ΨTC guarantees that the results

will be equivalent.

As in the case of a scalar field, we cheated a little in our derivation of the

LSZ formula, because we assumed that the creation operators of free field

theory would work comparably in the interacting theory. After performing

an analysis that is entirely analogous to what we did for the scalar in section

5, we come to the same conclusion: the LSZ formula holds provided the field

is properly normalized. For a Dirac field, we must require

〈0|Ψ(x)|0〉 = 0 , (356)

〈p, s,+|Ψ(x)|0〉 = 0 , (357)

〈p, s,−|Ψ(x)|0〉 = vs(p)e
−ipx , (358)

〈p, s,+|Ψ(x)|0〉 = us(p)e
−ipx , (359)

〈p, s,−|Ψ(x)|0〉 = 0 , (360)

where 〈0|0〉 = 1, and the one-particle states are normalized according to

eq. (339).

The zeros on the right-hand sides of eqs. (357) and (360) are required by

charge conservation. To see this, start with [Q,Ψ(x)] = −Ψ(x), take the

matrix elements indicated, and use Q|0〉 = 0 and Q|p, s,±〉 = ±|p, s,±〉.
The zero on the right-hand side of eq. (356) is required by Lorentz in-

variance. To see this, start with [Mµν ,Ψ(0)] = SµνΨ(0), and take the ex-

pectation value in the vacuum state |0〉. If |0〉 is Lorentz invariant (as we
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will assume), then it is annihilated by the Lorentz generators Mµν , which

means that we must have Sµν〈0|Ψ(0)|0〉 = 0; this is possible for all µ and ν

only if 〈0|Ψ(0)|0〉 = 0, which (by translation invariance) is possible only if

〈0|Ψ(x)|0〉 = 0.

The right-hand sides of eqs. (358) and (359) are similarly fixed by Lorentz

invariance: only the overall scale might be different in an interacting theory.

However, the LSZ formula is correctly normalized if and only if eqs. (358)

and (359) hold as written. We will enforce this by rescaling (or, one might

say, renormalizing) Ψ(x) by an overall constant. This is just a change of the

name of the operator of interest, and does not affect the physics. However,

the rescaled Ψ(x) will obey eqs. (358) and (359). (These two equations are

related by charge conjugation, and so actually constitute only one condition

on Ψ.)

For a Majorana field, there is no conserved charge, and we have

〈0|Ψ(x)|0〉 = 0 , (361)

〈p, s|Ψ(x)|0〉 = vs(p)e
−ipx , (362)

〈p, s|Ψ(x)|0〉 = us(p)e
−ipx , (363)

instead of eqs. (356–360).

The renormalization of Ψ necessitates including appropriate Z factors in

the lagrangian. Consider, for example,

 L = iZΨ/∂Ψ − ZmmΨΨ − 1
4
Zgg(ΨΨ)2 , (364)

where Ψ is a Dirac field, and g is a coupling constant. We must choose the

three constants Z, Zm, and Zg so that the following three conditions are

satisfied: m is the mass of a single particle; g is fixed by some appropriate

scattering cross section; and eq. (358) and is obeyed. [Eq. (359) then follows

by charge conjugation.]

Next, we must develop the tools needed to compute the correlation func-

tions 〈0|TΨα1′
(x1′) . . .Ψα1

(x1) . . . |0〉 in an interacting quantum field theory.
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Quantum Field Theory Mark Srednicki

42: The Free Fermion Propagator

Prerequisite: 39

Consider a free Dirac field

Ψ(x) =
∑

s=±

∫
d̃p

[
bs(p)us(p)eipx + d†s(p)vs(p)e−ipx

]
, (365)

Ψ(y) =
∑

s′=±

∫
d̃p ′

[
b†s′(p

′)us′(p
′)e−ip

′y + ds′(p
′)vs′(p

′)eip
′y
]
, (366)

where

bs(p)|0〉 = ds(p)|0〉 = 0 , (367)

and

{bs(p), b†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (368)

{ds(p), d†s′(p
′)} = (2π)3δ3(p− p′) 2ωδss′ , (369)

and all the other possible anticommutators between b and d operators (and

their hermitian conjugates) vanish.

We wish to compute the Feynman propagator

S(x− y)αβ ≡ i〈0|TΨα(x)Ψβ(y)|0〉 , (370)

where T denotes the time-ordered product,

TΨα(x)Ψβ(y) ≡ θ(x0 − y0)Ψα(x)Ψβ(y) − θ(y0 − x0)Ψβ(y)Ψα(x) , (371)

and θ(t) is the unit step function. Note the minus sign in the second term;

this is needed because Ψα(x)Ψβ(y) = −Ψβ(y)Ψα(x) when x0 6= y0.

We can now compute 〈0|Ψα(x)Ψβ(y)|0〉 and 〈0|Ψβ(y)Ψα(x)|0〉 by insert-

ing eqs. (365) and (366), and then using eqs. (367–369). We get
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〈0|Ψα(x)Ψβ(y)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ eipx e−ip

′y us(p)αus′(p
′)β 〈0|bs(p)b†s′(p

′)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ eipx e−ip

′y us(p)αus′(p
′)β (2π)3δ3(p− p′) 2ωδss′

=
∑

s

∫
d̃p eip(x−y) us(p)αus(p)β

=
∫
d̃p eip(x−y) (−/p+m)αβ . (372)

To get the last line, we used a result from section 38. Similarly,

〈0|Ψβ(y)Ψα(x)|0〉

=
∑

s,s′

∫
d̃p d̃p ′ e−ipx eip

′y vs(p)αvs′(p
′)β 〈0|ds′(p′)d†s(p)|0〉

=
∑

s,s′

∫
d̃p d̃p′ e−ipx eip

′y vs(p)αvs′(p
′)β (2π)3δ3(p− p′) 2ωδss′

=
∑

s

∫
d̃p e−ip(x−y) vs(p)αvs(p)β

=
∫
d̃p e−ip(x−y) (−/p−m)αβ . (373)

We can combine eqs. (372) and (373) into a compact formula for the time-

ordered product by means of the identity

∫
d4p

(2π)4

eip(x−y)f(p)

p2 +m2 − iǫ
= iθ(x0−y0)

∫
d̃p eip(x−y) f(p)

+ iθ(y0−x0)
∫
d̃p e−ip(x−y) f(−p) , (374)

where f(p) is a polynomial in p; the derivation of eq. (374) was sketched in

section 8. We get

〈0|TΨα(x)Ψβ(y)|0〉 =
1

i

∫
d4p

(2π)4
eip(x−y)

(−/p+m)αβ
p2 +m2 − iǫ

, (375)

72



and so

S(x− y)αβ =
∫

d4p

(2π)4
eip(x−y)

(−/p+m)αβ
p2 +m2 − iǫ

. (376)

Note that S(x− y) is a Green’s function for the Dirac wave operator:

(−i/∂x +m)αβS(x− y)βγ =
∫

d4p

(2π)4
eip(x−y)

(/p+m)αβ(−/p +m)βγ
p2 +m2 − iǫ

=
∫ d4p

(2π)4
eip(x−y)

(p2 +m2)δαγ
p2 +m2 − iǫ

= δ4(x− y)δαγ . (377)

Similarly,

S(x− y)αβ(+i
←
/∂y +m)βγ =

∫
d4p

(2π)4
eip(x−y)

(−/p +m)αβ(/p+m)βγ
p2 +m2 − iǫ

=
∫ d4p

(2π)4
eip(x−y)

(p2 +m2)δαγ
p2 +m2 − iǫ

= δ4(x− y)δαγ . (378)

We can also consider 〈0|TΨα(x)Ψβ(y)|0〉 and 〈0|TΨα(x)Ψβ(y)|0〉, but it is

easy to see that now there is no way to pair up a b with a b† or a d with a

d†, and so

〈0|TΨα(x)Ψβ(y)|0〉 = 0 , (379)

〈0|TΨα(x)Ψβ(y)|0〉 = 0 . (380)

Next, consider a Majorana field

Ψ(x) =
∑

s=±

∫
d̃p

[
bs(p)us(p)eipx + b†s(p)vs(p)e−ipx

]
, (381)

Ψ(y) =
∑

s′=±

∫
d̃p ′

[
b†s′(p

′)us′(p
′)e−ip

′y + bs′(p
′)vs′(p

′)eip
′y
]
. (382)

It is easy to see that 〈0|TΨα(x)Ψβ(y)|0〉 is the same as it is in the Dirac case;

the only difference in the calculation is that we would have b and b† in place
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of d and d† in the second line of eq. (373), and this does not change the final

result. Thus,

i〈0|TΨα(x)Ψβ(y)|0〉 = S(x− y)αβ , (383)

where S(x− y) is given by eq. (376).

However, eqs. (379) and (380) no longer hold for a Majorana field. In-

stead, the Majorana condition Ψ = ΨTC, which can be rewritten as ΨT =

ΨC−1, implies

i〈0|TΨα(x)Ψβ(y)|0〉 = i〈0|TΨα(x)Ψγ(y)|0〉(C−1)γβ

= [S(x− y)C−1]αβ . (384)

Similarly, using CT = C−1, we can write the Majorana condition as Ψ
T

=

C−1Ψ, and so

i〈0|TΨα(x)Ψβ(y)|0〉 = i(C−1)αγ〈0|TΨγ(x)Ψβ(y)|0〉

= [C−1S(x− y)]αβ . (385)

Of course, C−1 = −C, but it will prove more convenient to leave eqs. (384)

and (385) as they are.

We can also consider the vacuum expectation value of a time-ordered

product of more than two fields. In the Dirac case, we must have an equal

number of Ψ’s and Ψ’s to get a nonzero result; and then, the Ψ’s and Ψ’s must

pair up to form propagators. There is an extra minus sign if the ordering of

the fields in their pairs is an odd permutation of the original ordering. For

example,

i2〈0|TΨα(x)Ψβ(y)Ψγ(z)Ψδ(w)|0〉 = + S(x− y)αβ S(z − w)γδ

− S(x− w)αδ S(z − y)γβ . (386)

In the Majorana case, we may as well let all the fields be Ψ’s (since we can

always replace a Ψ with ΨTC). Then we must pair them up in all possible

ways. There is an extra minus sign if the ordering of the fields in their pairs

is an odd permutation of the original ordering. For example,

i2〈0|TΨα(x)Ψβ(y)Ψγ(z)Ψδ(w)|0〉 = + [S(x− y)C−1]αβ [S(z − w)C−1]γδ
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− [S(x− z)C−1]αγ [S(y − w)C−1]βδ

+ [S(x− w)C−1]αδ [S(y − z)C−1]βγ .

(387)

Note that the ordering within a pair does not matter, since

[S(x− y)C−1]αβ = −[S(y − x)C−1]βα . (388)

This follows from anticommutation of the fields and eq. (384); it can also be

proven directly using CγµC−1 = −(γµ)T and C−1 = CT = −C.
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43: The Path Integral for Fermion Fields

Prerequisite: 9, 42

We would like to write down a path integral formula for the vacuum-

expectation value of a time-ordered product of free Dirac or Majorana fields.

Recall that for a real scalar field with

 L0 = −1
2
∂µϕ∂µϕ− 1

2
m2ϕ2

= −1
2
ϕ(−∂2 +m2)ϕ− 1

2
∂µ(ϕ∂µϕ) , (389)

we have

〈0|Tϕ(x1) . . . |0〉 =
1

i

δ

δJ(x1)
. . . Z0(J)

∣∣∣
J=0

, (390)

where

Z0(J) =
∫

Dϕ exp
[
i
∫
d4x ( L0 + Jϕ)

]
. (391)

In this formula, we use the epsilon trick (see section 6) of replacing m2 with

m2 − iǫ to construct the vacuum as the initial and final state. Then we get

Z0(J) = exp
[
i

2

∫
d4x d4y J(x)∆(x− y)J(y)

]
, (392)

where the Feynman propagator

∆(x− y) =
∫ d4k

(2π)4

eik(x−y)

k2 +m2 − iǫ
(393)

is the inverse of the Klein-Gordon wave operator:

(−∂2
x +m2)∆(x− y) = δ4(x− y) . (394)
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For a complex scalar field with

 L0 = −∂µϕ†∂µϕ−m2ϕ†ϕ

= −ϕ†(−∂2 +m2)ϕ− ∂µ(ϕ†∂µϕ) , (395)

we have instead

〈0|Tϕ(x1) . . . ϕ
†(y1) . . . |0〉 =

1

i

δ

δJ†(x1)
. . .

1

i

δ

δJ(y1)
. . . Z0(J†, J)

∣∣∣
J=J†=0

,

(396)

where

Z0(J
†, J) =

∫
Dϕ†Dϕ exp

[
i
∫
d4x ( L0 + J†ϕ+ ϕ†J)

]

= exp
[
i
∫
d4x d4y J†(x)∆(x− y)J(y)

]
. (397)

We treat J and J† as independent variables when evaluating eq. (396).

In the case of a fermion field, we should have something similar, except

that we need to account for the extra minus signs from anticommutation.

For this to work out, a functional derivative with respect to an anticommut-

ing variable must itself be treated as anticommuting. Thus if we define an

anticommuting source η(x) for a Dirac field, we can write

δ

δη(x)

∫
d4y

[
η(y)Ψ(y) + Ψ(y)η(y)

]
= −Ψ(x) , (398)

δ

δη(x)

∫
d4y

[
η(y)Ψ(y) + Ψ(y)η(y)

]
= +Ψ(x) . (399)

The minus sign in eq. (398) arises because the δ/δη must pass through Ψ

before reaching η.

Thus, consider a free Dirac field with

 L0 = iΨ/∂Ψ −mΨΨ

= −Ψ(−i/∂ +m)Ψ . (400)

A natural guess for the appropriate path-integral formula, based on analogy

with eq. (397), is

〈0|TΨα1
(x1) . . .Ψβ1

(y1) . . . |0〉

=
1

i

δ

δηα1
(x1)

. . . i
δ

δηβ1
(y1)

. . . Z0(η, η)
∣∣∣
η=η=0

, (401)

77



where

Z0(η, η) =
∫

DΨDΨ exp
[
i
∫
d4x ( L0 + ηΨ + Ψη)

]

= exp
[
i
∫
d4x d4y η(x)S(x− y)η(y)

]
, (402)

and the Feynman propagator

S(x− y) =
∫

d4p

(2π)4

(−/p+m)eip(x−y)

p2 +m2 − iǫ
(403)

is the inverse of the Dirac wave operator:

(−i/∂x +m)S(x− y) = δ4(x− y) . (404)

Note that each δ/δη in eq. (401) comes with a factor of i rather than the

usual 1/i; this reflects the extra minus sign of eq. (398). We treat η and

η as independent variables when evaluating eq. (401). It is straightforward

to check (by working out a few examples) that eqs. (401–404) do indeed

reproduce the result of section 42 for the vacuum expectation value of a

time-ordered product of Dirac fields.

This is really all we need to know. Recall that, for a complex scalar field

with interactions specified by  L1(ϕ
†, ϕ), we have

Z(J†, J) ∝ exp

[
i
∫
d4x  L1

(
1

i

δ

δJ(x)
,

1

i

δ

δJ†(x)

)]
Z0(J

†, J) , (405)

where the overall normalization is fixed by Z(0, 0) = 1. Thus, for a Dirac

field with interactions specified by  L1(Ψ,Ψ), we have

Z(η, η) ∝ exp

[
i
∫
d4x  L1

(
i

δ

δη(x)
,

1

i

δ

δη(x)

)]
Z0(η, η) , (406)

where again the overall normalization is fixed by Z(0, 0) = 1. Vacuum ex-

pectation values of time-ordered products of Dirac fields in an interacting

theory will now be given by eq. (401), but with Z0(η, η) replaced by Z(η, η).

Then, just as for a scalar field, this will lead to a Feynman-diagram expan-

sion for Z(η, η). There are two extra complications: we must keep track of
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the spinor indices, and we must keep track of the extra minus signs from

anticommutation. Both tasks are straightforward; we will take them up in

section 45.

Next, let us consider a Majorana field with

 L0 = i
2
ΨTC/∂Ψ − 1

2
mΨTCΨ

= −1
2
ΨTC(−i/∂ +m)Ψ . (407)

A natural guess for the appropriate path-integral formula, based on analogy

with eq. (390), is

〈0|TΨα1
(x1) . . . |0〉 =

1

i

δ

δηα1
(x1)

. . . Z0(η)
∣∣∣
η=0

, (408)

where

Z0(η) =
∫
DΨ exp

[
i
∫
d4x ( L0 + ηTΨ)

]

= exp
[
− i

2

∫
d4x d4y ηT(x)S(x− y)C−1η(y)

]
. (409)

The Feynman propagator S(x − y)C−1 is the inverse of the Majorana wave

operator C(−i/∂ +m):

C(−i/∂x +m)S(x− y)C−1 = δ4(x− y) . (410)

It is straightforward to check (by working out a few examples) that eqs. (408–

410) do indeed reproduce the result of section 42 for the vacuum expectation

value of a time-ordered product of Majorana fields. The extra minus sign in

eq. (409), as compared with eq. (402), arises because all functional derivative

in eq. (408) are accompanied by 1/i, rather than half by 1/i and half by i, as

in eq. (401).
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44: Formal Development of Fermionic Path Integrals

Prerequisite: 43

In section 43, we formally defined the fermionic path integral for a free

Dirac field Ψ via

Z0(η, η) =
∫

DΨDΨ exp
[
i
∫
d4xΨ(i/∂ −m)Ψ + ηΨ + Ψη

]

= exp
[
i
∫
d4x d4y η(x)S(x− y)η(y)

]
, (411)

where the Feynman propagator S(x − y) is the inverse of the Dirac wave

operator:

(−i/∂x +m)S(x− y) = δ4(x− y) . (412)

We would like to find a mathematical framework that allows us to derive this

formula, rather than postulating it by analogy.

Consider a set of anticommuting numbers or Grassmann variables ψi that

obey

{ψi, ψj} = 0 , (413)

where i = 1, . . . , n. Let us begin with the very simplest case of n = 1, and

thus a single anticommuting number ψ that obeys ψ2 = 0. We can define a

function f(ψ) of such an object via a Taylor expansion; because ψ2 = 0, this

expansion ends with the second term:

f(ψ) = a+ ψb . (414)

The reason for writing the coefficient b to the right of the variable ψ will

become clear in a moment.
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Next we would like to define the derivative of f(ψ) with respect to ψ.

Before we can do so, we must decide if f(ψ) itself is to be commuting or an-

ticommuting; generally we will be interested in functions that are themselves

commuting. In this case, a in eq. (414) should be treated as an ordinary

commuting number, but b should be treated as an anticommuting number:

{b, b} = {b, ψ} = 0. In this case, f(ψ) = a+ ψb = a− bψ.

Now we can define two kinds of derivatives. The left derivative of f(ψ)

with respect to ψ is given by the coefficient of ψ when f(ψ) is written with

the ψ always on the far left:

∂ψf(ψ) = +b . (415)

Similarly, the right derivative of f(ψ) with respect to ψ is given by the coef-

ficient of ψ when f(ψ) is written with the ψ always on the far right:

f(ψ)
←
∂ψ = −b . (416)

Generally, when we write a derivative with respect to a Grassmann variable,

we mean the left derivative. However, in section 37, when we wrote the

canonical momentum for a fermionic field ψ as π = ∂  L/∂(∂0ψ), we actually

meant the right derivative. (This is a standard, though rarely stated, conven-

tion.) Correspondingly, we wrote the hamiltonian density as H = π∂0ψ−  L,

with the ∂0ψ to the right of π.

Finally, we would like to define a definite integral, analogous to integrating

a real variable x from minus to plus infinity. The key features of such an

integral over x (when it converges) are linearity,
∫ +∞

−∞
dx cf(x) = c

∫ +∞

−∞
dx f(x) , (417)

and invariance under shifts of the dependent variable x by a constant:
∫ +∞

−∞
dx f(x+ a) =

∫ +∞

−∞
dx f(x) . (418)

Up to an overall numerical factor that is the same for every f(ψ), the only

possible nontrivial definition of
∫
dψ f(ψ) that is both linear and shift invari-

ant is ∫
dψ f(ψ) = b . (419)
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Now let us generalize this to n > 1. We have

f(ψ) = a+ ψibi + 1
2
ψi1ψi2ci1i2 + . . .+ 1

n!
ψi1 . . . ψindi1...in , (420)

where the indices are implicitly summed. Here we have written the coef-

ficients to the right of the variables to facilitate left-differentiation. These

coefficients are completely antisymmetric on exchange of any two indices.

The left derivative of f(ψ) with respect to ψj is

∂
∂ψj

f(ψ) = bj + ψicji + . . .+ 1
(n−1)!

ψi2 . . . ψindji2...in . (421)

Next we would like to find a linear, shift-invariant definition of the integral

of f(ψ). Note that the antisymmetry of the coefficients implies that

di1...in = d εi1...in . (422)

where d is a just a number (ordinary if f is commuting and n is even, Grass-

mann if f is commuting and n is odd, etc.), and εi1...in is the completely

antisymmetric Levi-Civita symbol with ε1...n = +1. This number d is a can-

didate (in fact, up to an overall numerical factor, the only candidate!) for

the integral of f(ψ): ∫
dnψ f(ψ) = d . (423)

Although eq. (423) really tells us everything we need to know about
∫
dnψ,

we can, if we like, write dnψ = dψn . . . dψ1 (note the backwards ordering),

and treat the individual differentials as anticommuting: {dψi, dψj} = 0,

{dψi, ψj} = 0. Then we take
∫
dψi = 0 and

∫
dψi ψj = δij as our basic

formulae, and use them to derive eq. (423).

Let us work out some consequences of eq. (423). Consider what happens

if we make a linear change of variable,

ψi = Jijψ
′
j , (424)

where Jji is a matrix of commuting numbers (and therefore can be written

on either the left or right of ψ′j). We now have

f(ψ) = a + . . .+ 1
n!

(Ji1j1ψ
′
j1

) . . . (Jinjnψ
′
jn)εi1...ind . (425)
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Next we use

εi1...inJi1j1 . . . Jinjn = (det J)εj1...jn , (426)

which holds for any n× n matrix J , to get

f(ψ) = a+ . . .+ 1
n!
ψ′i1 . . . ψ

′
inεi1...in(det J)d . (427)

If we now integrate f(ψ) over dnψ′, eq. (423) tells us that the result is (det J)d.

Thus, ∫
dnψ f(ψ) = (det J)−1

∫
dnψ′ f(ψ) . (428)

Recall that, for integrals over commuting real numbers xi with xi = Jijx
′
j ,

we have instead
∫
dnx f(x) = (det J)+1

∫
dnx′ f(x) . (429)

Note the opposite sign on the power of the determinant.

Now consider a quadratic form ψTMψ = ψiMijψj , where M is an anti-

symmetric matrix of commuting numbers (possibly complex). Let’s evaluate

the gaussian integral
∫
dnψ exp(1

2
ψTMψ). For example, for n = 2, we have

M =

(
0 +m

−m 0

)
, (430)

and ψTMψ = 2mψ1ψ2. Thus exp(1
2
ψTMψ) = 1 +mψ1ψ2, and so

∫
dnψ exp(1

2
ψTMψ) = m . (431)

For larger n, we use the fact that a complex antisymmetric matrix can be

brought to a block-diagonal form via

UTMU =




0 +m1

−m1 0

. . .


 , (432)

where U is a unitary matrix, and each mI is real and positive. (If n is odd

there is a final row and column of all zeroes; from here on, we assume n is

even.) We can now let ψi = Uijψ
′
j ; then, we have

∫
dnψ exp(1

2
ψTMψ) = (detU)−1

n/2∏

I=1

∫
d2ψI exp(1

2
ψTMIψ) , (433)

83



where MI represents one of the 2 × 2 blocks in eq. (432). Each of these

two-dimensional integrals can be evaluated using eq. (431), and so

∫
dnψ exp(1

2
ψTMψ) = (detU)−1

n/2∏

I=1

mI . (434)

Taking the determinant of eq. (432), we get

(detU)2(detM) =
n/2∏

I=1

m2
I . (435)

We can therefore rewrite the right-hand side of eq. (434) as
∫
dnψ exp(1

2
ψTMψ) = (detM)1/2 . (436)

In this form, there is a sign ambiguity associated with the square root; it is

resolved by eq. (434). However, the overall sign (more generally, any overall

numerical factor) will never be of concern to us, so we can use eq. (436)

without worrying about the correct branch of the square root.

It is instructive to compare eq. (436) with the corresponding gaussian

integral for commuting real numbers,
∫
dnx exp(−1

2
xTMx) = (2π)n/2(detM)−1/2 . (437)

Here M is a complex symmetric matrix. Again, note the opposite sign on

the power of the determinant.

Now let us introduce the notion of complex Grassmann variables via

χ ≡ 1√
2
(ψ1 + iψ2) ,

χ̄ ≡ 1√
2
(ψ1 − iψ2) . (438)

We can invert this to get
(
ψ1

ψ2

)
= 1√

2

(
1 1

i −i

)(
χ̄

χ

)
. (439)

The determinant of this transformation matrix is −i, and so

d2ψ = dψ2dψ1 = (−i)−1dχ dχ̄ . (440)
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Also, ψ1ψ2 = −iχ̄χ. Thus we have

∫
dχ dχ̄ χ̄χ = (−i)(−i)−1

∫
dψ2dψ1 ψ1ψ2 = 1 . (441)

Thus, if we have a function

f(χ, χ̄) = a+ χb + χ̄c+ χ̄χd , (442)

its integral is ∫
dχ dχ̄ f(χ, χ̄) = d . (443)

In particular, ∫
dχ dχ̄ exp(mχ̄χ) = m . (444)

Let us now consider n complex Grassmann variables χi and their complex

conjugates, χ̄i. We define

dnχ dnχ̄ ≡ dχndχ̄n . . . dχ1dχ̄1 . (445)

Then under a change of variable, χi = Jijχ
′
j and χ̄i = Kijχ̄

′
j , we have

dnχ dnχ̄ = (det J)−1(detK)−1 dnχ′ dnχ̄′ . (446)

Note that we need not require Kij = J∗ij , because, as far as the integral is

concerned, it is does not matter whether or not χ̄i is the complex conjugate

of χi.

We now have enough information to evaluate
∫
dnχ dnχ̄ exp(χ†Mχ), where

M is a general complex matrix. We make the change of variable χ = Uχ′

and χ† = χ′†V , where U and V are unitary matrices with the property that

VMU is diagonal with positive real entries mi. Then we get

∫
dnχ dnχ̄ exp(χ†Mχ) = (detU)−1(detV )−1

n∏

i=1

∫
dχidχ̄i exp(miχ̄iχi)

= (detU)−1(detV )−1
n∏

i=1

mi

= detM . (447)
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This can be compared to the analogous integral for commuting complex

variables zi = (xi + iyi)/
√

2 and z̄ = (xi − iyi)/
√

2, with dnz dnz̄ = dnx dny,

namely ∫
dnz dnz̄ exp(−z†Mz) = (2π)n(detM)−1 . (448)

We can now generalize eqs. (436) and (447) by shifting the integration

variables, and using shift invariance of the integrals. Thus, by making the

replacement ψ → ψ −M−1η in eq. (436), we get

∫
dnψ exp(1

2
ψTMψ + ηTψ) = (detM)1/2 exp(1

2
ηTM−1η) . (449)

(In verifying this, remember that M and its inverse are both antisymmetric.)

Similarly, by making the replacements χ→ χ−M−1η and χ† → χ†− η†M−1

in eq. (447), we get

∫
dnχ dnχ̄ exp(χ†Mχ + η†χ+ χ†η) = (detM) exp(−η†M−1η) . (450)

We can now see that eq. (411) is simply a particular case of eq. (450),

with the index on the complex Grassmann variable generalized to include

both the ordinary spin index α and the continuous spacetime argument x of

the field Ψα(x). Similarly, eq. (409) for the path integral for a free Majorana

field is simply a particular case of eq. (449). In both cases, the determinant

factors are constants (that is, independent of the fields and sources) that we

simply absorb into the overall normalization of the path integral. We will

meet determinants that cannot be so neatly absorbed in sections 53 and 70.
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45: The Feynman Rules for Dirac Fields and Yukawa Theory

Prerequisite: 10, 13, 41, 43

In this section we will derive the Feynman rules for Yukawa theory, a

theory with a Dirac field Ψ (with mass m) and a real scalar field ϕ (with

mass M), interacting via

 L1 = gϕΨΨ , (451)

where g is a coupling constant. In this section, we will be concerned with

tree-level processes only, and so we omit renormalizing Z factors.

In four spacetime dimensions, ϕ has mass dimension [ϕ] = 1 and Ψ

has mass dimension [Ψ] = 3
2
; thus the coupling constant g is dimensionless:

[g] = 0. As discussed in section 13, this is generally the most interesting

situation.

Note that  L1 is invariant under the U(1) transformation Ψ → e−iαΨ, as

is the free Dirac lagrangian. Thus, the corresponding Noether current ΨγµΨ

is still conserved, and the associated charge Q (which counts the number of

b-type particles minus the number of d-type particles) is constant in time.

We can think of Q as electric charge, and identify the b-type particle

as the electron e−, and the d-type particle as the positron e+. The scalar

particle is electrically neutral (and could, for example, be thought of as the

Higgs boson; see Part III).

We now use the general result of sections 9 and 43 to write

Z(η, η, J) ∝ exp

[
ig
∫
d4x

(
1

i

δ

δJ(x)

)(
i

δ

δηα(x)

)(
1

i

δ

δηα(x)

)]
Z0(η, η)Z0(J) ,

(452)

where

Z0(η, η) = exp
[
i
∫
d4x d4y η(x)S(x− y)η(y)

]
, (453)
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Z0(J) = exp
[
i

2

∫
d4x d4y J(x)∆(x − y)J(y)

]
, (454)

and

S(x− y) =
∫

d4p

(2π)4

(−/p +m)eip(x−y)

p2 +m2 − iǫ
, (455)

∆(x− y) =
∫

d4k

(2π)4

eik(x−y)

k2 +M2 − iǫ
(456)

are the appropriate Feynman propagators for the corresponding free fields.

We impose the normalization Z(0, 0, 0) = 1, and write

Z(η, η, J) = exp[iW (η, η, J)] . (457)

Then iW (η, η, J) can be expressed as a series of connected Feynman diagrams

with sources.

We use a dashed line to stand for the scalar propagator 1
i
∆(x − y), and

a solid line to stand for the fermion propagator 1
i
S(x− y). The only allowed

vertex joins two solid lines and one dashed line; the associated vertex factor

is ig. The blob at the end of a dashed line stands for the ϕ source i
∫
d4x J(x),

and the blob at the end of a solid line for either the Ψ source i
∫
d4x η(x), or

the Ψ source i
∫
d4x η(x). To tell which is which, we adopt the “arrow rule”

of problem 9.3: the blob stands for i
∫
d4x η(x) if the arrow on the attached

line points away from the blob, and the blob stands for i
∫
d4x η(x) if the

arrow on the attached line points towards the blob. Because  L1 involves one

Ψ and one Ψ, we also have the rule that, at each vertex, one arrow must

point towards the vertex, and one away. The first few tree diagrams that

contribute to iW (η, η, J) are shown in fig. (1). We omit tadpole diagrams; as

in ϕ3 theory, these can be cancelled by shifting the ϕ field, or, equivalently,

adding a term linear in ϕ to  L. The LSZ formula is valid only after all tadpole

diagrams have been cancelled in this way.

The spin indices on the fermionic sources and propagators are all con-

tracted in the obvious way. For example, the complete expression corre-

sponding to fig. (1)(b) is

Fig. (1)(b) = i3
(

1
i

)3
(ig)

∫
d4x d4y d4z d4w

88



(a)

(c) (d)

(b)

Figure 1: Tree contributions to iW (η, η, J) with four or fewer sources.
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×
[
η(x)S(x− y)S(y − z)η(z)

]

× ∆(y − w)J(w) . (458)

Our main purpose in this section is to compute the tree-level amplitudes

for various two-body elastic scattering processes, such as e−ϕ → e−ϕ and

e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions to

connected correlation functions of the form 〈0|TΨΨϕϕ|0〉C. Other processes

of interest include e−e− → e−e− and e+e− → e+e−; for these, we will need

to evaluate the tree-level contributions to connected correlation functions of

the form 〈0|TΨΨΨΨ|0〉C.

For 〈0|TΨΨϕϕ|0〉C, the relevant tree-level contribution to iW (η, η, J) is

given by fig. (1)(d). We have

〈0|TΨα(x)Ψβ(y)ϕ(z1)ϕ(z2)|0〉C

=
1

i

δ

δηα(x)
i

δ

δηβ(y)

1

i

δ

δJ(z1)

1

i

δ

δJ(z2)
iW (η, η, J)

∣∣∣
η=η=J=0

=
(

1
i

)5
(ig)2

∫
d4w1 d

4w2

× [S(x−w1)S(w1−w2)S(w2−y)]αβ

× ∆(z1−w1)∆(z2−w2)

+
(
z1 ↔ z2

)
+O(g4) . (459)

The corresponding diagrams, with sources removed, are shown in fig. (2).

For 〈0|TΨΨΨΨ|0〉C, the relevant tree-level contribution to iW (η, η, J) is

given by fig. (1)(c), which has a symmetry factor S = 2. We have

〈0|TΨα1
(x1)Ψβ1

(y1)Ψα2
(x2)Ψβ2

(y2)|0〉C

=
1

i

δ

δηα1
(x1)

i
δ

δηβ1
(y1)

1

i

δ

δηα2
(x2)

i
δ

δηβ2
(y2)

iW (η, η, J)
∣∣∣
η=η=J=0

.(460)

The two η derivatives can act on the two η’s in the diagram in two different

ways; ditto for the two η derivatives. This results in four different terms,

but two of them are algebraic duplicates of the other two; this duplication
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Figure 2: Diagrams corresponding to eq. (459).

cancels the symmetry factor (which is a general result). We get

〈0|TΨα1
(x1)Ψβ1

(y1)Ψα2
(x2)Ψβ2

(y2)|0〉C

=
(

1
i

)5
(ig)2

∫
d4w1 d

4w2

× [S(x1−w1)S(w1−y1)]α1β1

× ∆(w1−w2)

× [S(x2−w2)S(w2−y2)]α2β2

−
(
(y1, β1) ↔ (y2, β2)

)
+O(g4) . (461)

The corresponding diagrams, with sources removed, are shown in fig. (3).

Note, however, that we now have a relative minus sign between the two

diagrams, due to the anticommutation of the derivatives with respect to η.

The general rule is this: there is a relative minus sign between any two

diagrams that are identical except for a swap of the position and spin labels

between two external fermion lines.

Let us now consider a particular scattering process: e−ϕ → e−ϕ. The

scattering amplitude is

〈f |i〉 = 〈0|T a(k′)outbs′(p
′)outb

†
s(p)ina

†(k)in |0〉 . (462)

Next we use the replacements

b†s(p)in → i
∫
d4y Ψ(y)(+i

←
/∂ +m)us(p) e+ipy , (463)
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Figure 3: Diagrams corresponding to eq. (461).

bs′(p
′)out → i

∫
d4x e−ipx us′(p

′)(−i/∂ +m)Ψ(x) , (464)

a†(k)in → i
∫
d4z1 e

+ikz1(−∂2 +m2)ϕ(z1) , (465)

a(k′)out → i
∫
d4z2 e

−ik′z2(−∂2 +m2)ϕ(z2) . (466)

We substitute these into eq. (462), and then use eq. (459). The wave oper-

ators (either Klein-Gordon or Dirac) act on the external propagators, and

convert them to delta functions. After using eqs. (455) and (456) for the

internal propagators, all dependence on the various spacetime coordinates is

in the form of plane-wave factors, as in section 10. Integrating over the inter-

nal coordinates then generates delta functions that conserve four-momentum

at each vertex. The only new feature arises from the spinor factors us(p)

and us′(p
′). We find that us(p) is associated with the external fermion line

whose arrow points towards the vertex, and that us′(p
′) is associated with

the external fermion line whose arrow points away from the vertex. We can

therefore draw the momentum-space diagrams of fig. (4), and write down the

associated tree-level expression for the e−ϕ→ e−ϕ scattering amplitude,

iTe−ϕ→e−ϕ = 1
i
(ig)2 us′(p

′)

[
−/p− /k +m

−s+m2
+

−/p+ /k′ +m

−u+m2

]
us(p) , (467)

where s = −(p+k)2 and u = −(p−k′)2. (We can safely ignore the iǫ’s in the

propagators, because their denominators cannot vanish for any physically
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Figure 4: Diagrams for e−ϕ→ e−ϕ, corresponding to eq. (467).

allowed values of s and u.) We will see how to turn this into a more useful

expression in section 46.

Next consider the process e+ϕ→ e+ϕ. We now have

〈f |i〉 = 〈0|T a(k′)outds′(p
′)outd

†
s(p)ina

†(k)in |0〉 . (468)

The relevant replacements are

d†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) , (469)

ds′(p
′)out → −i

∫
d4y Ψ(y)(+i

←
/∂ +m)vs′(p

′) e−ipy , (470)

a†(k)in → i
∫
d4z1 e

+ikz1(−∂2 +m2)ϕ(z1) , (471)

a(k′)out → i
∫
d4z2 e

−ikz2(−∂2 +m2)ϕ(z2) . (472)

We substitute these into eq. (468), and then use eq. (459). This ultimately

leads to the momentum-space Feynman diagrams of fig. (5). Note that we

must now label the external fermion lines with minus their four-momenta;

this is characteristic of d-type particles. (The same phenomenon occurs for a

complex scalar field; see problem 10.1.) Regarding the spinor factors, we find

that −vs(p) is associated with the external fermion line whose arrow points

away from the vertex, and −vs′(p′) with the external fermion line whose

arrow points towards the vertex. The minus signs attached to each v and

v can be consistently dropped, however, as they only affect the overall sign
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Figure 5: Diagrams for e+ϕ→ e+ϕ, corresponding to eq. (473).

of the amplitude (and not the relative signs among contributing diagrams).

The tree-level expression for the e+ϕ→ e+ϕ amplitude is then

iTe+ϕ→e+ϕ = 1
i
(ig)2 vs(p)

[
/p− /k′ +m

−u+m2
+

/p+ /k +m

−s +m2

]
vs′(p

′) , (473)

where again s = −(p+ k)2 and u = −(p− k′)2.

After working out a few more of these (you might try your hand at some

of them before reading ahead), we can abstract the following set of Feynman

rules.

1) For each incoming electron, draw a solid line with an arrow pointed

towards the vertex, and label it with the electron’s four-momentum, pi.

2) For each outgoing electron, draw a solid line with an arrow pointed

away from the vertex, and label it with the electron’s four-momentum, p′i.

3) For each incoming positron, draw a solid line with an arrow pointed

away from the vertex, and label it with minus the positron’s four-momentum,

−pi.
4) For each outgoing positron, draw a solid line with an arrow pointed

towards the vertex, and label it with minus the positron’s four-momentum,

−p′i.
5) For each incoming scalar, draw a dashed line with an arrow pointed

towards the vertex, and label it with the scalar’s four-momentum, ki.

6) For each outgoing scalar, draw a dashed line with an arrow pointed

away from the vertex, and label it with the scalar’s four-momentum, k′i.
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7) The only allowed vertex joins two solid lines, one with an arrow point-

ing towards it and one with an arrow pointing away from it, and one dashed

line (whose arrow can point in either direction). Using this vertex, join up

all the external lines, including extra internal lines as needed. In this way,

draw all possible diagrams that are topologically inequivalent.

8) Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum at each

vertex. For a tree diagram, this fixes the momenta on all the internal lines.

9) The value of a diagram consists of the following factors:

for each incoming or outgoing scalar, 1;

for each incoming electron, usi
(pi);

for each outgoing electron, us′
i
(p′i);

for each incoming positron, vsi
(pi);

for each outgoing positron, vs′
i
(p′i);

for each vertex, ig;

for each internal scalar line, −i/(k2 +M2 − iǫ),

where k is the four-momentum of that line;

for each internal fermion line, −i(−/p +m)/(p2 +m2 − iǫ),

where p is the four-momentum of that line.

10) Spinor indices are contracted by starting at one end of a fermion line:

specifically, the end that has the arrow pointing away from the vertex. The

factor associated with the external line is either u or v. Go along the complete

fermion line, following the arrows backwards, and write down (in order from

left to right) the factors associated with the vertices and propagators that

you encounter. The last factor is either a u or v. Repeat this procedure for

the other fermion lines, if any.

11) Two diagrams that are identical except for the momentum and spin

labels on two external fermion lines that have their arrows pointing in the

same direction (either both towards or both away from the vertex) have a

relative minus sign.

12) The value of iT (at tree level) is given by a sum over the values of

the contributing diagrams.

There are additional rules for counterterms and loops, but we will post-

pone those to section 51.
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Figure 6: Diagrams for e+e− → ϕϕ, corresponding to eq. (474).

Let us apply these rules to e+e− → ϕϕ. Let the initial electron and

positron have four-momenta p1 and p2, respectively, and the two final scalars

have four-momenta k′1 and k′2. The relevant diagrams are shown in fig. (6),

and the result is

iTe+e−→ϕϕ = 1
i
(ig)2 vss

(p2)

[
−/p1 + /k′1 +m

−t +m2
+

−/p1 + /k′2 +m

−u+m2

]
us1(p1) ,

(474)

where t = −(p1 − k′1)
2 and u = −(p1 − k′2)

2.

Next, consider e−e− → e−e−. Let the initial electrons have four-momenta

p1 and p2, and the final electrons have four-momenta p′1 and p′2. The relevant

diagrams are shown in fig. (7). It is clear that they are identical except for

the labels on the two external fermion lines that have arrows pointing away

from their vertices. Thus, according to rule #11, these diagrams have a

relative minus sign. (Which diagram gets the extra minus sign is a matter

of convention, and is physically irrelevant.) Thus the result is

iTe−e−→e−e− = 1
i
(ig)2

[
(u ′1u1)(u

′
2u2)

−t+ M2
− (u ′2u1)(u

′
1u2)

−u+M2

]
, (475)

where u1 is short for us1(p1), etc., and t = −(p1 − p′1)2, u = −(p1 − p′2)
2.

One more: e+e− → e+e−. Let the initial electron and positron have four-

momenta p1 and p2, respectively, and the final electron and positron have

four-momenta p′1 and p′2, respectively. The relevant diagrams are shown in

fig. (8). If we redraw them in the topologically equivalent manner shown in
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Figure 7: Diagrams for e−e− → e−e−, corresponding to eq. (475).

fig. (9), then it becomes clear that they are identical except for the labels

on the two external fermion lines that have arrows pointing away from their

vertices. Thus, according to rule #11, these diagrams have a relative minus

sign. (Which diagram gets the extra minus sign is a matter of convention,

and is physically irrelevant.) Thus the result is

iTe+e−→e+e− = 1
i
(ig)2

[
(u ′1u1)(v2v

′
2)

−t +M2
− (v2u1)(u

′
1v
′
2)

−u+M2

]
, (476)

where s = −(p1 + p2)
2 and t = −(p1 − p′1)

2.

Problems

45.1a) Determine how ϕ(x) must transform under parity, time reversal,

and charge conjugation in order for these to all be symmetries of the theory.

(Prerequisite: 39)

b) Same question, but with the interaction given by  L1 = igϕΨγ5Ψ in-

stead of eq. (451).

45.2) Use the Feynman rules to write down (at tree level) iT for the

processes e+e+ → e+e+ and ϕϕ→ e+e−.
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Figure 8: Diagrams for e+e− → e+e−, corresponding to eq. (476).
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Figure 9: Same as fig. (8), but with the diagrams redrawn to show more
clearly that, according to rule #11, they have a relative minus sign.
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Quantum Field Theory Mark Srednicki

46: Spin Sums

Prerequisite: 45

In the last section, we calculated various tree-level scattering amplitudes

in Yukawa theory. For example, for e−ϕ→ e−ϕ we found

T = g2 us′(p
′)

[
−/p− /k +m

−s +m2
+

−/p+ /k′ +m

−u +m2

]
us(p) , (477)

where s = −(p+k)2 and u = −(p−k′)2. In order to compute the correspond-

ing cross section, we must evaluate |T |2 = T T ∗. We begin by simplifying

eq. (477) a little; we use (/p+m)us(p) = 0 to replace the −/p in each numerator

with m. We then abbreviate eq. (477) as

T = u ′Au , (478)

where

A ≡ g2

[
−/k + 2m

m2 − s
+

/k′ + 2m

m2 − u

]
. (479)

Then we have

T ∗ = T = u ′Au = uAu′ , (480)

where in general A ≡ βA†β, and, for the particular A of eq. (479), A = A.

Thus we have

|T |2 = (u ′Au)(uAu′)

=
∑

αβγδ

u ′αAαβuβuγAγδu
′
δ

=
∑

αβγδ

u′δu
′
αAαβuβuγAγδ

= Tr
[
(u′u ′)A(uu)A

]
. (481)
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Next, we use a result from section 38:

us(p)us(p) = 1
2
(1−sγ5/z)(−/p+m) , (482)

where s = ± tells us whether the spin is up or down along the spin quanti-

zation axis z. We then have

|T |2 = 1
4
Tr
[
(1−s′γ5/z

′)(−/p ′ +m)A(1−sγ5/z)(−/p+m)A
]
. (483)

We now simply need to take traces of products of gamma matrices; we will

work out the technology for this in the next section.

However, in practice, we are often not interested in (or are unable to easily

measure or prepare) the spin states of the scattering particles. Thus, if we

know that an electron with momentum p′ landed in our detector, but know

nothing about its spin, we should sum |T |2 over the two possible spin states

of this outgoing electron. Similarly, if the spin state of the initial electron is

not specially prepared for each scattering event, then we should average |T |2
over the two possible spin states of this initial electron. Then we can use

∑

s=±
us(p)us(p) = −/p+m (484)

in place of eq. (482).

Let us, then, take |T |2, sum over all final spins, and average over all initial

spins, and call the result 〈|T |2〉. In the present case, we have

〈|T |2〉 ≡ 1
2

∑

s,s′
|T |2

= 1
2
Tr
[
(−/p ′ +m)A(−/p +m)A

]
, (485)

which is much less cumbersome than eq. (483).

Next let’s try something a little harder, namely e+e− → e+e−. We found

in section 45 that

T = g2

[
(u ′1u1)(v2v

′
2)

M2 − t
− (v2u1)(u

′
1v
′
2)

M2 − s

]
. (486)

We then have

T = g2

[
(u1u

′
1)(v

′
2v2)

M2 − t
− (u1v2)(v ′2u

′
1)

M2 − s

]
. (487)
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When we multiply T by T , we will get four terms. We want to arrange the

factors in each of them so that every u and every v stands just to the left of

the corresponding u and v. In this way, we get

|T |2 = +
g4

(M2−t)2
Tr
[
u1u1u

′
1u
′
1

]
Tr
[
v′2v

′
2v2v2

]

+
g4

(M2−s)2
Tr
[
u1u1v2v2

]
Tr
[
v′2v

′
2u
′
1u
′
1

]

− g4

(M2−t)(M2−s) Tr
[
u1u1v2v2v

′
2v
′
2u
′
1u
′
1

]

− g4

(M2−s)(M2−t) Tr
[
u1u1u

′
1u
′
1v
′
2v
′
2v2v2

]
. (488)

Then we average over initial spins and sum over final spins, and use eq. (484)

and ∑

s=±
vs(p)vs(p) = −/p−m . (489)

We then must evaluate traces of products of up to four gamma matrices.
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47: Gamma Matrix Technology

Prerequisite: 36

In this section, we will learn some tricks for handling gamma matrices.

We need the following information as a starting point:

{γµ, γν} = −2gµν , (490)

γ2
5 = 1 , (491)

{γµ, γ5} = 0 , (492)

Tr 1 = 4 . (493)

Now consider the trace of the product of n gamma matrices. We have

Tr[γµ1 . . . γµn ] = Tr[γ2
5γ

µ1γ2
5 . . . γ

2
5γ

µn ]

= Tr[(γ5γ
µ1γ5) . . . (γ5γ

µnγ5)]

= Tr[(−γ2
5γ

µ1) . . . (−γ2
5γ

µn)]

= (−1)n Tr[γµ1 . . . γµn ] . (494)

We used eq. (491) to get the first equality, the cyclic property of the trace

for the second, eq. (492) for the third, and eq. (491) again for the fourth. If

n is odd, eq. (494) tells us that this trace is equal to minus itself, and must

therefore be zero:

Tr[ odd # of γµ’s ] = 0 . (495)

Similarly,

Tr[ γ5 ( odd # of γµ’s ) ] = 0 . (496)
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Next, consider Tr[γµγν ]. We have

Tr[γµγν ] = Tr[γνγµ]

= 1
2
Tr[γµγν + γνγµ]

= −gµν Tr 1

= −4gµν . (497)

The first equality follows from the cyclic property of the trace, the second

averages the left- and right-hand sides of the first, the third uses eq. (490),

and the fourth uses eq. (493).

A slightly nicer way of expressing eq. (497) is to introduce two arbitrary

four-vectors aµ and bµ, and write

Tr[/a/b] = −4(ab) , (498)

where /a = aµγ
µ, /b = bµγ

µ, and (ab) = aµbµ.

Next consider Tr[/a/b/c/d]. We evaluate this by moving /a to the right, using

eq. (490), which is now more usefully written as

/a/b = −/b/a− 2(ab) . (499)

Using this repeatedly, we have

Tr[/a/b/c/d] = −Tr[/b/a/c/d] − 2(ab)Tr[/c/d]

= +Tr[/b/c/a/d] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d]

= −Tr[/b/c/d/a] − 2(ad)Tr[/b/c] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d] . (500)

Now we note that the first term on the right-hand side of the last line is, by

the cyclic property of the trace, actually equal to minus the left-hand side.

We can then move this term to the left-hand side to get

2 Tr[/a/b/c/d] = − 2(ad)Tr[/b/c] + 2(ac)Tr[/b/d] − 2(ab)Tr[/c/d] . (501)

Finally, we evaluate each Tr[/a/b] with eq. (498), and divide by two:

Tr[/a/b/c/d] = 4
[
(ad)(bc) − (ac)(bd) + (ab)(cd)

]
. (502)
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This is our final result for this trace.

Clearly, we can use the same technique to evaluate the trace of the product

of any even number of gamma matrices.

Next, let’s consider traces that involve γ5’s and γµ’s. Since {γ5, γ
µ} = 0,

we can always bring all the γ5’s together by moving them through the γµ’s

(generating minus signs as we go). Then, since γ2
5 = 1, we end up with either

one γ5 or none. So we need only consider Tr[γ5γ
µ1 . . . γµn ]. And, according

to eq. (496), we need only be concerned with even n.

Recall that an explicit formula for γ5 is

γ5 = iγ0γ1γ2γ3 . (503)

Eq. (502) then implies

Tr γ5 = 0 . (504)

Similarly, the six-matrix generalization of eq. (502) yields

Tr[γ5γ
µγν ] = 0 . (505)

Finally, consider Tr[γ5γ
µγνγργσ]. The only way to get a nonzero result is to

have the four vector indices take on four different values. If we consider the

special case Tr[γ5γ
3γ2γ1γ0], plug in eq. (503), and then use (γi)2 = −1 and

(γ0)2 = 1, we get i(−1)3 Tr 1 = −4i, or equivalently

Tr[γ5γ
µγνγργσ] = −4iεµνρσ , (506)

where ε0123 = ε3210 = +1.

Another category of gamma matrix combinations that we will eventually

encounter is γµ/a . . . γµ. The simplest of these is

γµγµ = gµνγ
µγν

= 1
2
gµν{γµ, γν}

= −gµνgµν

= −d . (507)

To get the second equality, we used the fact that gµν is symmetric, and

so only the symmetric part of γµγν contributes. In the last line, d is the
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number of spacetime dimensions. Of course, our entire spinor formalism has

been built around d = 4, but we will need formal results for d = 4−ε when

we dimensionally regulate loop diagrams involving fermions.

We move on to evaluate

γµ/aγµ = γµ(−γµ/a− 2aµ)

= −γµγµ/a− 2/a

= (d−2)/a . (508)

We continue with

γµ/a/bγµ = (−/aγµ − 2aµ)(−γµ/b− 2bµ)

= /aγµγµ/b+ 2/a/b+ 2/a/b+ 4(ab)

= 4(ab) − (d−4)/a/b . (509)

And finally,

γµ/a/b/cγµ = (−/aγµ − 2aµ)/b(−γµ/c− 2cµ)

= /aγµ/bγµ/c+ 2/b/a/c+ 2/a/c/b+ 4(ac)/b

= (d−2)/a/b/c+ 2/b/a/c+ 2[/a/c+ 2(ac)]/b

= (d−2)/a/b/c+ 2/b/a/c− 2/c/a/b

= (d−2)/a/b/c+ 2[−/a/b− 2(ab)]/c− 2/c/a/b

= (d−4)/a/b/c− 4(ab)/c− 2/c/a/b

= (d−4)/a/b/c+ 2/c [−2(ab) − /a/b ]

= 2/c/b/a+ (d−4)/a/b/c . (510)
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48: Spin-Averaged Cross Sections in Yukawa Theory

Prerequisite: 46, 47

In section 46, we computed |T |2 for (among other processes) e+e− →
e+e−. We take the incoming and outgoing electrons to have momenta p1 and

p′1, respectively, and the incoming and outgoing positrons to have momenta

p2 and p′2, respectively. We have p2
i = p′2i = −m2, where m is the electron

(and positron) mass. The Mandelstam variables are

s = −(p1 + p2)
2 = −(p′1 + p′2)

2 ,

t = −(p1 − p′1)
2 = −(p2 − p′2)2 ,

u = −(p1 − p′2)
2 = −(p2 − p′1)2 , (511)

and they obey s+ t+ u = 4m2. Our result was

|T |2 = g4

[
Φss

(M2 − s)2
− Φst + Φts

(M2 − s)(M2 − t)
+

Φtt

(M2 − t)2

]
, (512)

where M is the scalar mass, and

Φss = Tr
[
u1u1v2v2

]
Tr
[
v′2v

′
2u
′
1u
′
1

]
,

Φtt = Tr
[
u1u1u

′
1u
′
1

]
Tr
[
v′2v

′
2v2v2

]
,

Φst = Tr
[
u1u1u

′
1u
′
1v
′
2v
′
2v2v2

]
,

Φts = Tr
[
u1u1v2v2v

′
2v
′
2u
′
1u
′
1

]
. (513)

Next, we average over the two initial spins and sum over the two final

spins to get

〈|T |2〉 = 1
4

∑
s1,s2,s′1,s

′
2

|T |2 . (514)
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Then we use

∑

s=±
us(p)us(p) = −/p +m ,

∑

s=±
vs(p)vs(p) = −/p−m , (515)

to get

〈Φss〉 = 1
4
Tr
[
(−/p1+m)(−/p2−m)

]
Tr
[
(−/p ′2−m)(−/p ′1+m)

]
, (516)

〈Φtt〉 = 1
4
Tr
[
(−/p1+m)(−/p ′1+m)

]
Tr
[
(−/p ′2−m)(−/p2−m)

]
, (517)

〈Φst〉 = 1
4
Tr
[
(−/p1+m)(−/p ′1+m)(−/p ′2−m)(−/p2−m)

]
, (518)

〈Φts〉 = 1
4
Tr
[
(−/p1+m)(−/p2−m)(−/p ′2−m)(−/p ′1+m)

]
. (519)

It is now merely tedious to evaluate these traces with the technology of

section 47.

For example,

Tr
[
(−/p1+m)(−/p2−m)

]
= Tr[/p1 /p2] −m2 Tr 1

= −4(p1p2) − 4m2 , (520)

It is convenient to write four-vector products in terms of the Mandelstam

variables. We have

p1p2 = p′1p
′
2 = −1

2
(s− 2m2) ,

p1p
′
1 = p2p

′
2 = +1

2
(t− 2m2) ,

p1p
′
2 = p′1p2 = +1

2
(u− 2m2) , (521)

and so

Tr
[
(−/p1+m)(−/p2−m)

]
= 2s− 8m2 . (522)

Thus, we can easily work out eqs. (516) and (517):

〈Φss〉 = (s− 4m2)2 , (523)

〈Φtt〉 = (t− 4m2)2 . (524)
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Obviously, if we start with 〈Φss〉 and make the swap s ↔ t, we get 〈Φtt〉.
We could have anticipated this from eqs. (516) and (517): if we start with

the right-hand side of eq. (516) and make the swap p2 ↔ −p′1, we get the

right-hand side of eq. (517). But from eq. (521), we see that this momentum

swap is equivalent to s↔ t.

Let’s move on to 〈Φst〉 and 〈Φts〉. These two are also related by p2 ↔ −p′1,

and so we only need to compute one of them. We have

〈Φst〉 = 1
4
Tr[/p1 /p ′1 /p ′2 /p2] + 1

4
m2 Tr[/p1 /p ′1 − /p1 /p ′2 − /p1 /p2 − /p ′1 /p ′2 − /p ′1 /p2 + /p ′2 /p2]

+ 1
4
m4 Tr 1

= (p1p
′
1)(p2p

′
2) − (p1p

′
2)(p2p

′
1) + (p1p2)(p

′
1p
′
2)

−m2[p1p
′
1 − p1p

′
2 − p1p2 − p′1p

′
2 + p′1p2 + p2p

′
2] +m4

= −1
2
st + 2m2u . (525)

To get the last line, we used eq. (521), and then simplified it as much as

possible via s+ t+u = 4m2. Since our result is symmetric on s↔ t, we have

〈Φts〉 = 〈Φst〉.
Putting all of this together, we get

〈|T |2〉 = g4

[
(s− 4m2)2

(M2 − s)2
+

st− 4m2u

(M2 − s)(M2 − t)
+

(t− 4m2)2

(M2 − t)2

]
. (526)

This can then be converted to a differential cross section (in any frame) via

the formulae of section 11.

Let’s do one more: e−ϕ → e−ϕ. We take the incoming and outgoing

electrons to have momenta p and p′, respectively, and the incoming and

outgoing scalars to have momenta k and k′, respectively. We then have

p2 = p′2 = −m2 and k2 = k′2 = −M2. The Mandelstam variables are

s = −(p + k)2 = −(p′ + k′)2 ,

t = −(p− p′)2 = −(k − k′)2 ,

u = −(p− k′)2 = −(k − p′)2 , (527)

and they obey s+ t+ u = 2m2 + 2M2. Our result in section 46 was

〈|T |2〉 = 1
2
Tr
[
A(−/p+m)A(−/p ′ +m)

]
, (528)
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where

A = g2

[
−/k + 2m

m2 − s
+

/k′ + 2m

m2 − u

]
. (529)

Thus we have

〈|T |2〉 = g4

[
〈Φss〉

(m2 − s)2
+

〈Φsu〉 + 〈Φus〉
(m2 − s)(m2 − u)

+
〈Φuu〉

(m2 − u)2

]
, (530)

where now

〈Φss〉 = 1
2
Tr
[
(−/p ′+m)(−/k+2m)(−/p+m)(−/k+2m)

]
, (531)

〈Φuu〉 = 1
2
Tr
[
(−/p ′+m)(+/k′+2m)(−/p+m)(+/k′+2m)

]
, (532)

〈Φsu〉 = 1
2
Tr
[
(−/p ′+m)(−/k+2m)(−/p+m)(+/k′+2m)

]
, (533)

〈Φus〉 = 1
2
Tr
[
(−/p ′+m)(+/k′+2m)(−/p+m)(−/k+2m)

]
. (534)

We can evaluate these in terms of the Mandelstam variables by using our

trace technology, along with

pk = p′k′ = −1
2
(s−m2 −M2) ,

pp′ = +1
2
(t− 2m2) ,

kk′ = +1
2
(t− 2M2) ,

pk′ = p′k = +1
2
(u−m2 −M2) . (535)

Examining eqs. (531) and (532), we see that 〈Φss〉 and 〈Φuu〉 are transformed

into each other by k ↔ −k′. Examining eqs. (533) and (534), we see that

〈Φsu〉 and 〈Φus〉 are also transformed into each other by k ↔ −k′. From

eq. (535), we see that this is equivalent to s↔ u. Thus we need only compute

〈Φss〉 and 〈Φsu〉, and then take s↔ u to get 〈Φuu〉 and 〈Φus〉. This is, again,

merely tedious, and the results are

〈Φss〉 = −su+m2(9s+ u) + 7m4 − 8m2M2 +M4 , (536)

〈Φuu〉 = −su+m2(9u+ s) + 7m4 − 8m2M2 +M4 , (537)

〈Φsu〉 = +su+ 3m2(s+ u) + 9m4 − 8m2M2 −M4 . (538)

〈Φus〉 = +su+ 3m2(s+ u) + 9m4 − 8m2M2 −M4 . (539)
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Problems

48.1) The tedium of these calculations is greatly alleviated by making use

of a symbolic manipulation program like Mathematica or Maple. One ap-

proach is brute force: compute 4×4 matrices like /p in the CM frame, and take

their products and traces. If you are familiar with a symbolic-manipulation

program, write one that does this. See if you can verify eqs. (536–539).

48.2) Compute 〈|T |2〉 for e−e− → e−e−. You should find that your result

is the same as that for e+e− → e+e−, but with s ↔ u, and an extra overall

minus sign. This relationship is known as crossing symmetry.

48.3) Compute 〈|T |2〉 for e+e− → ϕϕ. You should find that your result

is the same as that for e−ϕ → e−ϕ, but with s ↔ t, and an extra overall

minus sign. This is another example of crossing symmetry.

48.4) Suppose that M > 2m, so that the scalar can decay to an electron-

positron pair.

a) Compute the decay rate, summed over final spins.

b) Compute |T |2 for decay into an electron with spin s1 and a positron

with spin s2. Take the fermion three-momenta to be along the z axis, and

let the x-axis be the spin-quantization axis. You should find that |T |2 = 0

if s1 = −s2, or if M = 2m (so that the outgoing three-momentum of each

fermion is zero). Discuss this in light of conservation of angular momentum

and of parity. (Prerequisite: 40.)

c) Compute the rate for decay into an electron with helicity s1 and a

positron with helicity s2. (See section 38 for the definition of helicity.) You

should find that the decay rate is zero if s1 = −s2. Discuss this in light of

conservation of angular momentum and of parity.

d) Now consider changing the interaction to  L1 = igϕΨγ5Ψ, and compute

the spin-summed decay rate. Explain (in light of conservation of angular

momentum and of parity) why the decay rate is larger than it was without

the iγ5 in the interaction.

e) Repeat parts (b) and (c) for the new form of the interaction, and

explain any differences in the results.
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49: The Feynman Rules for Majorana Fields

Prerequisite: 45

In this section we will deduce the Feynman rules for Yukawa theory, but

with a Majorana field instead of a Dirac field. We can think of the particles

associated with the Majorana field as massive neutrinos.

We have

 L1 = 1
2
gϕΨΨ

= 1
2
gϕΨTCΨ , (540)

where Ψ be a Majorana field (with mass m) and ϕ is a real scalar field (with

mass M), and g is a coupling constant. In this section, we will be concerned

with tree-level processes only, and so we omit renormalizing Z factors.

From section 41, we have the LSZ rules appropriate for a Majorana field,

b†s(p)in → −i
∫
d4x e+ipx vs(p)(−i/∂ +m)Ψ(x) (541)

= +i
∫
d4x ΨT(x)C(+i

←
/∂ +m)us(p)e+ipx , (542)

bs′(p
′)out → +i

∫
d4x e−ip

′x us′(p
′)(−i/∂ +m)Ψ(x) , (543)

= −i
∫
d4x e−ip

′x ΨT(x)C(+i
←
/∂ +m)vs′(p

′)e−ip
′x . (544)

Eq. (542) follows from eq. (541) by taking the transpose of the right-hand

side, and using vs′(p
′)T = −Cus′(p′) and (−i/∂ + m)T = C(+i/∂ + m)C−1;

similarly, eq. (544) follows from eq. (543). Which form we use depends on

convenience, and is best chosen on a diagram-by-diagram basis, as we will

see shortly.

111



Eqs. (541–544) lead us to compute correlation functions containing Ψ’s,

but not Ψ’s. In position space, this leads to Feynman rules where the fermion

propagator is 1
i
S(x − y)C−1, and the ϕΨΨ vertex is igC; the factor of 1

2
in

 L1 is killed by a symmetry factor of 2! that arises from having two identical

Ψ fields in  L1. In a particular diagram, as we move along a fermion line, the

C−1 in the propagator will cancel against the C in the vertex, leaving over a

final C−1 at one end. This C−1 can be canceled by a C from eq. (542) (for an

incoming particle) or (544) (for an outgoing particle). On the other hand, for

the other end of the same line, we should use either eq. (541) (for an incoming

particle) or eq. (543) (for an outgoing particle) to avoid introducing an extra

C at that end. In this way, we can avoid ever having explicit factors of C in

our Feynman rules.

Using this approach, the Feynman rules for this theory are as follows.

1) The total number of incoming and outgoing neutrinos is always even;

call this number 2n. Draw n solid lines. Connect them with internal dashed

lines, using a vertex that joins one dashed and two solid lines. Also, attach

an external dashed line for each incoming or outgoing scalar. In this way,

draw all possible diagrams that are topologically inequivalent.

2) Draw arrows on each segment of each solid line; keep the arrow direc-

tion continuous along each line.

3) Label each external dashed line with the momentum of an incoming

or outgoing scalar. If the particle is incoming, draw an arrow on the dashed

line that points towards the vertex; If the particle is outgoing, draw an arrow

on the dashed line that points away from the vertex.

4) Label each external solid line with the momentum of an incoming or

outgoing neutrino, but include a minus sign with the momentum if (a) the

particle is incoming and the arrow points away from the vertex, or (b) the

particle is outgoing and the arrow points towards the vertex.

5) Do this labeling of external lines in all possible inequivalent ways. Two

diagrams are considered equivalent if they can be transformed into each other

by reversing all the arrows on one or more fermion lines, and correspondingly

changing the signs of the external momenta on each reversed-arrow line. The

process of arrow reversal contributes a minus sign for each reversed-arrow

line.
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6) Assign each internal line its own four-momentum. Think of the four-

momenta as flowing along the arrows, and conserve four-momentum at each

vertex. For a tree diagram, this fixes the momenta on all the internal lines.

9) The value of a diagram consists of the following factors:

for each incoming or outgoing scalar, 1;

for each incoming neutrino labeled with +pi, usi
(pi);

for each incoming neutrino labeled with −pi, vsi
(pi);

for each outgoing neutrino labeled with +p′i, us′i(p
′
i);

for each outgoing neutrino labeled with −p′i, vs′i(p
′
i);

for each vertex, ig;

for each internal scalar line, −i/(k2 +M2 − iǫ),

where k is the four-momentum of that line;

for each internal fermion line, −i(−/p +m)/(p2 +m2 − iǫ),

where p is the four-momentum of that line.

10) Spinor indices are contracted by starting at one end of a fermion line:

specifically, the end that has the arrow pointing away from the vertex. The

factor associated with the external line is either u or v. Go along the complete

fermion line, following the arrows backwards, and writing down (in order from

left to right) the factors associated with the vertices and propagators that

you encounter. The last factor is either a u or v. Repeat this procedure for

the other fermion lines, if any.

11) Two diagrams that are identical except for the momentum and spin

labels on two external fermion lines that have their arrows pointing in the

same direction (either both towards or both away from the vertex) have a

relative minus sign.

12) The value of iT is given by a sum over the values of all these diagrams.

There are additional rules for counterterms and loops, but we will post-

pone those to section 51.

Let’s look at the simplest process, ϕ → νν. There are two possible

diagrams for this, shown in fig. (10). However, according to rule #5, these

two diagrams are equivalent. The first one evaluates to

iT = ig v ′2u
′
1 , (545)
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k
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Figure 10: Two equivalent diagrams for ϕ→ νν, corresponding to eqs. (545)
and (546), respectively.

while the second gives

iT = −ig v ′1u′2 . (546)

The minus sign comes from the last part of rule #5: reversing the arrows on

one fermion line gives an extra minus sign. These two versions of T should

of course yield the same result; to check this, note that

v1u2 = [v1u2]
T

= uT

2 v
T

1

= v2C−1C−1u1

= −v2u1 , (547)

as required.

In general, for processes with a total of just two incoming and outgoing

neutrinos, such as νϕ→ νϕ or νν → ϕϕ, these rules give (up to an irrelevant

overall sign) the same result for iT as we would get for the corresponding

process in the Dirac case, e−ϕ → e−ϕ or e+e− → ϕϕ. (Note, however, that

in the Dirac case, we have  L1 = gϕΨΨ, as compared with  L1 = 1
2
gϕΨΨ in

the Majorana case.)

The differences between Dirac and Majorana fermions become more pro-

nounced for νν → νν. Now there are three inequivalent contributing dia-

grams, shown in fig. (11). The corresponding amplitude can be written as

iT = 1
i
(ig)2

[
(u ′1u1)(u

′
2u2)

−t+M2
− (u ′2u1)(u

′
1u2)

−u+M2
+

(v2u1)(u
′
1v
′
2)

−s +M2

]
, (548)
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Figure 11: Diagrams for νν → νν, corresponding to eq. (548).
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where s = −(p1 + p2)2, t = −(p1 − p′1)2 and u = −(p1 − p′2)2. Note the

relative signs. After taking the absolute square of this expression, we can use

relations like eq. (547) on a term-by-term basis to put everything into a form

that allows the spin sums to be performed in the standard way.

In fact, we have already done all the necessary work in the Dirac case.

The s-s, s-t, and t-t terms in 〈|T |2〉 for νν → νν are the same as those for

e+e− → e+e−, while the t-t, t-u, and u-u terms are the same as those for

the crossing-related process e−e− → e−e−. Finally, the s-u terms can be

obtained from the s-t terms via t ↔ u, or equivalently from the t-u terms

via t↔ s. Thus the result is

〈|T |2〉 = g4

[
(s− 4m2)2

(M2 − s)2
+

st− 4m2u

(M2 − s)(M2 − t)

+
(t− 4m2)2

(M2 − t)2
+

tu− 4m2s

(M2 − t)(M2 − u)

+
(u− 4m2)2

(M2 − u)2
+

us− 4m2t

(M2 − u)(M2 − s)

]
, (549)

which is neatly symmetric on permutations of s, t, and u.

116



Quantum Field Theory Mark Srednicki

50: Massless Particles and Spinor Helicity

Prerequisite: 48

Scattering amplitudes often simplify greatly if the particles are massless

(or can be approximated as massless because the Mandelstam variables all

have magnitudes much larger than the particle masses squared). In this

section we will explore this phenomenon for spin-one-half (and spin-zero)

particles. We will begin developing the technology of spinor helicity, which

will prove to be of indispensible utility in Part III.

Recall from section 38 that the u spinors for a massless spin-one-half

particle obey

us(p)us(p) = 1
2
(1 + sγ5)(−/p) , (550)

where s = ± specifies the helicity, the component of the particle’s spin

measured along the axis specified by its three-momentum; in this notation

the helicity is 1
2
s. The v spinors obey a similar relation,

vs(p)vs(p) = 1
2
(1 − sγ5)(−/p) . (551)

In fact, in the massless case, with the phase conventions of section 38, we

have vs(p) = u−s(p). Thus we can confine our discussion to u-type spinors

only, since we need merely change the sign of s to accomodate v-type spinors.

Let us consider a u spinor for a particle of negative helicity. We have

u−(p)u−(p) = 1
2
(1 − γ5)(−/p) . (552)

Let us define

paȧ ≡ pµσ
µ
aȧ . (553)

Then we also have

pȧa = εacεȧċpcċ = pµσ̄
µȧa . (554)
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Then, using

γµ =

(
0 σµ

σ̄µ 0

)
, 1

2
(1 − γ5) =

(
1 0

0 0

)
(555)

in eq. (552), we find

u−(p)u−(p) =

(
0 −paȧ
0 0

)
. (556)

On the other hand, we know that the lower two components of u−(p) vanish,

and so we can write

u−(p) =

(
φa

0

)
. (557)

Here φa is a two-component numerical spinor; it is not an anticommuting

object. Such a commuting spinor is sometimes called a twistor. An explicit

numerical formula for it (verified in problem 50.1) is

φa =
√

2ω

(− sin(1
2
θ)e−iφ

+ cos(1
2
θ)

)
, (558)

where θ and φ are the polar and azimuthal angles that specify the direction

of the three-momentum p, and ω = |p|. Barring eq. (557) yields

u−(p) = ( 0, φ∗ȧ ) , (559)

where φ∗ȧ = (φa)
∗. Now, combining eqs. (557) and (559), we get

u−(p)u−(p) =

(
0 φaφ

∗
ȧ

0 0

)
. (560)

Comparing with eq. (556), we see that

paȧ = −φaφ∗ȧ . (561)

This expresses the four-momentum of the particle neatly in terms of the

twistor that describes its spin state. The essence of the spinor helicity method

is to treat φa as the fundamental object, and to express the particle’s four-

momentum in terms of it, via eq. (561).
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Given eq. (557), and the phase conventions of section 38, the positive-

helicity spinor is

u+(p) =

(
0

φ∗ȧ

)
, (562)

where φ∗ȧ = εȧċφ∗ċ . Barring eq. (562) yields

u+(p) = (φa, 0 ) . (563)

Computation of u+(p)u+(p) via eqs. (562) and (563), followed by comparison

with eq. (550) with s = +, then reproduces eq. (561), but with the indices

raised.

In fact, the decomposition of paȧ into the direct product of a twistor and

its complex conjugate is unique (up to an overall phase for the twistor). To

see this, use σµ = (I, ~σ) to write

paȧ =

(−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
. (564)

The determinant of this matrix is −(p0)2 +p2, and this vanishes because the

particle is (by assumption) massless. Thus paȧ has a zero eigenvalue. There-

fore, it can be written as a projection onto the eigenvector corresponding to

the nonzero eigenvalue. That is what eq. (561) represents, with the nonzero

eigenvalue absorbed into the normalization of the eigenvector φa.

Let us now introduce some useful notation. Let p and k be two four-

momenta, and φa and κa the corresponding twistors. We define the twistor

product

[p k] ≡ φaκa . (565)

Because φaκa = εacφcκa, and the twistors commute, we have

[k p] = −[p k] . (566)

From eqs. (557) and (563), we can see that

u+(p)u−(k) = [p k] . (567)

Similarly, let us define

〈p k〉 ≡ φ∗ȧκ
∗ȧ . (568)
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Comparing with eq. (565) we see that

〈p k〉 = [k p]∗ , (569)

which implies that this product is also antisymmetric,

〈k p〉 = −〈p k〉 . (570)

Also, from eqs. (559) and (562), we have

u−(p)u+(k) = 〈p k〉 . (571)

Note that the other two possible spinor products vanish:

u+(p)u+(k) = u−(p)u−(k) = 0 . (572)

The twistor products 〈p k〉 and [p k] satisfy another important relation,

〈p k〉[k p] = (φ∗ȧκ
∗ȧ)(κaφa)

= (φ∗ȧφa)(κ
aκ∗ȧ)

= pȧak
aȧ

= −2pµkµ , (573)

where the last line follows from σ̄µȧaσνaȧ = −2gµν .

Let us apply this notation to the tree-level scattering amplitude for e−ϕ→
e−ϕ in Yukawa theory, which we first computed in Section 44, and which

reads

Ts′s = g2 us′(p
′)
[
S̃(p+k) + S̃(p−k′)

]
us(p) . (574)

For a massless fermion, S̃(p) = −/p/p2. If the scalar is also massless, then

(p+ k)2 = 2p · k and (p− k′)2 = −2p · k′. Also, we can remove the /p’s in the

propagator numerators in eq. (574), because /pus(p) = 0. Thus we have

Ts′s = g2 us′(p
′)

[
−/k

2p·k +
−/k′

2p·k′
]
us(p) . (575)
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Now consider the case s′ = s = +. From eqs. (562), (563), and

− /k =

(
0 κaκ

∗
ȧ

κ∗ȧκa 0

)
, (576)

we get

u+(p′)(−/k)u+(p) = φ′aκaκ
∗
ȧφ
∗ȧ

= [p′ k] 〈k p〉 . (577)

Similarly, for s′ = s = −, we find

u−(p′)(−/k)u−(p) = φ′∗ȧ κ
∗ȧκaφa

= 〈p′ k〉 [k p] , (578)

while for s′ 6= s, the amplitude vanishes:

u−(p′)(−/k)u+(p) = u+(p′)(−/k)u−(p) = 0 . (579)

Then, using eq. (573) on the denominators in eq. (575), we find

T++ = −g2

(
[p′ k]

[p k]
+

[p′ k′]

[p k′]

)
,

T−− = −g2

(
〈p′ k〉
〈p k〉 +

〈p′ k′〉
〈p k′〉

)
, (580)

while

T+− = T−+ = 0 . (581)

Thus we have rather simple expressions for the fixed-helicity scattering am-

plitudes in terms of twistor products.

We can simplify the derivation of these results by setting up a bra-ket

notation. Let

|p] = u−(p) = v+(p) ,

|p〉 = u+(p) = v−(p) ,

[p| = u+(p) = v−(p) ,

〈p| = u−(p) = v+(p) . (582)
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We then have

〈k| |p〉 = 〈k p〉 ,

[k| |p] = [k p] ,

〈k| |p] = 0 ,

[k| |p〉 = 0 . (583)

We also can write

− /p = |p〉[p| + |p]〈p| , (584)

where p is any massless four-momentum. With this notation, we can easily

reproduce the results of eqs. (577–579).

Problems

50.1a) Use eqs. (558) and (564) to verify eq. (553).

b) Show that /pu−(p) = pȧaφa. Then use eq. (553) to show that that

pȧaφa = 0.

c) Let the three-momentum p be in the +ẑ direction. Use eq. (218) in

section 38 to compute u±(p) explicitly in the massless limit (corresponding

to the limit η → ∞, where sinh η = |p|/m. Verify that, when θ = 0, your

results agree with eqs. (557), (558), and (562). Hint: if a matrix M has

eigenvalues ±1 only, then exp(aM) = cosh(a) + sinh(a)M .

50.2) Prove the Schouten identity,

〈p q〉 〈r s〉 + 〈p r〉 〈s q〉 + 〈p s〉 〈q r〉 = 0 . (585)

Hint: note that the left-hand side is completely antisymmetric in the three

labels q, r, and s, and that each corresponding twistor has only two compo-

nents.

50.3) Show that

〈p q〉 [q r] 〈r s〉 [s p] = Tr 1
2
(1−γ5)/p/q/r/s , (586)
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and evaluate the right-hand side.

50.4a) Prove the useful identities

〈p|γµ|k] = [k|γµ|p〉 , (587)

〈p|γµ|k]∗ = 〈k|γµ|p] , (588)

〈p|γµ|p] = 2pµ , (589)

〈p|γµ|k〉 = 0 , (590)

[p|γµ|k] = 0 . (591)

b) Extend the last two identies of part (a): show that the product of an

odd number of gamma matrices sandwiched between either 〈p| and |k〉 or [p|
and |k] vanishes. Also show that the product of an even number of gamma

matrices between either 〈p| and |k] or [p| and |k〉 vanishes.

c) Prove the Fierz identities,

− 1
2
〈p|γµ|q]γµ = |q]〈p| + |p〉[q| , (592)

−1
2
[p|γµ|q〉γµ = |q〉[p| + |p]〈q| . (593)

Now take the matrix element of eq. (593) between 〈r| and |s] to get yet

another form of the Fierz identity,

[p|γµ|q〉 〈r|γµ|s] = 2 [p s] 〈q r〉 . (594)
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Quantum Field Theory Mark Srednicki

51: Loop Corrections in Yukawa Theory

Prerequisite: 19, 40, 48

In this section we will compute the one-loop corrections in Yukawa theory

with a Dirac field. The basic concepts are all the same as for a scalar, and so

we will mainly be concerned with the extra technicalities arising from spin

indices and anticommutation.

First let us note that the general discussion of sections 18 and 29 leads

us to expect that we will need to add to the lagrangian all possible terms

whose coefficients have positive or zero mass dimension, and that respect

the symmetries of the original lagrangian. These include Lorentz symmetry,

the U(1) phase symmetry of the Dirac field, and the discrete symmetries of

parity, time reversal, and charge conjugation.

The mass dimensions of the fields (in four spacetime dimensions) are

[ϕ] = 1 and [Ψ] = 3
2
. Thus any power of ϕ up to ϕ4 is allowed. But there

are no additional required terms involving Ψ: the only candidates contain

either γ5 (e.g., iΨγ5Ψ) and are forbidden by parity, or C (e.g, ΨTCΨ) and are

forbidden by the U(1) symmetry.

Nevertheless, having to deal with the addition of three new terms (ϕ, ϕ3,

ϕ4) is annoying enough to prompt us to look for a simpler example. Consider,

then, a modified form of the Yukawa interaction,

 L1 = igϕΨγ5Ψ . (595)

This interaction will conserve parity if and only if ϕ is a pseudoscalar:

P−1ϕ(x, t)P = −ϕ(−x, t) . (596)

Then, ϕ and ϕ3 are odd under parity, and so we will not need to add them

to  L. The one term we will need to add is ϕ4.
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Therefore, the theory we will consider is

 L =  L0 +  L1 , (597)

 L0 = iΨ/∂Ψ −mΨΨ − 1
2
∂µϕ∂µϕ− 1

2
M2ϕ2 , (598)

 L1 = iZggϕΨγ5Ψ − 1
24
Zλλϕ

4 +  Lct , (599)

 Lct = i(ZΨ−1)Ψ/∂Ψ − (Zm−1)mΨΨ

− 1
2
(Zϕ−1)∂µϕ∂µϕ− 1

2
(ZM−1)M2ϕ2 (600)

where λ is a new coupling constant. We will use an on-shell renormalization

scheme. The lagrangian parameter m is then the actual mass of the electron.

We will define the couplings g and λ as the values of appropriate vertex

functions when the external four-momenta vanish. Finally, the fields are

normalized according to the requirements of the LSZ formula. In practice,

this means that the scalar and fermion propagators must have appropriate

poles with unit residue.

We will assume that M < 2m, so that the scalar is stable against decay

into an electron-positron pair. The exact scalar propagator (in momentum

space) can be then written in Lehmann-Källén form as

∆̃(k2) =
1

k2 +M2 − iǫ
+
∫ ∞

M2
th

ds ρϕ(s)
1

k2 + s− iǫ
, (601)

where the spectral density ρϕ(s) is real and nonnegative. The threshold mass

Mth is either 2m (corresponding to the contribution of an electron-positron

pair) or 3M (corresponding to the contribution of three scalars; by parity,

there is no contribution from two scalars), whichever is less.

We see that ∆̃(k2) has a pole at k2 = −M2 with residue one. This residue

corresponds to the field normalization that is needed for the validity of the

LSZ formula.

We can also write the exact scalar propagator in the form

∆̃(k2)−1 = k2 +M2 − iǫ− Π(k2) , (602)

where iΠ(k2) is given by the sum of 1PI diagrams with two external scalar

lines, and the external propagators removed. The fact that ∆̃(k2) has a pole
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at k2 = −M2 with residue one implies that Π(−M2) = 0 and Π′(−M2) = 0;

this fixes the coefficients Zϕ and ZM .

All of this is mimicked for the Dirac field. When parity is conserved, the

exact propagator (in momentum space) can be written in Lehmann-Källén

form as

S̃(/p) =
−/p+m

p2 +m2 − iǫ
+
∫ ∞

m2
th

ds ρΨ(s)
−/p +

√
s

p2 + s− iǫ
, (603)

real and nonnegative. The threshold mass mth is m + M (corresponding to

the contribution of a fermion and a scalar), which, by assumption, is less

than 3m (corresponding to the contribution of three fermions; by Lorentz

invariance, there is no contribution from two fermions).

Since p2 = −/p/p, we can rewrite eq. (603) as

S̃(/p) =
1

/p+ m− iǫ
+
∫ ∞

m2
th

ds ρΨ(s)
1

/p +
√
s− iǫ

, (604)

with the understanding that 1/(. . .) refers to the matrix inverse. However,

since /p is the only matrix involved, we can think of S̃(/p) as an analytic

function of the single variable /p. With this idea in mind, we see that S̃(/p)

has a pole at /p = −m with residue one. This residue corresponds to the field

normalization that is needed for the validity of the LSZ formula.

We can also write the exact fermion propagator in the form

S̃(/p)−1 = /p+m− iǫ− Σ(/p) , (605)

where iΣ(/p) is given by the sum of 1PI diagrams with two external fermion

lines, and the external propagators removed. The fact that S̃(/p) has a pole

at /p = −m with residue one implies that Σ(−m) = 0 and Σ′(−m) = 0; this

fixes the coefficients ZΨ and Zm.

We proceed to the diagrams. The Yukawa vertex carries a factor of

i(iZgg)γ5 = −Zggγ5. Since Zg = 1 + O(g2), we can set Zg = 1 in the

one-loop diagrams.

Consider first Π(k2), which receives the one-loop (and counterterm) cor-

rections shown in fig. (12). The first diagram has a closed fermion loop. As

we will see in problem 51.1 (and section 53), anticommutation of the fermion

fields results in an extra factor of minus one for each closed fermion loop.
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Figure 12: The one-loop and counterterm corrections to the scalar propagator
in Yukawa theory.
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The spin indices on the propagators and vertices are contracted in the usual

way, following the arrows backwards. Since the loop closes on itself, we end

up with a trace over the spin indices. Thus we have

iΠΨ loop(k2) = (−1)(−g)2
(

1
i

)2 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ+/k)γ5S̃(/ℓ)γ5

]
, (606)

where

S̃(/p) =
−/p+m

p2 +m2 − iǫ
(607)

is the free fermion propagator in momentum space.

We now proceed to evaluate eq. (606). We have

Tr[(−/ℓ− /k +m)γ5(−/ℓ+m)γ5] = Tr[(−/ℓ− /k +m)(+/ℓ+m)]

= 4[(ℓ+ k)ℓ+ m2]

≡ 4N . (608)

The first equality follows from γ2
5 = 1 and γ5/pγ5 = −/p.

Next we combine the denominators with Feynman’s formula. Suppressing

the iǫ’s, we have

1

(ℓ+k)2 +m2

1

ℓ2 +m2
=
∫ 1

0
dx

1

(q2 +D)2
, (609)

where q = ℓ+ xk and D = x(1−x)k2 +m2.

We then change the integration variable in eq. (606) from ℓ to q; the result

is

iΠΨ loop(k2) = 4g2
∫ 1

0
dx
∫

d4q

(2π)4

N

(q2 +D)2
, (610)

where now N = (q+ (1−x)k)(q−xk) +m2. The integral diverges, and so we

analytically continue it to d = 4 − ε spacetime dimensions. (Here we ignore

a subtlety with the definition of γ5 in d dimensions, and assume that γ2
5 = 1

and γ5 /pγ5 = −/p continue to hold.) We also make the replacement g → gµ̃ε/2,

where µ̃ has dimensions of mass, so that g remains dimensionless.

Expanding out the numerator, we have

N = q2 − x(1−x)k2 +m2 + (1−2x)kq . (611)
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The term linear in q integrates to zero. For the rest, we use the general result

of section 14 to get

µ̃ε
∫

ddq

(2π)d
1

(q2 +D)2
=

i

16π2

[
2

ε
− ln(D/µ2)

]
, (612)

µ̃ε
∫ ddq

(2π)d
q2

(q2 +D)2
=

i

16π2

[
2

ε
+ 1

2
− ln(D/µ2)

]
(−2D) , (613)

where µ2 = 4πe−γµ̃2, and we have dropped terms of order ε. Plugging

eqs. (612) and (613) into eq. (610) yields

ΠΨloop(k2) = − g2

4π2

[
1

ε
(k2 + 2m2) + 1

6
k2 +m2

−
∫ 1

0
dx
(
3x(1−x)k2 +m2

)
ln(D/µ2)

]
. (614)

We see that the divergent term has (as expected) a form that permits can-

cellation by the counterterms.

We evaluated the second diagram of fig. (12) in section 30, with the result

Πϕ loop(k2) =
λ

(4π)2

[
1

ε
+ 1

2
− 1

2
ln(M2/µ2)

]
M2 . (615)

The third diagram gives the contribution of the counterterms,

Πct(k
2) = −(Zϕ−1)k2 − (ZM−1)M2 . (616)

Adding up eqs. (614–616), we see that finiteness of Π(k2) requires

Zϕ = 1 − g2

4π2

(
1

ε
+ finite

)
, (617)

ZM = 1 +

(
λ

16π2
− g2

2π2

m2

M2

)(
1

ε
+ finite

)
, (618)

plus higher-order (in g and/or λ) corrections. Note that, although there is

an O(λ) correction to ZM , there is not an O(λ) correction to Zϕ.

We can impose Π(−M2) = 0 by writing

Π(k2) =
g2

4π2

[ ∫ 1

0
dx
(
3x(1−x)k2 +m2

)
ln(D/D0) + κΠ(k2 +M2)

]
, (619)
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Figure 13: The one-loop and counterterm corrections to the fermion propa-
gator in Yukawa theory.

where D0 = −x(1−x)M2 + m2, and κΠ is a constant to be determined. We

fix κΠ by imposing Π′(−M2) = 0, which yields

κΠ =
∫ 1

0
dx x(1−x)[3x(1−x)M2 −m2]/D0 . (620)

Note that, in this on-shell renormalization scheme, there is noO(λ) correction

to Π(k2).

Next we turn to the Ψ propagator, which receives the one-loop (and

counterterm) corrections shown in fig. (13). The spin indices are contracted

in the usual way, following the arrows backwards. We have

iΣ1 loop(/p) = (−g)2
(

1
i

)2 ∫ d4ℓ

(2π)4

[
γ5S̃(/p+ /ℓ)γ5

]
∆̃(ℓ2) , (621)

where S̃(/p) is given by eq. (607), and

∆̃(ℓ2) =
1

ℓ2 +M2 − iǫ
(622)

is the free scalar propagator in momentum space.

We evaluate eq. (621) with the usual bag of tricks. The result is

iΣ1 loop(/p) = −g2
∫ 1

0
dx
∫ d4q

(2π)4

N

(q2 +D)2
, (623)

where q = ℓ+ xp and

N = /q + (1−x)/p +m , (624)

D = x(1−x)p2 + xm2 + (1−x)M2 . (625)
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The integral diverges, and so we analytically continue it to d = 4−ε spacetime

dimensions, make the replacement g → gµ̃ε/2, and take the limit as ε → 0.

The term linear in q in eq. (624) integrates to zero. Using eq. (612), we get

Σ1 loop(/p) = − g2

16π2

[
1

ε
(/p+ 2m) −

∫ 1

0
dx
(
(1−x)/p +m

)
ln(D/µ2)

]
. (626)

We see that the divergent term has (as expected) a form that permits can-

cellation by the counterterms, which give

Σct(/p) = −(ZΨ−1)/p− (Zm−1)m . (627)

Adding up eqs. (626) and (627), we see that finiteness of Σ(/p) requires

ZΨ = 1 − g2

16π2

(
1

ε
+ finite

)
, (628)

Zm = 1 − g2

8π2

(
1

ε
+ finite

)
, (629)

plus higher-order corrections.

We can impose Σ(−m) = 0 by writing

Σ(/p) =
g2

16π2

[∫ 1

0
dx
(
(1−x)/p +m

)
ln(D/D0) + κΣ(/p+m)

]
, (630)

where D0 is D evaluated at p2 = −m2, and κΣ is a constant to be determined.

We fix κΣ by imposing Σ′(−m) = 0. In differentiating with respect to /p, we

take the p2 in D, eq. (625), to be −/p2; we find

κΣ = −2
∫ 1

0
dx x2(1−x)m2/D0 . (631)

Next we turn to the correction to the Yukawa vertex. We define the vertex

function iVY (p′, p) as the sum of one-particle irreducible diagrams with one

incoming fermion with momentum p, one outgoing fermion with momentum

p′, and one incoming scalar with momentum k = p′ − p. The original vertex

−Zggγ5 is the first term in this sum, and the diagram of fig. (14) is the second.

Thus we have

iVY (p′, p) = −Zggγ5 + iVY, 1 loop(p′, p) +O(g5) , (632)
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Figure 14: The one-loop correction to the scalar-fermion-fermion vertex in
Yukawa theory.

where

iVY, 1 loop(p′, p) = (−g)3
(

1
i

)3 ∫ ddℓ

(2π)d

[
γ5S̃(/p ′+/ℓ)γ5S̃(/p+/ℓ)γ5

]
∆̃(ℓ2) . (633)

The numerator can be written as

N = (/p ′ + /ℓ+m)(−/p− /ℓ+m)γ5 , (634)

and the denominators combined in the usual way. We then get

iVY, 1 loop(p′, p)/g = −ig2
∫
dF3

∫
d4q

(2π)4

N

(q2 +D)3
, (635)

where the integral over Feynman parameters was defined in section 16, and

now

q = ℓ+ x1p+ x2p
′ , (636)

N = [/q − x1 /p+ (1−x2)/p ′ +m][−/q − (1−x1)/p+ x2 /p ′ +m]γ5 , (637)

D = x1(1−x1)p2 + x2(1−x2)p′2 − 2x1x2p·p′ + (x1+x2)m2 + x3M
2 . (638)

Using /q/q = −q2, we can write N as

N = q2γ5 + Ñ + (linear in q) , (639)
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Figure 15: One of six diagrams with a closed fermion loop and four external
scalar lines; the other five are obtained by permuting the external momenta
in all possible inequivalent ways.

where

Ñ = [−x1 /p+ (1−x2)/p ′ +m][−(1−x1)/p+ x2 /p ′ +m]γ5 . (640)

The terms linear in q in eq. (639) integrate to zero, and only the first term is

divergent. Performing the usual manipulations, we find

iVY, 1 loop(p′, p)/g = − g2

8π2

[(
1

ε
− 1

4
− 1

2

∫
dF3 ln(D/µ2)

)
γ5 + 1

4

∫
dF3

Ñ

D

]
.

(641)

From eq. (632), we see that finiteness of VY (p′, p) requires

Zg = 1 +
g2

8π2

(
1

ε
+ finite

)
, (642)

plus higher-order corrections.

To fix the finite part of Zg, we need a condition to impose on VY (p′, p).

One possibility is to mimic what we did in ϕ3 theory in section 16: require

VY (0, 0) to have the tree-level value igγ5. As in ϕ3 theory, this is not well

motivated physically, but has the virtue of simplicity, and this is a good

enough reason for us to adopt it. We leave the details to problem 51.2.

Next we turn to the corrections to the ϕ4 vertex iV4(k1, k2, k3, k4); the

tree-level contribution is −iZλλ. There are diagrams with a closed fermion
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loop, as shown in fig. (15), plus one-loop diagrams with ϕ particles only that

we evaluated in section 30. We have

iV4,Ψ loop = (−1)(−g)4
(

1
i

)4 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ)γ5S̃(/ℓ−/k1)γ5

× S̃(/ℓ+/k2+/k3)γ5S̃(/ℓ+/k2)γ5

]

+ 5 permutations of (k2, k3, k4) . (643)

Again we can employ the standard methods; there are no unfamiliar aspects.

This being the case, let us concentrate on obtaining the divergent part; this

will give us enough information to calculate the one-loop contributions to

the beta functions for g and λ.

To obtain the divergent part of eq. (643), it is sufficient to set ki = 0.

Then the numerator in eq. (643) becomes simply Tr (/ℓγ5)
4 = 4(ℓ2)2, and

the denominator is (ℓ2 + m2)4. Then we find, after including the identical

contributions from the other five permutations of the external momenta,

V4,Ψ loop = −3g4

π2

(
1

ε
+ finite

)
. (644)

From section 30, we have

V4, ϕ loop =
3λ

16π2

(
1

ε
+ finite

)
. (645)

Then, using

V4 = −Zλλ+ V4,Ψloop + V4, ϕ loop + . . . , (646)

we see that finiteness of V4 requires

Zλ = 1 +

(
3λ

16π2
− 3g4

π2λ

)(
1

ε
+ finite

)
, (647)

plus higher-order corrections.

Problems
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51.1) Derive the one-loop correction to the scalar propagator by working

through eq. (452), and show that it has an extra minus sign (corresponding

to the closed fermion loop).

51.2) Prove eq. (603). Hints: Given a multiparticle state |p, s, q, n〉 with

four momentum pµ and mass M2 = −p2, Jz = 1
2
s, charge q, and other

attributes specified by n, show that 〈0|Ψ(x)|p, s, q, n〉 vanishes unless s = ±1

and q = +1. Argue that this is enough information to fix 〈0|Ψ(x)|p, s, q, n〉 ∝
us(p), a spinor of mass M .

51.3) Finish the computation of VY (p′, p), imposing the condition

VY (0, 0) = igγ5 . (648)
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52: Beta Functions in Yukawa Theory

Prerequisite: 27, 51

In this section we will compute the beta functions for the Yukawa coupling

g and the ϕ4 coupling λ in Yukawa theory, using the methods of section 27.

The relations between the bare and renormalized couplings are

g0 = Z−1/2
ϕ Z−1

Ψ Zgµ̃
ε/2g , (649)

λ0 = Z−2
ϕ Zλµ̃

ελ . (650)

Let us define

ln
(
Z−1/2
ϕ Z−1

Ψ Zg
)

=
∞∑

n=1

Gn(g, λ)

εn
, (651)

ln
(
Z−2
ϕ Zλ

)
=
∞∑

n=1

Ln(g, λ)

εn
. (652)

From our results in section 51, we have

G1(g, λ) =
5g2

16π2
+ . . . , (653)

L1(g, λ) =
3λ

16π2
+

g2

2π2
− 3g4

π2λ
+ . . . , (654)

where the ellipses stand for higher-order (in g2 and/or λ) corrections.

Taking the logarithm of eqs. (649) and (650), and using eqs. (651) and

(652), we get

ln g0 =
∞∑

n=1

Gn(g, λ)

εn
+ ln g + 1

2
ε ln µ̃ , (655)

lnλ0 =
∞∑

n=1

Ln(g, λ)

εn
+ lnλ+ ε ln µ̃ . (656)

136



We now use the fact that g0 and λ0 must be independent of µ. We differenti-

ate eqs. (655) and (656) with respect to lnµ; the left-hand sides vanish, and

we multiply the right-hand sides by g and λ, respectively. The result is

0 =
∞∑

n=1

(
g
∂Gn

∂g

dg

d lnµ
+ g

∂Gn

∂λ

dλ

d lnµ

)
1

εn
+

dg

d lnµ
+ 1

2
εg , (657)

0 =
∞∑

n=1

(
λ
∂Ln
∂g

dg

d lnµ
+ λ

∂Ln
∂λ

dλ

d lnµ

)
1

εn
+

dλ

d lnµ
+ ελ . (658)

In a renormalizable theory, dg/d lnµ and dλ/d lnµ must be finite in the ε → 0

limit. Thus we can write

dg

d lnµ
= −1

2
εg + βg(g, λ) , (659)

dλ

d lnµ
= −ελ+ βλ(g, λ) . (660)

Substituting these into eqs. (657) and (658), and matching powers of ε, we

find

βg(g, λ) = g

(
1
2
g
∂

∂g
+ λ

∂

∂λ

)
G1 , (661)

βλ(g, λ) = λ

(
1
2
g
∂

∂g
+ λ

∂

∂λ

)
L1 . (662)

The coefficients of all higher powers of 1/ε must also vanish, but this gives

us no more information about the beta functions.

Using eqs. (653) and (654) in eqs. (661) and (662), we get

βg(g, λ) =
5g3

16π2
+ . . . , (663)

βλ(g, λ) =
1

16π2

(
3λ2 + 8λg2 − 48g4

)
+ . . . . (664)

The higher-order corrections have extra factors of g2 and/or λ.
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53: Functional Determinants

Prerequisite: 44, 45

In the section we will explore the meaning of the functional determinants

that arise when doing gaussian path integrals, either bosonic or fermionic. We

will be interested in situations where the path integral over one particular

field is gaussian, but generates a functional determinant that depends on

some other field. We will see how to relate this functional determinant to a

certain infinite set of Feynman diagrams. We will need the technology we

develop here to compute the path integral for nonabelian gauge theory in

section 70.

We begin by considering a theory of a complex scalar field χ with

L = −∂µχ†∂µχ−m2χ†χ + gϕχ†χ , (665)

where ϕ is a real scalar background field. That is, ϕ(x) is treated as a fixed

function of spacetime. Next we define the path integral

Z(ϕ) =
∫
Dχ†Dχ ei

∫
d4x  L , (666)

where we use the ǫ trick of section 6 to impose vacuum boundary conditions,

and the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex variables zi, then we

can evaluate gaussian integrals by the general formula
∫
dnz dnz̄ exp (−iz̄iMijzj) ∝ (detM)−1 . (667)

In the case of the functional integral in eq. (666), the index i on the integration

variable is replaced by the continuous spacetime label x, and the “matrix”

M becomes

M(x, y) = [−∂2
x +m2 − gϕ(x)]δ4(x− y) . (668)
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In order to apply eq. (667), we have to understand what it means to compute

the determinant of this expression.

To this end, let us first note that we can write M = M0M̃ , which is

shorthand for

M(x, z) =
∫
d4yM0(x, y)M̃(y, z) , (669)

where

M0(x, y) = (−∂2
x +m2)δ4(x− y) , (670)

M̃(y, z) = δ4(y − z) − g∆(y − z)ϕ(z) . (671)

Here ∆(y − z) is the Feynman propagator, which obeys

(−∂2
y +m2)∆(y − z) = δ4(y − z) . (672)

After various integrations by parts, it is easy to see that eqs. (669–671) re-

produce eq. (668).

Now we can use the general matrix relation

detAB = detA detB (673)

to conclude that

detM = detM0 det M̃ . (674)

The advantage of this decomposition is that M0 is independent of the back-

ground field ϕ, and so the resulting factor of (detM0)−1 in Z(ϕ) can simply

be absorbed into the overall normalization. Furthermore, we have M̃ = I−G,

where

I(x, y) = δ4(x− y) (675)

is the identity matrix, and

G(x, y) = g∆(x− y)ϕ(y) . (676)

Thus, for ϕ(x) = 0, we have M̃ = I and so det M̃ = 1. Then, using eq. (667)

and the normalization condition Z(0) = 1, we see that for nonzero ϕ(x) we

must have simply

Z(ϕ) = (det M̃)−1 . (677)
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Next, we need the general matrix relation

detA = exp Tr lnA , (678)

which is most easily proven by remembering that the determinant and trace

are both basis independent, and then working in a basis where A is in Jordan

form (that is, all entries below the main diagonal are zero). Thus we can write

det M̃ = exp Tr ln M̃

= exp Tr ln(I −G)

= exp Tr

[
−
∞∑

n=1

1

n
Gn

]
. (679)

Combining eqs. (677) and (679) we get

Z(ϕ) = exp
∞∑

n=1

1

n
TrGn , (680)

where

TrGn = gn
∫
d4x1 . . . d

4xn ∆(x1−x2)ϕ(x2) . . .∆(xn−x1)ϕ(x1) . (681)

This is our final result for Z(ϕ).

To better understand what it means, we will rederive it in a different

way. Consider treating the gϕχ†χ term in  L as an interaction. This leads

to a vertex that connects two χ propagators; the associated vertex factor

is igϕ(x). According to the general analysis of section 9, we have Z(ϕ) =

exp iΓ(ϕ), where iΓ(ϕ) is given by a sum of connected diagrams. (We have

called the exponent Γ rather than W because it is naturally interpreted as a

quantum action for ϕ after χ has been integrated out.) The only diagrams we

can draw with these Feynman rules are those of fig. (16), with n insertions

of the vertex, where n ≥ 1. The diagram with n vertices has an n-fold

cyclic symmetry, leading to a symmetry factor of S = n. The factor of i

associated with each vertex is canceled by the factor of 1/i associated with

each propagator. Thus the value of the n-vertex diagram is

1

n
gn
∫
d4x1 . . . d

4xn ∆(x1−x2)ϕ(x2) . . .∆(xn−x1)ϕ(x1) . (682)
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etc

Figure 16: All connected diagrams with ϕ(x) treated as an external field.
Each of the n dots represents a factor of igϕ(x), and each solid line is a χ or
Ψ propagator.

Summing up these diagrams, and using eq. (681), we find

iΓ(ϕ) =
∞∑

n=1

1

n
TrGn . (683)

This neatly reproduces eq. (680). Thus we see that a functional determinant

can be represented as an infinite sum of Feynman diagrams.

Next we consider a theory of a Dirac fermion Ψ with

L = iΨ/∂Ψ −mΨΨ + gϕΨΨ , (684)

where ϕ is again a real scalar background field. We define the path integral

Z(ϕ) =
∫
DΨDΨ ei

∫
d4x  L , (685)

where we again use the ǫ trick to impose vacuum boundary conditions, and

the normalization Z(0) = 1 is fixed by hand.

Recall from section 44 that if we have n complex Grassmann variables

ψi, then we can evaluate gaussian integrals by the general formula
∫
dnψ̄ dnψ exp

(
−iψ̄iMijψj

)
∝ detM . (686)

In the case of the functional integral in eq. (685), the index i on the integration

variable is replaced by the continuous spacetime label x plus the spinor index
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α, and the “matrix” M becomes

Mαβ(x, y) = [−i/∂x +m− gϕ(x)]αβδ
4(x− y) . (687)

In order to apply eq. (686), we have to understand what it means to compute

the determinant of this expression.

To this end, let us first note that we can write M = M0M̃ , which is

shorthand for

Mαγ(x, z) =
∫
d4yM0αβ(x, y)M̃βγ(y, z) , (688)

where

M0αβ(x, y) = (−i/∂x +m)αβδ
4(x− y) , (689)

M̃βγ(y, z) = δβγδ
4(y − z) − gSβγ(y − z)ϕ(z) . (690)

Here Sβγ(y − z) is the Feynman propagator, which obeys

(−i/∂y +m)αβSβγ(y − z) = δαγδ
4(y − z) . (691)

After various integrations by parts, it is easy to see that eqs. (688–690) re-

produce eq. (687).

Now we can use eq. (674). The advantage of this decomposition is that

M0 is independent of the background field ϕ, and so the resulting factor

of detM0 in Z(ϕ) can simply be absorbed into the overall normalization.

Furthermore, we have M̃ = I −G, where

Iαβ(x, y) = δαβδ
4(x− y) (692)

is the identity matrix, and

Gαβ(x, y) = gSαβ(x− y)ϕ(y) . (693)

Thus, for ϕ(x) = 0, we have M̃ = I and so det M̃ = 1. Then, using eq. (686)

and the normalization condition Z(0) = 1, we see that for nonzero ϕ(x) we

must have simply

Z(ϕ) = det M̃ . (694)
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Next, we use eqs. (679) and (694) to get

Z(ϕ) = exp −
∞∑

n=1

1

n
TrGn , (695)

where now

TrGn = gn
∫
d4x1 . . . d

4xn trS(x1−x2)ϕ(x2) . . . S(xn−x1)ϕ(x1) , (696)

and “tr” denotes a trace over spinor indices. This is our final result for Z(ϕ).

To better understand what it means, we will rederive it in a different

way. Consider treating the gϕΨΨ term in  L as an interaction. This leads

to a vertex that connects two Ψ propagators; the associated vertex factor

is igϕ(x). According to the general analysis of section 9, we have Z(ϕ) =

exp iΓ(ϕ), where iΓ(ϕ) is given by a sum of connected diagrams. (We have

called the exponent Γ rather than W because it is naturally interpreted as a

quantum action for ϕ after Ψ has been integrated out.) The only diagrams we

can draw with these Feynman rules are those of fig. (16), with n insertions

of the vertex, where n ≥ 1. The diagram with n vertices has an n-fold

cyclic symmetry, leading to a symmetry factor of S = n. The factor of i

associated with each vertex is canceled by the factor of 1/i associated with

each propagator. The closed fermion loop implies a trace over the spinor

indices. Thus the value of the n-vertex diagram is

1

n
gn
∫
d4x1 . . . d

4xn trS(x1−x2)ϕ(x2) . . . S(xn−x1)ϕ(x1) . (697)

Summing up these diagrams, we find that we are missing the overall minus

sign in eq. (695). The appropriate conclusion is that we must associate an

extra minus sign with each closed fermion loop.
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