
PHY–396 K. Solutions for problem set #7.

(a) :

γµγν = ±γνγµ where the sign is ‘+’ for µ = ν and ‘−’ otherwise. Hence for any product

Γ of the γ matrices, γµΓ = (−1)nµΓγµ where nµ is the number of γν 6=µ factors of Γ. For

Γ = γ5 ≡ iγ0γ1γ2γ3, nµ = 3 for any µ = 0, 1, 2, 3; thus γµγ5 = −γ5γµ.

(b) :

First, (
γ5 ≡ iγ0γ1γ2γ3

)†
= −i(γ3)†(γ2)†(γ1)†(γ0)† = +iγ3γ2γ1γ0

= +i((γ3γ2)γ1)γ0 = (−1)3i γ0((γ3γ2)γ1)

= (−1)3+2i γ0(γ1(γ3γ2)) = (−1)3+2+1i γ0(γ1(γ2γ3))

= +iγ0γ1γ2γ3 ≡ +γ5.

(S.1)

Second,

(γ5)2 = γ5(γ5)† = (iγ0γ1γ2γ3)(iγ3γ2γ1γ0) = −γ0γ1γ2(γ3γ3)γ2γ1γ0

= +γ0γ1(γ2γ2)γ1γ0 = −γ0(γ1γ1)γ0 = +γ0γ0 = +1.
(S.2)

(c) :

Any four distinct γκ, γλ, γµ, γν are γ0, γ1, γ2, γ3 in some order. They all anticommute with

each other, hence γκγλγµγν = εκλµνγ0γ1γ2γ3 ≡ −iεκλµνγ5. The rest is obvious.

(d) :

iεκλµν γκγ5 = γκ γ[κγλγµγν]

1
(

κ [λ µ ν] [λ) κ (µ ν] [λ µ) κ (ν] [λ µ ν] κ
)

= 4 γκ γ γ γ γ − γ γ γ γ + γ γ γ γ − γ γ γ γ

= 1
4

(
4γ[λγµγν] + 2γ[λγµγν] + 4g[λµγν] + 2γ[νγµγλ]

)
= 1

4(4 + 2 + 0− 2)γ[λγµγν] = γ[λγµγν].

(S.3)
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(e) :

Proof by inspection: In the Weyl basis, the 16 matrices are

1 =

(
1 0

0 1

)
, γ0 =

(
0 1

1 0

)
, γi =

(
0 +σi

−σi 0

)
,

iγ[iγj] = εijk

(
σk 0

0 σk

)
, iγ[0γi] =

(
−iσi 0

0 +iσi

)
, (S.4)

γ5γ0 =

(
0 −1

+1 0

)
, γ5γ1 =

(
0 −σi

−σi 0

)
, γ5 =

(
−1 0

0 +1

)
,

and their linear independence is self-evident. Since there are only 16 independent 4× 4 matrices

altogether, any such matrix Γ is a linear combination of the matrices (S.4). Q.E .D.

Algebraic Proof: Without making any assumption about the matrix form of the γµ operators,

let us consider the Clifford algebra γµγν + γνγµ = 2gµν . Because of these anticommutation

relations, one may re-order any product of the γ’s as ±γ0 · · · γ0 γ1 · · · γ1 γ2 · · · γ2 γ3 · · · γ3 and

then further simplify it to ±(γ0 or 1) × (γ1 or 1) × (γ2 or 1) × (γ3 or 1). The net result is (up

to a sign or ±i factor) one of the 16 operators 1, γµ, iγ[µγν], −iγ[λγµγν] = ελµνργ5γρ (cf. (d)) or

iγ[κγλγµγν] = εκλµνγ5 (cf. (c)). Consequently, any operator Γ algebraically constructed of the

γµ’s is a linear combination of these 16 operators.

Incidentally, the algebraic argument explains why the γµ (and hence all their products)

should be realized as 4 × 4 matrices since any lesser matrix size would not accommodate 16

independent products. That is, the γ’s are 4× 4 matrices in four spacetime dimensions; different

dimensions call for different matrix sizes. Specifically, in spacetimes of even dimensions d, there

are 2d independent products of the γ operators, so we need matrices of size 2d/2 × 2d/2: 2× 2 in

two dimensions, 4× 4 in four, 8× 8 in six, 16× 16 in eight, 32× 32 in ten, etc.,etc..

In odd dimensions, there are only 2d−1 independent operators because γd+1 ≡ (i)γ0γ1 · · · γd−1

— the analogue of the γ5 operator in 4d — commutes rather than anticommutes with all the
γµ and hence with the whole algebra. Consequently, one has two distinct representations of

the Clifford algebra — one with γd+1 = +1 and one with γd+1 = −1 — but in each repre-

sentation there are only 2d−1 independent operator products, which call for the matrix size of

2(d−1)/2 × 2(d−1)/2. For example, in three spacetime dimensions (two space, one time), can take

(γ0, γ1, γ2) = (σ3, iσ1, iσ2) for γ4 ≡ iγ0γ1γ2 = +1 or (γ0, γ1, γ2) = (σ3, iσ1,−iσ2) for γ4 = −1,
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but in both cases we have 2 × 2 matrices. Likewise, we have 4 × 4 matrices in five dimensions,

8× 8 in 7D, 16× 16 in 9D, 32× 32 in 11D, etc., etc.

Problem 2(a):

Despite anticommutativity of the fermionic fields, the Hermitian conjugation of an operator

product reverses the order of operators without any extra sign factors, thus (Ψ†
αΨβ)† = +Ψ†

βΨα.

Consequently, for any 4 × 4 matrix Γ, (Ψ†ΓΨ† = +Ψ†Γ†Ψ, and hence (ΨΓΨ)† = ΨΓΨ where

Γ = γ0Γ†γ0 is the Dirac conjugate of Γ.

Now consider the 16 matrices which appear in the bilinears (1). Obviously 1 = +1 and this

gives us S† = +S. We saw in class that γµ = +γµ, and this gives us (V µ)† = +V µ. We also saw

that iγ[µγν] = −iγ[νγµ] = +iγ[µγν], and this gives us (Tµν)† = +Tµν . As to the γ5 matrix, it is

Hermitian (cf. 1.(b)) and anticommutes with γ0, hence γ5 = γ0(γ5)†γ0 = +γ0γ5γ0 = −γ5 and

therefore iγ5 = +iγ5, which gives us P † = +P . Finally, γ5γµ = γµγ5 = −γµγ5 = +γ5γµ, which

gives us (Aµ)† = +Aµ. Thus, by inspection, all the bilinears (1) are Hermitian. Q.E .D.

Problem 2(b):

Under a continuous Lorentz symmetry x 7→ x′ = Lx, the Dirac spinor field and its conjugate

transform according to

Ψ′(x′) = M(L)Ψ(x = L−1x′), Ψ
′
(x′) = Ψ(x = L−1x′)M−1(L), (S.5)

hence any bilinear ΨΓΨ transforms according to

Ψ
′
(x′)ΓΨ(x′) = Ψ(x)Γ′Ψ(x) (S.6)

where

Γ′ = M−1(L)ΓM(L). (S.7)

Obviously, for Γ = 1, Γ′ = M−1M = 1. According to homework set #5 (problem 3(d)), for

Γ = γµ, Γ′ = M−1γµM = Lµ
νγ

ν . Similarly, M−1γµγνM = (M−1γµM)(M−1γνM) = Lµ
κγκ ×
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and use (2) to get

=

∞∑

m=1

f(k)

(m− 1)!

∫
d̃k1 . . . d̃km f1 . . . fm a

†
1 . . . a

†
m|0〉

= f(k)|ψ〉

so

〈ψ|a(k)|ψ〉

〈ψ|ψ〉
= f(k)

〈ψ|a†(k)|ψ〉

〈ψ|ψ〉
= f∗(k)

where I took the Hermitian conjugate to find the eigenvalue of a†(k).

c) Taking the mode expansion

φ(x, t) =

∫
d̃k
[
a(k)eikx + a†(k)e−ikx

]
(4)

gives the expectation value

〈φ(x, t)〉 =

∫
d̃k
[
f(k)eikx + f∗(k)e−ikx

]
(5)

d) The second derivative with respect to time is

〈
φ̈(x, t)

〉
= −

∫
d̃k ω2

[
f(k)eikx + f∗(k)e−ikx

]

and the Laplacian is

〈
∇2φ(x, t)

〉
= −

∫
d̃k k · k

[
f(k)eikx + f∗(k)e−ikx

]

so

∂µ∂
µ 〈φ(x, t)〉 =

∫
d̃k
(
ω2 − k · k

) [
f(k)eikx + f∗(k)e−ikx

]
= m2 〈φ(x, t)〉

indicating that 〈φ〉 satisfies the Klein-Gordon equation.

Problem 2:

a) The field operator φ(x, t) must satisfy antiperiodic boundary conditions.

φ(x+ L, t) = −φ(x, t) = eiπφ(x, t)

suggesting that all modes must have wavenumbers of the form

kn =
π

L
(2n+ 1)
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for some integer n. Thus, we have a mode expansion

φ(x, t) =
∑

n

[
eikn(x−t)a(kn) + e−ikn(x−t)a†(kn)

]

b) The Green’s function is given by

GF (x, x′) =

∫
dk dω

(2π)2
e−iω∆teik∆x

k2 − ω2

= i

∫
dk dω

(2π2)

ei(ω∆τ+k∆x)

k2 + ω2

= i

∫ ∞

0

dα

∫
dk

2π
e−αk2+ik∆x

∫
dω

2π
e−αω2+iω∆τ

= i

∫ ∞

0

dα

4πα
e−

1

4α
[(∆τ2)+(∆x)2]

= −i

∫ ∞

0

du

4πu
e−u[(∆τ2)+(∆x)2]

I got the second line by Wick rotating (Peskin and Shroeder, p. 193 or Srednicki,
p. 216) and the line after that by using the identity

1

B
=

∫ ∞

0

dα e−αB

The integral on the last line is formally divergent, but note that

−
∂

∂B

∫ ∞

0

dα

α
e−αB =

∫ ∞

0

dα e−αB

in order to recover

GF (x, x′) = −
i

4π
ln
[
(∆τ)2 + (∆x)2

]

= −
1

2π
ln |x− x′|

after Wick rotating things back.

c) Start with

GF (x, x′) =
∑

kn

∫
dω

2π

ei(knx−ωt)

k2
n − ω2

=

∫
d2k

(2π)2
eikx

k2

∑

n

(2π)δ
(
k − (2n+ 1) π

L

)

=
∑

m

∫
dk dω

(2π)2
eikx

k2
eiπmeimkL

=
∑

m

(−1)mGF (x+mL, x′)
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using the Poisson sum formula on the third line.

d) The Lagrangian for the theory is

L = −
1

2
∂µφ∂

µφ

with canonical momentum Π = ∂L

∂φ̇
so the Hamiltonian is

H = Πφ̇− L =
1

2
φ̇2 +

1

2
φ2

,x

e) The point-splitting Hamiltonian is

Hε ≡
1

2
φ̇(x, t)φ̇(x+ ε, t) +

1

2
φ,x(x, t)φ,x(x+ ε, t)

so

〈0|Hε(x, t)|0〉 = −
1

2

(
∂2
0 − ∂2

x

)
GF (x, x+ ε)

In flat space, this is simply

= −
1

2π

1

ε2

and in the box it is

−
1

2π

1

ε2
−

1

π

∞∑

n=1

(−1)n

(nL)2

As expected, both Hamiltonians diverge in the ε→ 0 limit.
e) Subtracting the flat Hamiltonian from the box Hamiltonian eliminates the ε
dependence, leaving a difference of

−
1

π

∞∑

n=1

(−1)n

(nL)2
=

1

πL2

(
∑

n=1

1

n2
− 2

∑

n=1

1

(2n)2

)
=

π

12L2

Problem 3:

The problem is simplified a lot if we break the field operator φ(x) up into parts

φ(x) = φ+(x) + φ−(x)

where φ+(x) (vice φ−(x)) depends only on creation (vice annihilation) opera-
tors.

φ+(x) =

∫
d̃k a†(k)e−ikx φ−(x) =

∫
d̃k a(k)eikx
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a) We have gµνσ
µ
aȧσ

ν

bḃ
, which must be proportional to εabεȧḃ, since no other

Lorenz invariant tensor has the right combination of indices.
Now, if

gµνσ
µ
aȧσ

ν

bḃ
= cεabεȧḃ

we can find c by evaluating

gµνσ
µ

11̇
σν

22̇
= −g00111̇122̇ + g33σ3

11̇
σ3

22̇

= −2ε12ε1̇2̇

so c = 2.
b) This is easiest working backwards.

−
1

2
(ξσµχ†)(ψσµ)ȧ = −

1

2
gµν(ξbσµχ†ḃ)ψaσaȧ

= ξbχ†ḃψaεabεȧḃ

= (ξψ)χ†
ȧ

Problem 3:

The Lagrangian is

L =
1

2

(

iψ̄γµ∂µψ −mψ̄ψ − im′ψ̄γ5ψ
)

a) We perform a chiral transformation

ψ → eiαγ5ψ

ψ̄ → ψ†e−iαγ5γ0 = ψ̄eiαγ5

where we can anti-commute every power of γ5 in the exponential past the γ0 in
the definition of ψ̄. Then the derivative term in the Lagrangian becomes

ψ̄eiαγ5γµ∂µe
iαγ5ψ = ψ̄γµ∂µe

−iαγ5eiαγ5ψ = ψ̄γµ∂µψ

b) Transforming the mass terms gives

mψ̄e2iαγ5ψ + im′ψ̄e2iαγ5γ5ψ

Fortunately, we can use (γ5)
2 = 1 to simplify the exponential.

e2iαγ5 =

∞
∑

n=0

[

(2iα)2n

(2n)!
+ γ5

(2iα)2n+1

(2n+ 1)!

]

= cos 2α+ iγ5 sin 2α

so the sum of the mass terms is

ψ̄
[

(

m cos 2α−m′ sin 2α
)

+ iγ5

(

m′ cos 2α+m sin 2α
)]

ψ
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Rotating the chiral mass term away requires finding a value of alpha such that

m′ cos 2α+m sin 2α = 0

which is satisfied by
m′

m
= − tan 2α

so the new mass is given by
√

m2 +m′2
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