@ [OFT final spring05. problem 3) |
YHAY = +A4Y~4* where the sign is ‘4’ for p = v and ‘=’ otherwise. Hence for any product

' of the v matrices, Y*"I' = (—1)™Ty* where n, is the number of v*7# factors of I. For
I' = 4% = i70y14243, n, = 3 for any p = 0,1,2,3; thus D =~

(b) :
First,
(7° = "2 = TN =+t
= +i(PY) N = (D% (P S.1)
= (=D)*%i°('(%9%) = (1PN ()
= hin0y128 = 4P
Second,
(P = PO = (VPP = AP 52)

= 7P = A = % = 4L

()

Any four distinct 7%, 4, v, 4 are 4%, 41, 4%, 43 in some order. They all anticommute with

each other, hence yFinyAylnY = FMPA0A1A2,3 = _jehMivab  The rest is obvious.

(d) :

i€ 5 [n,y)\

TP = s Y A

= L (v5alyrad = APyrglieg] g gPaplyrel g Rymrlye)
- ;1<47[A7u7u1 I O N T P CYN QV[WVAJ)

= @240 2Py = 4Pyl

(S.3)
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Proof by inspection: In the Weyl basis, the 16 matrices are

- 10 70:01 i 0‘—1—01
0 1/ 1 0/’ —ot 0 )’
k - g
o . 0 . —1i0 0
ligdl = ik [ 7 O S.4
1 = € , 1 = , )
Yy <0 0k> Yy (0 H.UZ) (5.4)

0 _ 0 —1 St _ 0 —o 5 1 0
+1 0 )’ ot 0 )’ 0 +1]/°

and their linear independence is self-evident. Since there are only 16 independent 4 x 4 matrices

altogether, any such matrix I' is a linear combination of the matrices (S.4). Q.£.D.

Algebraic Proof: Without making any assumption about the matrix form of the v operators,
let us consider the Clifford algebra v#v" + A¥~y#* = 2¢g*”. Because of these anticommutation
relations, one may re-order any product of the 7’s as £ A9yl .. 4142, 424343 and
then further simplify it to £(7° or 1) x (7! or 1) x (2 or 1) x (73 or 1). The net result is (up
to a sign or =i factor) one of the 16 operators 1, y#, iylHty¥l, —iyAyar] = eMVPyPy, (cf. (d)) or
iyl Ayl = ghduv~b (cf. (¢)). Consequently, any operator I' algebraically constructed of the

v#’s is a linear combination of these 16 operators.

Incidentally, the algebraic argument explains why the 7* (and hence all their products)
should be realized as 4 x 4 matrices since any lesser matrix size would not accommodate 16
independent products. That is, the 7’s are 4 x 4 matrices in four spacetime dimensions; different
dimensions call for different matrix sizes. Specifically, in spacetimes of even dimensions d, there
are 2¢ independent products of the ~ operators, so we need matrices of size 24/2 % 24/2; 9 % 2 in
two dimensions, 4 x 4 in four, 8 x 8 in six, 16 X 16 in eight, 32 x 32 in ten, etc.,etc..

9d—1 d—1

In odd dimensions, there are only independent operators because 741! = ()0t -y

— the analogue of the 7 operator in 4d — commutes rather than anticommutes with all the

~v#* and hence with the whole algebra. Consequently, one has two distinct representations of

d+1 d+1

the Clifford algebra — one with ~ = +1 and one with ~ = —1 — but in each repre-

sentation there are only 29! independent operator products, which call for the matrix size of

2(d=1)/2 5 9(d=1)/2  For example, in three spacetime dimensions (two space, one time), can take

(0,91, 42) = (03,01, i02) for ¥4 = i%9192 = +1 or (10, 91,4?) = (03,101, —ioy) for 4 = —1,



but in both cases we have 2 x 2 matrices. Likewise, we have 4 x 4 matrices in five dimensions,

8 x 8in 7D, 16 x 16 in 9D, 32 x 32 in 11D, etc., etc.



a) The field operator ¢(z,t) must satisfy antiperiodic boundary conditimt
¢(‘T + Lvt) = _¢(Ia t) = eiﬂ'(b(za t)

suggesting that all modes must have wavenumbers of the form

kn = %(2n+ 1) |problem 4)
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for some integer n. Thus, we have a mode expansion
ow,t) = 3 [eM O Nalk,) + e~ Hal (k)]
b) The Green’s function is given by
/ dk dw e—iwAteikAa:
(2m)2 k2 —w?
) dk dw ei(wATJrkA:c)
N / (27r2) k2 + w?

dov —ak2+zkAw d_we—aw2+iwAT
2w

Z/OO d_ae—4 [(AT2)+(A0)?]
0

GF(I7I/) =

4o

g
— / AU _ufar?) (a0
0

47

I got the second line by Wick rotating (Peskin and Shroeder, p. 193 or Srednicki,
p. 216) and the line after that by using the identity

1 oo
EZ/O dae B

The integral on the last line is formally divergent, but note that

o0 d o0
_i _ae*aB — / do efozB
oB J, « 0

in order to recover

Gr(z, o) = _ﬁ In [(A7)? + (Az)?]
= —i In|z — 2|
21

after Wick rotating things back.

c) Start with

(knz—wt)

dw €'(
(z,2) Z/Qw k2 —w?
d?k etk

o Z/ dk dw 6 Mrmeika

= Z 1)"Gr(z +mL,z’)




using the Poisson sum formula on the third line.

d) The Lagrangian for the theory is

1
L= —3 L, POH @
with canonical momentum II = g—g so the Hamiltonian is

. 1.. 1
_ Lo L9
H=I¢p—- L= 2¢) +2¢)$

e) The point-splitting Hamiltonian is

He= 00+ 60) + 56a(0, 00 +6.1)

e}
1
(O|He(z,1)]0) = —5(88 — 65)6'1:(96,96 +e€)
In flat space, this is simply
11

21 €2

and in the box it is
oo

11 1
@ R lp

As expected, both Hamiltonians diverge in the ¢ — 0 limit.
e) Subtracting the flat Hamiltonian from the box Hamiltonian eliminates the e
dependence, leaving a difference of

e (-D)" 1 1 1\ o
‘;;<nL)2—m(§m‘2zw>—ﬁ

n=1




The Lagrangian is )
srans |Droblem 5) solution

(iy"01p — maptp — im/hys1))

L=

DN | =

a) We perform a chiral transformation
b — ey
1; _ wTe—iavs,yO _ &eiocvs

where we can anti-commute every power of 5 in the exponential past the 7o in
the definition of 1. Then the derivative term in the Lagrangian becomes

1/76“”57“8#6“751/) _ 1/;’}/“8#671-0‘75 em'“w _ 1/;7#3”/}
b) Transforming the mass terms gives
m,(/;e%oc'yg,w 4 im/,@[;e%a'yg, 75,[#

Fortunately, we can use (75)? = 1 to simplify the exponential.

= cos 2a + 775 sin 2«

ioms N [ (2i0)’n (2ic)?n+1
¢ _Z[ Cn) P 2n 1)

n=0

so the sum of the mass terms is

W [(m cos 2 — m’ sin 2a) + iy5 (m/ cos 2a + msin 2a) |4
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Rotating the chiral mass term away requires finding a value of alpha such that
m’ cos2a +msin2a = 0

which is satisfied by

m/
— = —tan2«
m

so the new mass is given by

A /m2 +m/2





