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Overview
The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.

— Sidney Coleman

I am leaving the course notes here, not so much for the notes themselves –they
cannot be understood on their own, without the (unrecorded) live lectures– but for the
hyperlinks to various source texts you might find useful later on in your research.

We change the topics covered year to year, in hope that they reflect better what a
graduate student needs to know. This year’s experiment are the two weeks dedicated
to data analysis. Let me know whether you would have preferred the more traditional
math methods fare, like Bessels and such.

If you have taken this course live, you might have noticed a pattern: Every week
we start with something obvious that you already know, let mathematics lead us on,
and then suddenly end up someplace surprising and highly non-intuitive.

And indeed, in the last lecture (that never took place), we turn Coleman on his head,
and abandon harmonic potential for the inverted harmonic potential, “spatiotemporal
cats” and chaos, arXiv:1912.02940.

http://arXiv.org/abs/1912.02940
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mathematical methods - week 1

Linear algebra

Georgia Tech PHYS-6124
Homework HW #1 due Monday, August 26, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 1.1 Trace-log of a matrix 4 points
Exercise 1.2 Stability, diagonal case 2 points
Exercise 1.3 Time-ordered exponentials 4 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 9, 2019
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek1.tex
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Week 1 syllabus Monday, August 19, 2019

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

• Sect. 1.2 Matrix-valued functions
Grigoriev notes pages 6.1, 6.2 (skip 1. Mechanics inertia tensor), 6.4, 6.5 up to
“right and left eigenvectors.”

• sect. 1.3 A linear diversion
There are two representations of exponential of constant matrix, the Taylor series
and the compound interest (Euler product) formulas (1.23). If the matrix (for
example, the Hamiltonian) changes with time, the exponential has to be time-
ordered. The Taylor series generalizes to the nested integrals formula (1.50),
and the Euler product to time-ordered product (1.24). The first is used in for-
mal quantum-mechanical calculations, the second in practical, numerical calcu-
lations.

• sect. 1.4 Eigenvalues and eigenvectors
Hamilton-Cayley equation, projection operators (1.34), any matrix function is
evaluated by spectral decomposition (1.37). Work through example 1.3.

• Optional reading: Stone & Goldbart Appendix A; Arfken & Weber [1] (click
here) Chapter 3

• Feel free to add your topics suggestions at any time: suggestions by students
and faculty.

• you got a new idea?

Question 1.1. Henriette Roux find course notes confusing
Q Couldn’t you use one single, definitive text for methods taught in the course?
A It’s a grad school, so it is research focused - I myself am (re)learning the topics that we are
going through the course, using various sources. My emphasis in this course is on understanding
and meaning, not on getting all signs and 2π’s right, and I find reading about the topic from
several perspectives helpful. But if you really find one book more comfortable, nearly all topics
are covered in Arfken & Weber [1].

1.1 Literature
The subject of linear algebra generates innumerable tomes of its own, and is way be-
yond what we can exhaustively cover. We have added to the course homepage linear
operators and matrices reading: Stone and Goldbart [9], Mathematics for Physics: A
Guided Tour for Graduate Students, Appendix A. This is an advanced summary where
you will find almost everything one needs to know. More pedestrian and perhaps easier
to read is Arfken and Weber [1] (click here) Mathematical Methods for Physicists: A
Comprehensive Guide.

https://www.prairiehome.org/story/2003/11/29/guy-noir.html
http://www.chaosbook.org/~predrag/courses/PHYS-6124-19/ln6.pdf
http://www.chaosbook.org/~predrag/courses/PHYS-6124-19/StGoAppA.pdf
http://ChaosBook.org/library/ArWe05chap3.pdf
http://ChaosBook.org/library/ArWe05chap3.pdf
http://groups.google.com/group/gt-chaos-course/topics
http://groups.google.com/group/gt-chaos-course/topics
http://dfa.upc.es/websfa/fluids/alvar/html/scimax.html
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/schedule.html
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/StGoAppA.pdf
http://ChaosBook.org/library/ArWe05chap3.pdf
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1.2 Matrix-valued functions

What is a matrix?
—Werner Heisenberg (1925)

What is the matrix?
—-Keanu Reeves (1999)

Why should a working physicist care about linear algebra? Physicists were bliss-
fully ignorant of group theory until 1920’s, but with Heisenberg’s sojourn in Helgoland,
everything changed. Quantum Mechanics was formulated as

φ(t) = Û tφ(0) , Û t = e−
i
~ tĤ , (1.1)

where φ(t) is the quantum wave function t, Û t is the unitary quantum evolution opera-
tor, and Ĥ is the Hamiltonian operator. Fine, but what does this equation mean? In the
first lecture we deconstruct it, make Û t computationally explicit as a the time-ordered
product (1.25).

The matrices that have to be evaluated are very high-dimensional, in principle in-
finite dimensional, and the numerical challenges can quickly get out of hand. What
made it possible to solve these equations analytically in 1920’s for a few iconic prob-
lems, such as the hydrogen atom, are the symmetries, or in other words group theory,
a subject of another course, our group theory course.

Whenever you are confused about an “operator”, think “matrix”. Here we recapit-
ulate a few matrix algebra concepts that we found essential. The punch line is (1.40):
Hamilton-Cayley equation

∏
(M− λi1) = 0 associates with each distinct root λi of a

matrix M a projection onto ith vector subspace

Pi =
∏
j 6=i

M− λj1
λi − λj

.

What follows - for this week - is a jumble of Predrag’s notes. If you understand the
examples, we are on the roll. If not, ask :)

How are we to think of the quantum operator (1.1)

Ĥ = T̂ + V̂ , T̂ = p̂2/2m, V̂ = V (q̂) , (1.2)

corresponding to a classical Hamiltonian H = T + V , where T is kinetic energy, and
V is the potential?

Expressed in terms of basis functions, the quantum evolution operator is an infinite-
dimensional matrix; if we happen to know the eigenbasis of the Hamiltonian, the prob-
lem is solved already. In real life we have to guess that some complete basis set is
good starting point for solving the problem, and go from there. In practice we truncate
such operator representations to finite-dimensional matrices, so it pays to recapitulate
a few relevant facts about matrix algebra and some of the properties of functions of
finite-dimensional matrices.

http://birdtracks.eu/courses/PHYS-7143-19/schedule.html


10 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

Matrix derivatives. The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′ij(x) =

d

dx
Aij(x) . (1.3)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB

dx
. (1.4)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (1.5)

The derivative of the inverse of a matrix, follows from d
dx (AA−1) = 0:

d

dx
A−1 = − 1

A

dA

dx

1

A
. (1.6)

Matrix functions. A function of a single variable that can be expressed in terms of
additions and multiplications generalizes to a matrix-valued function by replacing the
variable by the matrix.

In particular, the exponential of a constant matrix can be defined either by its series
expansion, or as a limit of an infinite product:

eA =
∞∑
k=0

1

k!
Ak , A0 = 1 (1.7)

= lim
N→∞

(
1 +

1

N
A

)N
(1.8)

The first equation follows from the second one by the binomial theorem, so these in-
deed are equivalent definitions. That the terms of order O(N−2) or smaller do not
matter follows from the bound(

1 +
x− ε
N

)N
<

(
1 +

x+ δxN
N

)N
<

(
1 +

x+ ε

N

)N
,

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not contribute. A
proof for matrices would probably require defining the norm of a matrix (and, more
generally, a norm of an operator acting on a Banach space) first. If you know an easy
proof, let us know.

Logarithm of a matrix. The logarithm of a matrix is defined by the power series

ln(1−A) = −
∞∑
k=1

Ak

k
. (1.9)
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log det = tr log matrix identity. Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))
N
.

To the leading order in 1/N

det (1 + A/N) = 1 +
1

N
trA +O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1

N
trA +O(N−2)

)N
= lim
N→∞

(
1 +

trA
N

)N
= etrA (1.10)

Defining M = eA we can write this as

ln detM = tr lnM , (1.11)

a crazy useful identity that you will run into over and over again.

Functions of several matrices. Due to non-commutativity of matrices, generaliza-
tion of a function of several variables to a function is not as straightforward. Expres-
sion involving several matrices depend on their commutation relations. For example,
the commutator expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (1.12)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger pic-
tures of quantum mechanics follows by recursive evaluation of t derivatives

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Expanding exp(A + B), expA, expB to first few orders using (1.7) yields

e(A+B)/N = eA/NeB/N − 1

2N2
[A,B] +O(N−3) , (1.13)

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(1.14)

In particular, we can now make sense of the quantum evolution operator (1.1) as a
succession of short free flights (kinetic term) interspersed by small acceleration kicks
(potential term),

e−itĤ = lim
N→∞

(
e−i∆t T̂ e−i∆t V̂

)N
, ∆t = t/N , (1.15)

where we have set ~ = 1.
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1.3 A linear diversion

(Notes based of ChaosBook.org/chapters/stability.pdf)

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are good for all times. The state
space for linear differential equations is M = Rd, and the equations of motion are
written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (1.16)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

How do we solve the linear differential equation (1.16)? If instead of a matrix
equation we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order to solve
the d-dimensional matrix case, it is helpful to rederive this solution by studying what
happens for a short time step δt. If time t = 0 coincides with position x(0), then

x(δt)− x(0)

δt
= λx(0) , (1.17)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1 +
t

m
λ

)m
x(0) ≈ etλx(0) . (1.18)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (1.17):

x(δt)− x(0)

δt
= Ax(0) . (1.19)

A representative point x is now a vector in Rd acted on by the matrix A, as in (1.16).
Denoting by 1 the identity matrix, and repeating the steps (1.17) and (1.18) we obtain
Euler’s formula for the exponential of a matrix:

x(t) = J tx(0) , J t = etA = lim
m→∞

(
1 +

t

m
A

)m
. (1.20)

We will find this definition for the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

http://ChaosBook.org/chapters/stability.pdf
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Now that we have some feeling for the qualitative behavior of a linear flow, we are
ready to return to the nonlinear case. Consider an infinitesimal perturbation of the
initial state, x0 + δx(x0, 0). How do we compute the exponential (1.20) that describes
linearized perturbation δx(x0, t)?

x(t) = f t(x0) , δx(x0, t) = J t(x0) δx(x0, 0) . (1.21)

The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integration step by step. The Jacobian matrix is
computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (1.22)

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit (1.20):

etA =
∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t

m
A

)m
. (1.23)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to J t is therefore given by a
generalization of the Euler product (1.23):

J t = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.24)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,

where δt = (t− t0)/m, and xn = x(t0 +nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→∞ limit of this procedure is the formal integral

J tij(x0) =
[
Te

∫ t
0
dτA(x(τ))

]
ij
, (1.25)

where T stands for time-ordered integration, defined as the continuum limit of the suc-
cessive multiplications (1.24). This integral formula for J t is the finite time companion

exercise 1.3
of the differential definition

J̇(t) = A(t)J(t), (1.26)

with the initial condition J(0) = 1. The definition makes evident important properties
of Jacobian matrices, such as their being multiplicative along the flow,

J t+t
′
(x) = J t

′
(x′) J t(x), where x′ = f t(x0) , (1.27)

which is an immediate consequence of the time-ordered product structure of (1.24).
However, in practice J is evaluated by integrating differential equation (1.26) along
with the ODEs (3.6) that define a particular flow.
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1.4 Eigenvalues and eigenvectors
10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.28)

Given a nonsingular matrix M, detM 6= 0, with all λi 6= 0, acting on d-dimensional
vectors x, we would like to determine eigenvectors e(i) of M on which M acts by
scalar multiplication by eigenvalue λi

Me(i) = λie
(i) . (1.29)

If λi 6= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values, which we assume have been computed by some method, and ordered by their
real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.30)

From (1.29) it follows that

(M− λi1) e(j) = (λj − λi) e(j) ,

matrix (M−λj1) annihilates e(j), the product of all such factors annihilates any vector,
and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.31)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.30) onto the corresponding
eigenspace: ∏

j 6=i

(M− λj1)x =
∏
j 6=i

(λi − λj)xie(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j 6=i

M− λj1
λi − λj

, (1.32)
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which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑
i=1

Pi = 1 , (1.33)

with the dimension of the ith subspace given by di = trPi . For each distinct eigenvalue
λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.34)

the colums/rows of Pi are the right/left eigenvectors e(k), e(k) of M which (provided
M is not of Jordan type, see example 1.1) span the corresponding linearized subspace.

The main take-home is that once the distinct non-zero eigenvalues {λi} are com-
puted, projection operators are polynomials in M which need no further diagonaliza-
tions or orthogonalizations. It follows from the characteristic equation (1.34) that λi is
the eigenvalue of M on Pi subspace:

MPi = λiPi (no sum on i) . (1.35)

Using M = M1 and completeness relation (1.33) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.36)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition

f(M) =
∑
i

f(λi)Pi . (1.37)

This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (1.34) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.33), they are mutually orthogonal,

e(i) · e(j) = c δji . (1.38)

The non-zero constant c is convention dependent and not worth fixing, unless you feel
nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is convenient
to collect all left and right eigenvectors into a single matrix.

Example 1.1. Degenerate eigenvalues. While for a matrix with generic real
elements all eigenvalues are distinct with probability 1, that is not true in presence of
symmetries, or spacial parameter values (bifurcation points). What can one say about
situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (1.31) now takes form

r∏
α=1

(M− λα1)dα = 0 ,
∑
α

dα = d . (1.39)

We distinguish two cases:



16 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

M can be brought to diagonal form. The characteristic equation (1.39) can be re-
placed by the minimal polynomial,

r∏
α=1

(M− λα1) = 0 , (1.40)

where the product includes each distinct eigenvalue only once. Matrix M acts multi-
plicatively

Me(α,k) = λie
(α,k) , (1.41)

on a dα-dimensional subspace spanned by a linearly independent set of basis eigen-
vectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case. Luckily, if the degeneracy is
due to a finite or compact symmetry group, relevant M matrices can always be brought
to such Hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy case,
so we only illustrate the key idea in example 1.2.

Example 1.2. Decomposition of 2-dimensional vector spaces: Enumeration of ev-
ery possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest
case, a general [2×2] non-singular matrix

M =

[
M11 M12

M21 M22

]
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1

2
trM± 1

2

√
(trM)2 − 4 detM (1.42)

are the roots of the characteristic (secular) equation (1.28):

det (M− λ1) = (λ1 − λ)(λ2 − λ)

= λ2 − trMλ+ detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M− λ21

λ1 − λ2
, P2 =

M− λ11

λ2 − λ1
, λ1 6= λ2 . (1.43)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case. (b) M can be brought to Jordan form,
with zeros everywhere except for the diagonal, and some 1’s directly above it; for a [2×2]
matrix the Jordan form is

M =

[
λ 1
0 λ

]
, e(1) =

[
1
0

]
, v(2) =

[
0
1

]
.
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v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector,
as Mv(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one
eigenvector per block. Noting that

Mm =

[
λm mλm−1

0 λm

]
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u

v

)
= etλ

(
u+ tv

v

)
(1.44)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent).

Example 1.3. Projection operator decomposition in 2 dimensions: Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix

M =

[
4 1
3 2

]
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (1.42):

det (M− λ1) = λ2 − 6λ+ 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:[

4 1
3 2

]2

− 6

[
4 1
3 2

]
+ 5

[
1 0
0 1

]
=

[
0 0
0 0

]
.

Associated with each root λi is the projection operator (1.43)

P1 =
1

4
(M− 1) =

1

4

[
3 1
3 1

]
(1.45)

P2 =
1

4
(M− 5 · 1) =

1

4

[
1 −1
−3 3

]
. (1.46)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = trPi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation MPi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

[
58591 19531
58593 19529

]
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
[
1
1

]
,

[
1
−3

]
}

{e(1), e(2)} = {
[
3
1

]
,

[
1
−1

]
} ,
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with overall scale arbitrary. The matrix is not symmetric, so {e(j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e(j) · e(k), however, are orthogonal
as in (1.38), by inspection. (Continued in example 2.2.)

Example 1.4. Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp


λ1t

λ2t

. . .
λdt

 =


eλ1t

eλ2t

. . .
eλdt

 .

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor se-
ries for ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

[
λ 0
0 µ

]
, B =

[
λ 1
0 λ

]
, B =

[
µ −ω
ω µ

]
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

[
eλt 0
0 eµt

]
, eBt = eλt

[
1 t
0 1

]
, eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to
one of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

1.4.1 Yes, but how do you really do it?
As M has only real entries, it will in general have either real eigenvalues (over-damped
oscillator, for example), or complex conjugate pairs of eigenvalues (under-damped os-
cillator, for example). That is not surprising, but also the corresponding eigenvectors
can be either real or complex. All coordinates used in defining the flow are real num-
bers, so what is the meaning of a complex eigenvector?

If two eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω},
they are in a sense degenerate: while a real λk characterizes a motion along a line, a
complex λk characterizes a spiralling motion in a plane. We determine this plane by
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replacing the corresponding complex eigenvectors by their real and imaginary parts,
{e(k), e(k+1)} → {Re e(k), Im e(k)}, or, in terms of projection operators:

Pk =
1

2
(R+ iQ) , Pk+1 = P ∗k ,

where R = Pk + Pk+1 is the subspace decomposed by the kth complex eigenvalue
pair, and Q = (Pk − Pk+1)/i, both matrices with real elements. Substitution[

Pk
Pk+1

]
=

1

2

[
1 i
1 −i

] [
R
Q

]
,

suggest introduction of a detU = 1, special unitary matrix

U =
eiπ/2√

2

[
1 i
1 −i

]
(1.47)

which brings the λkPk + λk+1Pk+1 complex eigenvalue pair in the spectral decompo-
sition into the real form,

U>
[
µ+ iω 0

0 µ− iω

]
U =

[
µ −ω
ω µ

]
.

[Pk, Pk+1]

[
λ 0
0 λ∗

] [
Pk
Pk+1

]
= [R,Q]

[
µ −ω
ω µ

] [
R
Q

]
, (1.48)

where we have dropped the superscript (k) for notational brevity.
To summarize, spectrally decomposed matrix M acts along lines on subspaces cor-

responding to real eigenvalues, and as a [2×2] rotation in a plane on subspaces corre-
sponding to complex eigenvalue pairs.

Commentary
Remark 1.1. Projection operators. The construction of projection operators given in
sect. 1.4.1 is taken from refs. [2, 3]. Who wrote this down first we do not know, lineage cer-
tainly goes all the way back to Lagrange polynomials [8], but projection operators tend to get
drowned in sea of algebraic details. Arfken and Weber [1] ascribe spectral decomposition (1.37)
to Sylvester. Halmos [4] is a good early reference - but we like Harter’s exposition [5–7] best,
for its multitude of specific examples and physical illustrations. In particular, by the time we
get to (1.34) we have tacitly assumed full diagonalizability of matrix M. That is the case for
the compact groups we will study here (they are all subgroups of U(n)) but not necessarily in
other applications. A bit of what happens then (nilpotent blocks) is touched upon in example 1.2.
Harter in his lecture Harter’s lecture 5 (starts about min. 31 into the lecture) explains this in great
detail - its well worth your time.
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Exercises

1.1. Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary nonsingular finite dimensional matrix M , detM 6= 0.

1.2. Stability, diagonal case. Verify that for a diagonalizable matrix A the exponential is
also diagonalizable

Jt = etA = U−1etADU , AD = UAU−1 . (1.49)

1.3. Time-ordered exponentials. Given a time dependent matrix A(t), show that the time-
ordered exponential

J(t) = Te
∫ t
0 dτA(τ)

may be written as

J(t) = 1 +

∞∑
m=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtmA(t1)A(t2) · · ·A(tm) . (1.50)

http://dx.doi.org/10.1103/PhysRevD.14.1536
http://dx.doi.org/10.1103/PhysRevD.14.1536
https://doi.org/10.1103/PhysRevD.14.1536
http://birdtracks.eu/refs/OxfordPrepr.pdf
http://books.google.com/books?vid=ISBN9780691090955
http://dx.doi.org/10.1063/1.1664901
https://doi.org/10.1063/1.1664901
https://doi.org/10.1063/1.1664901
http://www.uark.edu/ua/modphys/markup/PSDS_Info.html
http://dx.doi.org/10.1119/1.11134
http://dx.doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
http://dx.doi.org/10.2307/3617032
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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(Hint: for a warmup, consider summing elements of a finite-dimensional symmetric ma-
trix S = S>. Use the symmetry to sum over each matrix element once; (1.50) is a con-
tinuous limit generalization, for an object symmetric in m variables. If you find this hint
confusing, ignore it:) Verify, by using this representation, that J(t) satisfies the equation

J̇(t) = A(t)J(t),

with the initial condition J(0) = 1.

1.4. Real representation of complex eigenvalues. (Verification of example 3.2.) λk, λk+1

eigenvalues form a complex conjugate pair, {λk, λk+1} = {µ+ iω, µ− iω}. Show that

(a) corresponding projection operators are complex conjugates of each other,

P = Pk , P ∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1

2
(R+ iQ) ,

where R = Pk + Pk+1 and Q are matrices with real elements.

(c) [
Pk
Pk+1

]
=

1

2

[
1 i
1 −i

] [
R
Q

]
.

(d) The · · · + λkPk + λ∗kPk+1 + · · · complex eigenvalue pair in the spectral decom-
position (1.36) is now replaced by a real [2×2] matrix

· · · +

[
µ −ω
ω µ

] [
R
Q

]
+ · · ·

or whatever you find the clearest way to write this real representation.
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Eigenvalue problems

Georgia Tech PHYS-6124
Homework HW #2 due Wednesday, September 4, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 2.1 Three masses on a loop 8 points

Bonus points
Exercise 2.2 A simple stable/unstable manifolds pair 4 points

edited September 9, 2019
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Week 2 syllabus Monday, August 26, 2019

• Intro to normal modes: example 2.1 Vibrations of a classical CO2 molecule

• Work through Grigoriev notes 8 Normal modes

• Linear stability : example 2.2 Stable/unstable manifolds

• Optional reading: Stone & Goldbart Appendix A; Arfken & Weber Arfken and
Weber [1] (click here) Chapter 3

• Optional: Work through Grigoriev notes p. 6.6 crankshaft;

The big idea of this is week is symmetry: If our physical problem is defined by a (per-
haps complicated) Hamiltonian H, another matrix M (hopefully a very simple matrix)
is a symmetry if it commutes with the Hamiltonian

[M,H] = 0 . (2.1)

Than we can use the spectral decomposition (1.37) of M to block-diagonalize H into
a sum of lower-dimensional sub-matrices,

H =
∑
i

Hi , Hi = PiHPi , (2.2)

and thus significantly simplify the computation of eigenvalues and eigenvectors of H,
the matrix of physical interest.

2.1 Normal modes
Example 2.1. Vibrations of a classical CO2 molecule: Consider one carbon and
two oxygens constrained to the x-axis [1] and joined by springs of stiffness k, as shown
in figure 2.1. Newton’s second law says

ẍ1 = − k

M
(x1 − x2)

ẍ2 = − k

m
(x2 − x3)− k

m
(x2 − x1)

ẍ3 = − k

M
(x3 − x2) . (2.3)

The normal modes, with time dependence xj(t) = xj exp(itω) , are the common fre-
quency ω vibrations that satisfy (2.3),

Hx =

 A −A 0
−a 2 a −a
0 −A A

x1

x2

x3

 = ω2

x1

x2

x3

 , (2.4)

where a = k/m, A = k/M . Secular determinant det (H− ω21) = 0 now yields a cubic
equation for ω2.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln8.pdf
http://www.chaosbook.org/~predrag/courses/PHYS-6124-19/StGoAppA.pdf
http://ChaosBook.org/library/ArWe05chap3.pdf
http://chaosbook.org/~predrag/courses/PHYS-6124-19/ln6.pdf
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M  Mm

Figure 2.1: A classical colinear CO2 molecule [1].

You might be tempted to stick this [3×3] matrix into Mathematica or whatever, but
please do that in some other course. What would understood by staring at the output?
In this course we think.

First thing to always ask yourself is: does the system have a symmetry? Yes! Note
that the CO2 molecule (2.3) of figure 2.1 is invariant under x1 ↔ x3 interchange, i.e.,
coordinate relabeling by matrix σ that commutes with our law of motion H,

σ =

0 0 1
0 1 0
1 0 0

 , σH = Hσ =

 0 −A A
−a 2 a −a
A −A 0

 . (2.5)

We can now use the symmetry operator σ to simplify the calculation. As σ2 =
1, its eigenvalues are ±1, and the corresponding symmetrization, anti-symmetrization
projection operators (1.43) are

P+ =
1

2
(1 + σ) , P− =

1

2
(1− σ) . (2.6)

The dimensions di = trPi of the two subspaces are

d+ = 2 , d− = 1 . (2.7)

As σ and H commute, we can now use spectral decomposition (1.37) to block-diagonalize
H to a 1-dimensional and a 2-dimensional matrix.

On the 1-dimensional antisymmetric subspace, the trace of a [1×1] matrix equals
its sole matrix element equals it eigenvalue

λ− = HP− =
1

2
(trH− trHσ) = (a+A)− a =

k

M
,

so the corresponding eigenfrequency is ω2
− = k/M . To understand its physical mean-

ing, write out the antisymmetric subspace projection operator (2.7) explicitly. Its non-
vanishing columns are proportional to the sole eigenvector

P− =
1

2

 1 0 −1
0 0 0
−1 0 1

 ⇒ e(−) =

 1
0
−1

 . (2.8)

In this subspace the outer oxygens are moving in opposite directions, with the carbon
stationary.

On the 2-dimensional symmetric subspace, the trace yields the sum of the remain-
ing two eigenvalues

λ+ + λ0 = trHP+ =
1

2
(trH + trHσ) = (a+A) + a =

k

M
+ 2

k

m
.
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We could disentangle the two eigenfrequencies by evaluating trH2P+, for example, but
thinking helps again.

There is still another, translational symmetry, so obvious that we forgot it; if we
change the origin of the x-axis, the three coordinates xj → xj − δx change, for any
continuous translation δx, but the equations of motion (2.3) do not change their form,

Hx = Hx + H δx = ω2x ⇒ H δx = 0 . (2.9)

So any translation e(0) = δx = (δx, δx, δx) is a nul, ‘zero mode’ eigenvector of H
in (2.5), with eigenvalue λ0 = ω2

0 = 0, and thus the remaining eigenfrequency is
ω2

+ = k/M + 2 k/m. As we can add any nul eigenvector e(0) to the corresponding
e(+) eigenvector, there is some freedom in choosing e(+). One visualization of the cor-
responding eigenvector is the carbon moving opposite to the two oxygens, with total
momentum set to zero.

2.2 Stable/unstable manifolds

Figure 2.2: The stable/unstable manifolds of
the equilibrium (xq, xq) = (0, 0) of 2-dimen-
sional flow (2.10).

y

x

Example 2.2. A simple stable/unstable manifolds pair: Consider the 2-dimen-
sional ODE system

dx

dt
= −x, dy

dt
= y + x2 , (2.10)

The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e
−t, y(t) = (y0 + x2

0/3) et − x2
0 e
−2t/3 . (2.11)

Linear stability of the flow is described by the stability matrix

A =

(
−1 0
2x 1

)
. (2.12)

The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 =
−1, and area preserving. The right eigenvectors at the point (x, y)

e(1) =

(
0
1

)
, e(2) =

(
1
−x

)
. (2.13)

can be obtained by acting with the projection operators (see example 1.2 Decomposition
of 2-dimensional vector spaces)

Pi =
A− λj1
λi − λj

: P1 =

[
0 0
x 1

]
, P2 =

[
1 0
−x 0

]
(2.14)
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Figure 2.3: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.

on an arbitrary vector. Matrices Pi are orthonormal and complete.
The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0), with eigenvalues

(stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1), e(2) = (1, 0). The
unstable manifold is the y axis, and the stable manifold is given by (see figure 2.2)

y0 +
1

3
x2

0 = 0⇒ y(t) +
1

3
x(t)2 = 0 . (2.15)

(N. Lebovitz)

References
[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-

hensive Guide, 6th ed. (Academic, New York, 2005).

Exercises
2.1. Three masses on a loop. Three identical masses, connected by three identical springs,

are constrained to move on a circle hoop as shown in figure 2.3. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (Kimberly Y. Short)

2.2. A simple stable/unstable manifolds pair. Integrate flow (2.10), verify (2.11).
Check that the projection matrices Pi (2.14) are orthonormal and complete. Use them to
construct right and left eigenvectors; check that they are mutually orthogonal. Explain
why is (2.15) the equation for the stable manifold. (N. Lebovitz)

http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762
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Go with the flow

Georgia Tech PHYS-6124
Homework HW #3 due Monday, September 9, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Exercise 3.1 Rotations in a plane 4 points
Exercise 3.2 Visualizing 2-dimensional linear flows 6 points

Bonus points
Exercise 3.3 Visualizing Duffing flow 3 points
Exercise 3.4 Visualizing Lorenz flow 2 points
Exercise 3.5 A limit cycle with analytic Floquet exponent 6 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 4, 2019
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Week 3 syllabus Wednesday, September 4, 2019

• Sect. 3.1 Linear flows

• Sect. 3.2 Stability of linear flows

• Optional reading: Sect. 3.3 Nonlinear flows

• Sect. 3.4 Optional listening

Typical ordinary differential equations course spends most of time teaching you how
to solve linear equations, and for those our spectral decompositions are very instruc-
tive. Nonlinear differential equations (as well as the differential geometry) are much
harder, but still (as we already discussed in sect. 1.3), linearizations of flows are a very
powerful tool.

3.1 Linear flows
Linear is good, nonlinear is bad.

—Jean Bellissard

(Notes based of ChaosBook.org/chapters/flows.pdf)

A dynamical system is defined by specifying a state space M, and a law of motion,
typically an ordinary differential equation (ODE), first order in time,

ẋ = v(x) . (3.1)

The vector field v(x) can be any nonlinear function of x, so it pays to start with a
simple example. Linear dynamical system is the simplest example, described by linear
differential equations which can be solved explicitly, with solutions that are good for all
times. The state space for linear differential equations isM = Rd, and the equations
of motion are written in terms of a state space point x and a constant A as

ẋ = Ax . (3.2)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

Solution of (3.2) is given by the exponential of a constant matrix

x(t) = J t x0 , (3.3)

http://ChaosBook.org/chapters/flows.pdf
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usually defined by its series expansion (1.7):

J t = etA =
∞∑
k=0

tk

k!
Ak , A0 = 1 , (3.4)

and that is why we started the course by defining functions of matrices, and in par-
ticular the matrix exponential. As we discuss next, that means that depending on the
eigenvalues of the matrix A, solutions of linear ordinary differential equations are ei-
ther growing or shrinking exponentially (over-damped oscillators; cosh’s, sinh’s), or
oscillating (under-damped oscillators; cos’s, sin’s).

3.2 Stability of linear flows
The system of linear equations of variations for the displacement of the infinitesimally
close neighbor x + δx follows from the flow equations (3.2) by Taylor expanding to
linear order

ẋi + ˙δxi = vi(x+ δx) ≈ vi(x) +
∑
j

∂vi
∂xj

δxj .

The infinitesimal deviation vector δx is thus transported along the trajectory x(x0, t),
with time variation given by

d

dt
δxi(x0, t) =

∑
j

∂vi
∂xj

(x)

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (3.5)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (3.6)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining the
d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dimensional
state spaceM⊂ Rd. The stability matrix or velocity gradients matrix

Aij(x) =
∂

∂xj
vi(x) (3.7)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of x(t)
by the flow. In case at hand, the linear flow (3.2), with v(x) = Ax, the stability matrix

Aij(x) =
∂

∂xj
vi(x) = Aij (3.8)

is a space- and time-independent constant matrix.

http://youtube.com/embed/Lf3-atjcEhs
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Consider an infinitesimal perturbation of the initial state, x0 +δx. The perturbation
δx(x0, t) evolves as x(t) itself, so

δx(t) = J t δx(0) . (3.9)

The equations are linear, so we can integrate them. In general, the Jacobian matrix J t

is computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj , (3.10)

but for linear ODEs everything is known once eigenvalues and eigenvectors of A are
known.

Example 3.1. Linear stability of 2-dimensional flows: For a 2-dimensional flow
the eigenvalues λ1, λ2 of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp(tλj), or form a complex conjugate pair λ1 = µ + iω , λ2 =
µ− iω , leading to a circular or spiral motion in the [x1, x2] plane, see example 3.2.

Figure 3.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2

contracts exponentially. This behavior, called a saddle, is sketched in figure 3.1, as are
the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0; whereas, the phase velocity ω controls its oscillations.

If eigenvalues λ1 = λ2 = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.1. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[dα×dα] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 3.1 and 3.2.

Example 3.2. Complex eigenvalues: in-out spirals. As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
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Figure 3.2: Qualitatively distinct types of exponents {λ1, λ2} of a [2×2] Jacobian
matrix.

in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → A, the block A is
a sum of the rescaling×identity and the generator of rotations in the {Re e(1), Im e(1)}
plane.

A =

[
µ −ω
ω µ

]
= µ

[
1 0
0 1

]
+ ω

[
0 −1
1 0

]
. (3.11)

Trajectories of ẋ = Ax, given by x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-
directions)

Jt = etA = etµ
[

cos ωt − sin ωt
sin ωt cos ωt

]
, (3.12)

spiral in/out around (x, y) = (0, 0), see figure 3.1, with the rotation period T and the
radial expansion /contraction multiplier along the e(j) eigen-direction per a turn of the
spiral:

exercise 3.1
T = 2π/ω , Λradial = eTµ . (3.13)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).

3.3 Nonlinear flows
While linear flows are prettily analyzed in terms of defining matrices and their eigen-
modes, understanding nonlinear flows requires many tricks and insights. These days,
we start by integrating them, by any numerical code you feel comfortable with: Matlab,
Python, Mathematica, Julia, c++, whatever.

We have already made a foray into nonlinearity in example 2.2 A simple stable/un-
stable manifolds pair, but that was a bit of a cheat - it is really an example of a non-
autonomous flow in variable y(t), driven by external forcing by x(t). Duffing flow of
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(a) (b)

Figure 3.3: (a) The 2-dimensional vector field for the Duffing system (3.14), together
with a short trajectory segment. (b) The flow lines. Each ‘comet’ represents the same
time interval of a trajectory, starting at the tail and ending at the head. The longer the
comet, the faster the flow in that region. (From ChaosBook [1])

example 3.3 is a typical 2-dimensional flow, with a ‘nonlinear oscialltor’ limit cycle.
Real fun only starts in 3 dimensions, with example 3.4 Lorenz strange attractor.

For purposes of this course, it would be good if you coded the next two examples,
and just played with their visualizations, without further analysis (that would take us
into altogether different ChaosBook.org/course1).

Example 3.3. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t)− x(t)3 (3.14)

plotted in figure 3.3. The 2-dimensional velocity vectors v(x) = (ẋ, ẏ) are drawn super-
imposed over the configuration coordinates (x, y) of state spaceM.

Figure 3.4: Lorenz “butterfly” strange attractor.
(From ChaosBook [1])
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Example 3.4. Lorenz strange attractor. Lorenz equation

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (3.15)

http://ChaosBook.org/course1
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has played a key role in the history of ‘deterministic chaos’ for many reasons that you
can read about elsewhere [1]. All computations that follow will be performed for the
Lorenz parameter choice σ = 10, b = 8/3, ρ = 28 . For these parameter values the
long-time dynamics is confined to the strange attractor depicted in figure 3.4.

3.4 Optional listening
If you do not know Emmy Noether, one of the great mathematicians of the 20th cen-
tury, the time to make up for that is now. All symmetries we will use in this course
are for kindergartners: flips, slides and turns. Noether, however, found a profound
connections between these and invariants of our world - masses, charges, elementary
particles. Then the powerful plutocrats of Germany made a clown the Chancellor of
German Reich, because they could easily control him. They were wrong, and that’s
why you are not getting this lecture in German. Noether lost interest in physics and
went on to shape much of what is today called pure mathematics.

There are no doubt many online courses vastly better presented than this one - here
is a glimpse into our competition:
MIT 18.085 Computational Science and Engineering I .

References
[1] R. Mainieri, P. Cvitanović, and E. A. Spiegel, “Go with the flow”, in Chaos:

Classical and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G.
Tanner, and G. Vattay (Niels Bohr Inst., Copenhagen, 2019).

Exercises
3.1. Rotations in a plane: In order to understand the role complex eigenvalues in exam-

ple 3.2 play, it is helpful to show by exponentiation Jt = exp(tA) =
∑∞
k=0 t

kAk/k!
with pure imaginary A in (3.11), that

A = ω

(
0 −1
1 0

)
,

generates a rotation in the {Re e(1), Im e(1)} plane,

Jt = eAt = cosωt

(
1 0
0 1

)
+ sinωt

(
0 −1
1 0

)
=

(
cosωt − sinωt
sinωt cosωt

)
. (3.16)

https://photos.app.goo.gl/2cWxT6j4kRLytrCQ8
https://www.bbc.co.uk/programmes/m00025bw
https://www.youtube.com/watch?v=A5u6J8WugyU
http://www.youtube.com/watch?v=0oBJN8F616U
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
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3.2. Visualizing 2-dimensional linear flows. Either use any integration routine to inte-
grate numerically, or plot the analytic solution of the linear flow (3.2) for all examples of
qualitatively different eigenvalue pairs of figure 3.2. As noted in (1.42), the eigenvalues

λ1,2 =
1

2
trA± 1

2

√
(trA)2 − 4 detA

depend only on trA and detA, so you can get two examples by choosing any A such
that trA = 0 (symplectic or Hamiltonian flow), vary detA. For other examples choose
A such that detA = 1, vary trA. Do your plots capture the qualitative features of the
examples of figure 3.1?

3.3. Visualizing Duffing flow. Use any integration routine to integrate numerically the
Duffing flow (3.14). Take a grid of initial points, integrate each for some short time δt.
Does your result look like the vector field of figure 3.3? What does a generic long-time
trajectory look like?

3.4. Visualizing Lorenz flow. Use any integration routine to integrate numerically the
Lorenz flow (3.15). Does your result look like the ‘strange attractor’ of figure 3.4?

3.5. A limit cycle with analytic Floquet exponent. There are only two examples of
nonlinear flows for which the Floquet multipliers can be evaluated analytically. Both are
cheats. One example is the 2-dimensional flow

q̇ = p+ q(1− q2 − p2)

ṗ = −q + p(1− q2 − p2) .

Determine all periodic solutions of this flow, and determine analytically their Floquet
exponents. Hint: go to polar coordinates (q, p) = (r cos θ, r sin θ). G. Bard Ermentrout
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Complex differentiation

Georgia Tech PHYS-6124
Homework HW #4 due Monday, September 16, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the exerWeek4.tex

Exercise 4.2 Complex arithmetic 10 (+3 bonus) points
Exercise 4.5 Circles and lines with complex numbers 3 points

Bonus points
Exercise 4.1 Complex arithmetic – principles 6 points

Total of 13 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 22, 2019
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Week 4 syllabus Monday, September 9, 2019

Complex variables; History; algebraic and geometric insights; De Moivre’s formula;
roots of unity; functions of complex variables as mappings; differentiation of complex
functions; Cauchy-Riemann conditions; analytic functions; Riemann surfaces; confor-
mal mappings.

Mon Goldbart pages 1/10 - 1/120

Wed Goldbart pages 1/130 - 1/140 (skipped: Riemann sphere)
Goldbart pages 1/200 - 1/260 (complex differentiation)

Fri Goldbart pages 1/270 - 1/340

Optional reading

• Grigoriev notes pages 2.1 - 2.3

• Stone and Goldbart [4] (click here) Chapter 17 sect. 17.1

• Arfken and Weber [2] (click here) Chapter 6 sects. 6.1 - 6.2,

• Ahlfors [1] (click here)

• Needham [3] (click here)

From now on, copyright-protected references are on a password protected site. What
password? Have your ears up in the class; the password will be posted on the Canvas
for a week or so, so remember to write it down.

Figure 4.1: A unit vector e multiplied by a real
number D traces out a circle of points in the
complex plane. Multiplication by the imaginary
unit i rotates a complex vector by 900, so De+
ite is a tangent to this circle, a line parametrized
by a real number t.

Question 4.1. Henriette Roux asks
Q You made us do exercise 4.5, but you did not cover this in class? I left it blank!
A Mhm. I told you that complex numbers can be understood as vectors in the complex plane,
vectors that can be added and multiplied by scalars. I told you that the multiplication by the
imaginary unit i rotates a complex vector by 900. I told you that in the polar representation,
complex numbers define circle parametrized by their argument (phase). For example, a line is
defined by its orientation e, and its shortest distance to the origin is along the vector De, of
length D, see figure 4.1.

The point of the exercise is that if you use your high school sin’s and cos’s, this simple
formula (and the other that have to do with circles) is a mess.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-cmplx.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln2.pdf
http://ChaosBook.org/library/StGoChap17.pdf
http://ChaosBook.org/library/ArWe05chap6.pdf
http://ChaosBook.org/library/Ahlfors53.pdf
http://ChaosBook.org/library/Needham97.pdf
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References
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[2] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-
hensive Guide, 6th ed. (Academic, New York, 2005).
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Students (Cambridge Univ. Press, Cambridge, 2009).

Exercises
4.1. Complex arithmetic – principles: (Ahlfors [1], pp. 1-3, 6-8)

(a) (bonus) Show that A+iB
C+iD

is a complex number provided that C2 +D2 6= 0. Show
that an efficient way to compute a quotient is to multiply numerator and denomina-
tor by the conjugate of the denominator. Apply this scheme to compute the quotient
A+iB
C+iD

.

(b) (bonus) By considering the equation (x + iy)2 = (A + iB) for real x, y, A and
B, compute the square root of A + iB explicitly for the case B 6= 0. Repeat
for the case B = 0. (To avoid confusion it is useful to adopt he convention that
square roots of positive numbers have real signs.) Observe that the square root of
any complex number exists and has two (in general complex) opposite values.

(c) (bonus) Show that z1 + z2 = z̄1 + z̄2 and that z1 z2 = z̄1 z̄2. Hence show
that z1/z2 = z̄1/z̄2. Note the more general result that for any rational opera-
tion R applied to the set of complex numbers z1, z2, . . . we have R(z1, z2, . . .) =
R(z̄1, z̄2, . . .). Hence, show that if ζ solves anzn + an−1z

n−1 + · · · + a0 = 0
then ζ̄ solves ānzn + ān−1z

n−1 + · · ·+ ā0 = 0.

(d) (bonus) Show that |z1 z2| = |z1| |z2|. Note that this extends to arbitrary finite
products |z1 z2 . . .| = |z1| |z2| . . .. Hence show that |z1/z2| = |z1|/|z2|. Show
that |z1 + z2|2 = |z1|2 + |z2|2 + 2Re z1 z̄2 and that |z1 − z2|2 = |z1|2 + |z2|2 −
2Re z1 z̄2.

4.2. Complex arithmetic. (Ahlfors [1], pp. 2-4, 6, 8, 9, 11)

(a) Find the values of

(
1 + 2i

)3
,

5

−3 + 4i
,

(
2 + i

3− 2i

)
,

(
1 + i

)N
+
(
1− i

)N
for N = 1, 2, 3, . . . .

(b) If z = x+ iy (with x and y real), find the real and imaginary parts of

z4,
1

z
,

z − 1

z + 1
,

1

z2
.

http://books.google.com/books?vid=ISBN9780070006577
http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780198534464
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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(c) Show that, for all combinations of signs,(
−1± i

√
3

2

)3

= 1,

(
±1± i

√
3

2

)6

= 1.

(d) By using their Cartesian representations, compute
√
i,
√
−i,
√

1 + i and
√

1−i
√

3
2

.

(e) By using the Cartesian representation, find the four values of 4
√
−1.

(f) By using their Cartesian representations, compute 4
√
i and 4

√
−i.

(g) Solve the following quadratic equation (with real A, B, C and D) for complex z:

z2 + (A+ iB)z + C + iD = 0.

(h) Show that the system of all matrices of the form[
A B
−B A

]
(with real A and B), when combined by matrix addition and matrix multiplication,
is isomorphic to the field of complex numbers.

(i) Verify by calculation that the values of z/
(
z2 + 1

)
for z = x+ iy and z = x− iy

are conjugate.

(j) Find the absolute values of

−2i
(
3 + i

)(
2 + 4i

)(
1 + i

)
,

(
3 + 4i

)(
− 1 + 2i

)(
− 1− i

)(
3− i

) .

(k) Prove that, for complex a and b, if either |a| = 1 or |b| = 1 then∣∣∣∣ a− b1− āb

∣∣∣∣ = 1.

What exception must be made if |a| = |b| = 1?

(l) Show that there are complex numbers z satisfying |z − a| + |z + a| = 2|c| if and
only if |a| ≤ |c|. If this condition is fulfilled, what are the smallest and largest
values of |z|?

(m) Prove the complex form of Lagrange’s identity, viz., for complex {aj , bj}∣∣∣ n∑
j=1

aj bj

∣∣∣2 =

n∑
j=1

|aj |2
n∑
j=1

|bj |2 −
∑

1≤j<k≤n

∣∣aj b̄k − ak b̄j∣∣2 .
4.3. Complex inequalities – principles: (Ahlfors [1], pp. 9-11)

(a) (bonus) Show that −|z| ≤ Re z ≤ |z| and that −|z| ≤ Im z ≤ |z|. When do the
equalities Re z = |z| or Im z = |z| hold?

(b) (bonus) Derive the so-called triangle inequality |z1 + z2| ≤ |z1| + |z2|. Note that
it extends to arbitrary sums: |z1 + z2 + · · ·| ≤ |z1| + |z2| + · · · . Under what
circumstances does the equality hold? Show that |z1 − z2| ≥

∣∣|z1| − |z2|
∣∣.
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(c) (bonus) Derive Cauchy’s inequality, i.e., show that∣∣∣ n∑
j=1

wj zj

∣∣∣2 ≤ ∣∣∣ n∑
j=1

∣∣wj∣∣2 ∣∣∣ n∑
j=1

∣∣zj∣∣2.
4.4. Complex inequalities: (Ahlfors [1], p. 11)

(a) (bonus) Prove that, for complex a and b such that |a| < 1 and |b| < 1, we have
|(a− b)/(1− āb)| < 1.

(b) (bonus) Let {aj}nj=1 be a set of n complex variables and let {λj}nj=1 be a set of n
real variables.
If |aj | < 1, λj ≥ 0 and

∑n
j=1 λj = 1, show that

∣∣∑n
j=1 λj aj

∣∣ < 1.

4.5. Circles and lines with complex numbers: (Needham [3] p. 46)

(a) If c is a fixed complex number and R is a fixed real number, explain with a picture
why |z − c| = R is the equation of a circle. Given that z satisfies the equation
|z + 3− 4i| = 2, find the minimum and maximum values of |z| and the corre-
sponding positions of z.

(b) Consider the two straight lines in the complex plane that make an angle (π/2) + φ
with the real axis and lie a distance D from the origin. Show that points z on the
lines satisfy one or other of Re

(
cosφ− i sinφ

)
z = ±D.

(c) Consider the circle of points obeying
∣∣z − (D +R)

(
cosφ+ i sinφ

)∣∣ = R. Give
the centre of this circle and its radius. Determine what happens to this circle in the
R → ∞ limit. (Note: In the extended complex plane the properties of circles and
lines are unified. For this reason they are sometimes referred to as circlines.)

4.6. Plane geometry with complex numbers: (Ahlfors [1], p. 15)

(a) Prove that if the points a1, a2 and a3 are the vertices of an equilateral triangle then
a1 a1 + a2 a2 + a3 a3 = a1 a2 + a2 a3 + a3 a1.

(b) Suppose that a and b are two vertices of a square in the complex plane. Find the
two other vertices in all possible cases.

(c) (bonus) Find the center and the radius of the circle that circumscribes the triangle
having vertices a1, a2 and a3. Express the result in symmetric form.

(d) (bonus) Find the symmetric points of the complex number z with respect to each of
the lines that bisect the coordinate axes.

4.7. More plane geometry with complex numbers: (Needham [3] p. 16)
Consider the quadrilateral having sides given by the complex numbers 2a1, 2a2, 2a3

and 2a4, and construct the squares on these sides. Now consider the two line-segments
joining the centres of squares on opposite sides of the quadrilateral. Show that these
line-segments are perpendicular and of equal length.

4.8. More plane geometry with complex numbers: (Ahlfors [1], p. 9, 17)

(a) Find the conditions under which the equation az + bz̄ + c = 0 (with complex a,
b and c) in one complex unknown z has exactly one solution, and compute that
solution. When does the equation represent a line?

(b) (bonus) Write the equation of an ellipse, hyperbola and parabola in complex form.
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(c) (bonus) Show, using complex numbers, that the diagonals of a parallelogram bisect
each other.

(d) (bonus) Show, using complex numbers, that the diagonals of a rhombus are orthog-
onal.

(e) (bonus) Show that the midpoints of parallel chords to a circle lie on a diameter
perpendicular to the chords.

(f) (bonus) Show that all circles that pass through a and 1/a intersect the circle |z| = 1
at right angles.

4.9. Number theory with complex numbers: (Needham [3] p. 45)
Here is a basic fact that has many uses in number theory: If two integers can be expressed
as the sum of two squares then so can their product. Prove this result by considering∣∣(A+ iB)(C + iD)

∣∣2 for integers A, B, C and D.

4.10. Trigonometry with complex numbers: (Ahlfors [1], pp. 16-17)

(a) Express cos 3φ, cos 4φ and sin 5φ in terms of cosφ and sinφ.

(b) Simplify 1 + cosφ+ cos 2φ+ · · ·+ cosNφ and sinφ+ sin 2φ+ sin 3φ+ · · ·+
sinNφ.

(c) Express the fifth and tenth roots of unity in algebraic form.

(d) (bonus) If ω is given by ω = cos
(
2π/N

)
+ i sin

(
2π/N

)
(for N = 0, 1, 2, . . .),

show that, for any integer H that is not a multiple of N , 1 + ωH + ω2H + · · · +
ω(N−1)H = 0. What is the value of 1− ωH + ω2H − · · ·+ (−1)N−1ω(N−1)H?
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Complex integration

Georgia Tech PHYS-6124
Homework HW #5 due Monday, September 23, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 5.1 More holomorphic mappings 10 (+6 bonus) points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 22, 2019
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Week 5 syllabus September 16, 2019

Mon Goldbart pages 1/400 - 1/580

Wed Goldbart pages 2/10 - 2/96 (contour integration)

Fri Goldbart pages 2/130 -2/150; 2/270 - 2/280 (derivation of Cauchy Theorem)

Optional reading

• Goldbart pages 3/10 - 3/140 (Cauchy contour integral)

• Grigoriev pages 3.1 - 3.3 (Cauchy contour integral)

• Arfken and Weber [1] (click here) Chapter 6 sects. 6.3 - 6.4,
on Cauchy contour integral

Question 5.1. Henriette Roux asks
Q What do you mean when you write “Determine the possibilities” in exercise 5.1 (b)?
A Fair enough. I rewrote the text in the exercise.

References
[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-

hensive Guide, 6th ed. (Academic, New York, 2005).

Exercises
5.1. More holomorphic mappings. Needham, pp. 211-213

(a) (bonus) Use the Cauchy-Riemann conditions to verify that the mapping z 7→ z̄ is
not holomorphic.

(b) The mapping z 7→ z3 acts on an infinitesimal shape and the image is examined. It
is found that the shape has been rotated by π, and its linear dimensions expanded
by 12. Determine the possibilities for the original location of the shape, i.e., find all
values of the complex number z for which an infinitesimal shape at z is rotated by
π, and its linear dimensions expanded by 12. Hint: write z in polar form, first find
the appropriate r = |z|, then find all values of the phase of z such that arg(z3) = π.

(c) Consider the map z 7→ z̄2/z. Determine the geometric effect of this mapping. By
considering the effect of the mapping on two small arrows emanating from a typical
point z, one arrow parallel and one perpendicular to z, show that the map fails to
produce an amplitwist.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-cmplx.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-cmxInt.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-Cauchy.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln3.pdf
http://ChaosBook.org/library/ArWe05chap6.pdf
http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762
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(d) The interior of a simple closed curve C is mapped by a holomorphic mapping into
the exterior of the image of C. If z travels around the curve counterclockwise, which
way does the image of z travel around the image of C?

(e) Consider the mapping produced by the function f(x+ iy) =
(
x2 + y2

)
+ i
(
y/x

)
.

(i) Find and sketch the curves that are mapped by f into horizontal and vertical
lines. Notice that f appears to be conformal.

(ii) Now show that f is not in fact a conformal mapping by considering the images
of a pair of lines (e.g. , one vertical and one horizontal).

(iii) By using the Cauchy-Riemann conditions confirm that f is not conformal.
(iv) Show that no choice of v(x, y) makes f(x + iy) =

(
x2 + y2

)
+ iv(x, y)

holomorphic.

(f) (bonus) Show that if f is holomorphic on some connected region then each of the
following conditions forces f to reduce to a constant:
(i) Re f(z) = 0; (ii) |f(z)| = const.; (iii) f̄(z) is holomorphic too.

(g) (bonus) Suppose that the holomorphic mapping z 7→ f(z) is expressed in terms of
the modulus R and argument Φ of f , i.e.,
f(z) = R(x, y) exp iΦ(x, y).
Determine the form of the Cauchy-Riemann conditions in terms of R and Φ.

(h) (i) By sketching the image of an infinitesimal rectangle under a holomorphic
mapping, determine the the local magnification factor for the area and com-
pare it with that for a infinitesimal line. Re-derive this result by examining the
Jacobian determinant for the transformation.

(ii) Verify that the mapping z 7→ exp z satisfies the Cauchy-Riemann conditions,
and compute

(
exp z

)′.
(iii) (bonus) Let S be the square region given by A − B ≤ Re z ≤ A + B and
−B ≤ Im z ≤ B withA andB positive. Sketch a typical S for whichB < A
and sketch the image S̃ of S under the mapping z 7→ exp z.

(iv) (bonus) Deduce the ratio (area of S̃)/(area of S), and compute its limit as
B → 0+.

(v) (bonus) Compare this limit with the one you would expect from part (i).





mathematical methods - week 6

Cauchy - applications

Georgia Tech PHYS-6124
Homework HW #6 due Monday, September 30, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 6.1 Complex integration (a) 4; (b) 2; (c) 2; and (d) 3 points
Exercise 6.2 Fresnel integral 7 points

Bonus points
Exercise 6.4 Cauchy’s theorem via Green’s theorem in the plane 6 points

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 25, 2019
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Week 6 syllabus September 23, 2019

Mon Goldbart pages 3/10 - 3/30; 3/60 - 3/70 (Cauchy integral formula)

Wed Goldbart pages 3/80 - 3/110 (singularities; Laurent series)
Grigoriev pages 3.4 - 3.5b (evaluation of integrals)

Fri Grigoriev pages 3.4 - 3.5b (evaluation of integrals)
Goldbart pages 4/10 - 4/100 (linear response)

Optional reading

• Arfken and Weber [1] (click here) Chapter 6 sects. 6.3 - 6.4,
on Cauchy contour integral

• Arfken and Weber [1] Chapter 6 sects. 6.5 - 6.8,
on Laurent expansion, cuts, mappings

• Arfken and Weber [1] (click here) Chapter 7 sects. 7.1 - 7.2,
on residues

• Stone and Goldbart [2] (click here) Chapter 17 sect. 17.2 - 17.4

Question 6.1. Henriette Roux had asked
Q You made us do exercise 4.5, but you did not cover this in class? What’s up with that? I left
it blank!
A Mhm. Check the discussion of this problem in the updated week 4 notes.

References
[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-

hensive Guide, 6th ed. (Academic, New York, 2005).

[2] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge Univ. Press, Cambridge, 2009).

Exercises
6.1. Complex integration.

(a) Write down the values of
∮
C

(1/z) dz for each of the following choices of C:
(i) |z| = 1, (ii) |z − 2| = 1, (iii) |z − 1| = 2.
Then confirm the answers the hard way, using parametric evaluation.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-Cauchy.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln3.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln3.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/PG93B-Causality.pdf
http://ChaosBook.org/library/ArWe05chap6.pdf
http://ChaosBook.org/library/ArWe05chap7.pdf
http://ChaosBook.org/library/StGoChap17.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/week4.pdf
http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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(b) Evaluate parametrically the integral of 1/z around the square with vertices ±1± i.
(c) Confirm by parametric evaluation that the integral of zm around an origin centered

circle vanishes, except when the integer m = −1.

(d) Evaluate
∫ 3−2i

1+i
dz sin z in two ways: (i) via the fundamental theorem of (complex)

calculus, and (ii) (bonus) by choosing any path between the end-points and using
real integrals.

6.2. Fresnel integral.
We wish to evaluate the I =

∫∞
0

exp
(
ix2
)
dx. To do this, consider the contour inte-

gral IR =
∫
C(R)

exp
(
iz2
)
dz, where C(R) is the closed circular sector in the upper

half-plane with boundary points 0, R and R exp(iπ/4). Show that IR = 0 and that
limR→∞

∫
C1(R)

exp
(
iz2
)
dz = 0, where C1(R) is the contour integral along the circu-

lar sector from R to R exp(iπ/4). [Hint: use sinx ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then,
by breaking up the contour C(R) into three components, deduce that

lim
R→∞

(∫ R

0

exp
(
ix2) dx− eiπ/4

∫ R

0

exp
(
− r2) dr) = 0

and, from the well-known result of real integration
∫∞

0
exp

(
− x2

)
dx =

√
π/2, deduce

that I = eiπ/4
√
π/2.

6.3. Fresnel integral.

(a) Derive the Fresnel integral

1√
2π

∫ ∞
−∞

dx e−
x2

2ia =
√
ia = |a|1/2ei

π
4
a
|a| .

Consider the contour integral IR =
∫
C(R)

exp
(
iz2
)
dz, where C(R) is the closed

circular sector in the upper half-plane with boundary points 0,R andR exp(iπ/4).
Show that IR = 0 and that limR→∞

∫
C1(R)

exp
(
iz2
)
dz = 0, where C1(R) is

the contour integral along the circular sector from R to R exp(iπ/4). [Hint: use
sinx ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then, by breaking up the contour C(R) into
three components, deduce that

lim
R→∞

(∫ R

0

exp
(
ix2) dx− eiπ/4

∫ R

0

exp
(
− r2) dr)

vanishes, and, from the real integration
∫∞

0
exp

(
− x2

)
dx =

√
π/2, deduce that∫ ∞

0

exp
(
ix2) dx = eiπ/4

√
π/2 .

Now rescale x by real number a 6= 0, and complete the derivation of the Fresnel
integral.

(b) In exercise 9.2 the exponent in the d-dimensional Gaussian integrals is real, so
the real symmetric matrix M in the exponent has to be strictly positive definite.
However, in quantum physics one often has to evaluate the d-dimenional Fresnel
integral

1

(2π)d/2

∫
ddφe−

1
2i
φ>·M−1·φ+i φ·J ,

with a Hermitian matrix M . Evaluate it. What are conditions on its spectrum in
order that the integral be well defined?
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6.4. Cauchy’s theorem via Green’s theorem in the plane. Express the integral
∮
C
dz f(z)

of the analytic function f = u+iv around the simple contourC in parametric form, apply
the two-dimensional version of Gauss’ theorem (a.k.a. Green’s theorem in the plane), and
invoke the Cauchy-Riemann conditions. Hence establish Cauchy’s theorem

∮
C
dz f(z) =

0.



mathematical methods - week 7

Method of steepest descent

Georgia Tech PHYS-6124
Homework HW #7 due Monday, October 7, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 7.1 In high dimensions any two vectors are (nearly) orthogonal 16 points

Bonus points
Exercise 7.2 Airy function for large arguments 10 points

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 6, 2019
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Week 7 syllabus September 30, 2019

Jensen’s theorem: saddle point method; Gamma, Airy function estimates;

Mon Arfken and Weber [1] (click here) Chapter 7 sect. 7.3 Method of steepest descents

Wed discusses Grigoriev notes: Gamma, Airy functions, Sterling formula

Fri Sect. 7.1 Saddle-point expansions are asymptotic

Optional reading

• Arfken and Weber [1] (click here) Chapter 8 has interesting tidbits about the
Gamma function. Beta function is also often encountered.

• Branch-cut integrals, see Arfken and Weber example 7.1.6.

Apropos Jensen: the most popular Danish family names are 1. Jensen 303,089 2.
Nielsen 296,850 3. Hansen 248,968. This out of population of 5.5 million.

7.1 Saddle-point expansions are asymptotic
The first trial ground for testing our hunches about field theory is the zero-dimensional
field theory, the field theory of a lattice consisting of one point, in case of the “φ4

theory” given a humble 1-dimensional integral

Z[J ] =

∫
dφ√
2π
e−φ

2/2−gφ4/4+φJ . (7.1)

The idea of the saddle-point expansions is to keep the Gaussian part φ2/2 (“free field”,
with a quadratic H0 “Hamiltonian”) as is, and expand the rest (HI “interacting Hamil-
tonian”) as a power series, and then evaluate the perturbative corrections using the
moments formula∫

dφ√
2π

φne−φ
2/2 =

(
d

dJ

)n
eJ

2/2
∣∣∣
J=0

= (n− 1)!! if n even, 0 otherwise .

In this zero-dimensional theory the n-point correlation is a number exploding combi-
natorially, as (n− 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional φ4 field theory in the
saddle-point expansion to all orders:

Z[0] =
∑
n

Zng
n ,

Zn =
(−1)n

n!4n

∫
dφ√
2π
φ4ne−φ

2/2 =
(−1)

n

16nn!

(4n)!

(2n)!
. (7.2)

The Stirling formula n! =
√

2π nn+1/2e−n yields for large n

gnZn ≈
1√
nπ

(
4g

e
n

)n
. (7.3)

http://ChaosBook.org/library/ArWe05chap7.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln13.pdf
http://ChaosBook.org/library/ArWe05chap8.pdf
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Figure 7.1: Plot of the saddle-point estimate of Zn vs. the exact result (7.2) for
g = 0.1, g = 0.02, g = 0.01.

As the coefficients of the parameter gn are blowing up combinatorially, no matter how
small g might be, the perturbation expansion is not convergent! Why? Consider again
(7.1). We have tacitly assumed that g > 0, but for g < 0, the potential is unbounded
for large φ, and the integrand explodes. Hence the partition function in not analytic at
the g = 0 point.

Is the whole enterprise hopeless? As we shall now show, even though divergent, the
perturbation series is an asymptotic expansion, and an asymptotic expansion can be ex-
tremely good [5]. Consider the residual error after inclusion of the first n perturbative
corrections:

Rn =

∣∣∣∣∣Z(g)−
n∑

m=0

gmZm

∣∣∣∣∣
=

∫
dφ√
2π
e−φ

2/2

∣∣∣∣∣e−gφ4/4 −
n∑

m=0

1

m!

(
−g

4

)m
φ4m

∣∣∣∣∣
≤

∫
dφ√
2π
e−φ

2/2 1

(n+ 1)!

(
gφ4

4

)n+1

= gn+1 |Zn+1| . (7.4)

The inequality follows from the convexity of exponentials, a generalization of the in-
equality ex ≥ 1 + x. The error decreases as long as gn |Zn| decreases. From (7.3) the
minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn|min ≈
√

4g

π
e−1/4g. (7.5)
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As illustrated by the figure 7.1, a perturbative expansion can be, for all practical pur-
poses, very accurate. In Quantum ElectroDynamics, or QED, this argument had led
Dyson to suggest that the QED perturbation expansions are good to nmin ≈ 1/α ≈
137 terms. Due to the complicated relativistic, spinorial and gauge invariance structure
of perturbative QED, there is not a shred of evidence that this is so. The very best
calculations performed so far stop at n ≤ 5.

2019-06-01 Predrag I find Córdova, Heidenreich, Popolitov and Shakirov [3] Orb-
ifolds and exact solutions of strongly-coupled matrix models very surprising. The
introduction is worth reading. They compute analytically the matrix model (QFT
in zero dimensions) partition function for trace potential

S[X] = tr (Xr) , integer r ≥ 2 . (7.6)

Their “non-perturbative ambiguity” in the case of theN = 1 cubic matrix model
seem to amount to the Stokes phenomenon, i.e., choice of integration contour for
the Airy function.

Unlike the weak coupling expansions, the strong coupling expansion of

Z =
1

2π

∫
dxe
− 1

2g2 x
2−x4

, (7.7)

is convergent, not an asymptotic series.

There is a negative dimensions type dualityN → −N , their eq. (3.27). The loop
equations, their eq. (2.10), are also interesting - they seem to essentially be the
Dyson-Schwinger equations and Ward identities in my book’s [4] formulation of
QFT.

7.2 Notes on life in extreme dimensions
You can safely ignore this section, it’s “math methods,” as much as Predrag’s musings
about current research...

Exercise 7.1 is something that anyone interested in computational neuroscience [8]
and/or machine learning already knows. It is also something that many a contemporary
physicist should know; a daily problem for all of us, from astrophysics to fluid physics
to biologically inspired physics is how to visualize large, extremely large data sets.

Possibly helpful references:
Distribution of dot products between two random unit vectors. They denote Z =

〈X,Y 〉 =
∑
XiYi. Define

fZi(zi) =

∫ ∞
−∞

fXi,Yi(x,
zi
x

)
1

|x|
dx

then since Z =
∑
Zi,

fZ(z) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fZ1,...,ZD (z1, . . . , zd) δ(z −
∑

zi) dz1 . . . dzd .

http://stats.stackexchange.com/questions/85916/distribution-of-dot-products-between-two-random-unit-vectors-in-mathbbrd
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There is a Georgia Tech paper on this [12]. See also cosine similarity and Mathworld.
There is even a python tutorial. scikit-learn is supposed to be ‘The de facto
Machine Learning package for Python’.

Remark 7.1. High-dimensional flows and their visualizations. Dynamicist’s vision of
turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [11]. Computational
neuroscience grapples with closely related visualization and modeling issues [6, 7]. Much about
high-dimensional state spaces is counterintuitive. The literature on why the expectation value
of the angle between any two high-dimensional vectors picked at random is 90o is mostly about
spikey spheres: see the draft of the Hopcroft and Kannan [10] book and Ravi Kannan’s course;
lecture notes by Hermann Flaschka on Some geometry in high-dimensional spaces; Wegman
and Solka [13] visualizations of high-dimensional data; Spruill paper [12]; a lively mathover-
flow.org thread on “Intuitive crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [9] are akin in spirit to the low-dimensional pro-
jections of the POD modeling [2], in that both methods aim to capture key features and dynamics
of the system in just a few dimensions. But the ref. [9] method is very different from POD in
a key way: we construct basis sets from exact solutions of the fully-resolved dynamics rather
than from the empirical eigenfunctions of the POD. Exact solutions and their linear stability
modes (a) characterize the spatially-extended states precisely, as opposed to the truncated ex-
pansions of the POD, (b) allow for different basis sets and projections for different purposes and
different regions of state space, (c) these low-dimensional projections are not meant to suggest
low-dimensional ODE models; they are only visualizations, every point in these projections is
still a point the full state space, and (d) the method is not limited to Fourier mode bases.
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solutions of strongly-coupled matrix models”, Commun Math Phys 361, 1235–
1274 (2018).
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Exercises
7.1. In high dimensions any two vectors are (nearly) orthogonal. Among humble

plumbers laboring with extremely high-dimensional ODE discretizations of fluid and
other PDEs, there is an inclination to visualize the ∞-dimensional state space flow by
projecting it onto a basis constructed from a few random coordinates, let’s say the 2nd
Fourier mode along the spatial x direction against the 4th Chebyshev mode along the y
direction. It’s easy, as these are typically the computational degrees of freedom. As we
will now show, it’s easy but not smart, with vectors representing the dynamical states of
interest being almost orthogonal to any such random basis.
Suppose your state spaceM is a real 10 247-dimensional vector space, and you pick from
it two vectors x1, x2 ∈M at random. What is the angle between them likely to be?
In the literature you might run into this question, formulated as the ‘cosine similarity’

cos(θ12) =
x1
> · x2

|x1 | |x2 |
. (7.8)

Two vectors with the same orientation have a cosine similarity of 1, two vectors at 90o

have a similarity of 0, and two vectors diametrically opposed have a similarity of -1. By
asking for ‘angle between two vectors’ we have implicitly assumed that there exist is a
dot product

x1
> · x2 = |x1 | |x2 | cos(θ12) ,

so let’s make these vectors unit vectors, |xj | = 1 . When you think about it, you would
be hard put to say what ‘uniform probability’ would mean for a vector x ∈M = R10 247,
but for a unit vector it is obvious: probability that x direction lies within a solid angle dΩ
is dΩ/(unit hyper-sphere surface).
So what is the surface of the unit sphere (or, the total solid angle) in d dimensions? One
way to compute it is to evaluate the Gaussian integral

Id =

∫ ∞
−∞
dx1 · · · dxd e−

1
2 (x2

1+···+x2
d) (7.9)

http://dx.doi.org/10.1038/s41467-018-06560-z
http://dx.doi.org/10.1038/s41467-018-06560-z
https://doi.org/10.1038/s41467-018-06560-z
http://dx.doi.org/10.1017/S002211200800267X
http://dx.doi.org/10.1017/S002211200800267X
https://doi.org/10.1017/S002211200800267X
http://research.microsoft.com/en-US/people/kannan/book-no-solutions-aug-21-2014.pdf
http://dx.doi.org/10.1002/cpa.3160010401
https://doi.org/10.1002/cpa.3160010401
https://doi.org/10.1002/cpa.3160010401
http://dx.doi.org/10.1214/ecp.v12-1294
https://doi.org/10.1214/ecp.v12-1294
http://www.jstor.org/stable/25051404
http://www.jstor.org/stable/25051404
http://www.jstor.org/stable/25051404


EXERCISES 57

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Show, by examining the form of the integrand in the polar coordinates, that for an
arbitrary, even complex dimension d ∈ C

Sd−1 = 2πd/2/Γ(d/2) . (7.10)

In QFT, or Quantum Field Theory, integrals over 4-momenta are brought to polar
form and evaluated as functions of a complex dimension parameter d. This proce-
dure is called the ‘dimensional regularization’.

(c) Recast the integrals in polar coordinate form. You know how to compute this inte-
gral in 2 and 3 dimensions. Show by induction that the surface Sd−1 of unit d-ball,
or the total solid angle in even and odd dimensions is given by

S2k =
2(2π)k

(2k − 1)!!
, S2k+1 =

2πk+1

k!
. (7.11)

However irritating to Data Scientists (these are just the Gamma function (7.10)
written out as factorials), the distinction between even and odd dimensions is not
silly - in Cartan’s classification of all compact Lie groups, special orhtogonal groups
SO(2k) and SO(2k+1) belong to two distinct infinite families of special orthogonal
symmetry groups, with implications for physics in 2, 3 and 4 dimensions. For
example, by the hairy ball theorem, there can be no non-vanishing continuous
tangent vector field on even-dimensional d-spheres; you cannot smoothly comb
hair on a 3-dimensional ball.

(d) Check your formula for d = 2 (1-sphere, or the circle) and d = 3 (2-sphere, or the
sphere).

(e) What limit does Sd does tend to for large d? (Hint: it’s not what you think. Try
Sterling’s formula).

So now that we know the volume of a sphere, what is a the most likely angle between two
vectors x1, x2 picked at random? We can rotate coordinates so that x1 is aligned with the
‘z-axis’ of the hypersphere. An angle θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P (θ)dθ of finding two vectors at angle θ is given by the area
of the meridional strip of width dθ, and derive the formula for it:

P (θ) =
1√
π

Γ(d/2)

Γ((d− 1)/2)
.

(One can write analytic expression for this in terms of beta functions, but it is un-
necessary for the problem at hand).

(g) Show that for large d the probability P (θ) tends to a normal distribution with mean
θ = π/2 and variance 1/d.

So, in d-dimensional vector space the two random vectors are nearly orthogonal, within
accuracy of θ = π/2± 1/d.
Null distribution: For data which can be negative as well as positive, the null distribution
for cosine similarity is the distribution of the dot product of two independent random unit
vectors. This distribution has a mean of zero and a variance of 1/d (where d is the number

http://www.newscientist.com/blogs/nstv/2011/12/one-minute-math-why-you-cant-comb-a-hairy-ball.html
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of dimensions), and although the distribution is bounded between -1 and +1, as d grows
large the distribution is increasingly well-approximated by the normal distribution.

If you are a humble plumber simulating turbulence, and trying to visualize its state space
and the notion of a vector space is some abstract hocus-pocus to you, try thinking this
way. Your 2nd Fourier mode basis vector is something that wiggles twice along your
computation domain. Your turbulent state is very wiggly. The product of the two func-
tions integrated over the computational domain will average to zero, with a small leftover.
We have just estimated that with dumb choices of coordinate bases this leftover will be of
order of 1/10 247, which is embarrassingly small for displaying a phenomenon of order
≈ 1.
Several intelligent choices of coordinates for state space projections are described in
ChaosBook section 2.4, the web tutorial ChaosBook.org/tutorials, and Gibson et al. [9].

Sara A. Solla and P. Cvitanović

7.2. Airy function for large arguments. Important contributions as stationary phase
points may arise from extremal points where the first non-zero term in a Taylor expansion
of the phase is of third or higher order. Such situations occur, for example, at bifurcation
points or in diffraction effects, (such as waves near sharp corners, waves creeping around
obstacles, etc.). In such calculations, one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy−

y3

3
) . (7.12)

Calculate the Airy function Ai(x) using the stationary phase approximation. What hap-
pens when considering the limit x → 0. Estimate for which value of x the stationary
phase approximation breaks down.

http://ChaosBook.org/chapters/ChaosBook.pdf#section.2.4
http://ChaosBook.org/tutorials
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Discrete Fourier transform

Georgia Tech PHYS-6124
Homework HW #8 due Wednesday, October 16, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Laplacian is a non-local operator 4 points
Exercise 8.2 Lattice Laplacian diagonalized 8 points

Total of 12 points = 100 % score.

edited October 23, 2019

59

http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek8.tex


60 EXERCISES

Week 8 syllabus Monday, October 7, 2019

Discretization of continuum, lattices, discrete derivatives, discrete Fourier transforms.

Mon Applied math version: how to discretize derivatives:
ChaosBook Appendix A24 Deterministic diffusion
Sects. A24.1 to A24.1.1 Lattice Laplacian.

Wed A periodic lattice as the simplest example of the theory of finite groups:
ChaosBook Sects. A24.1.2 to A24.3.1.
ChaosBook Example A24.2 Projection operators for discrete Fourier transform.
ChaosBook Example A24.3 ‘Configuration-momentum’ Fourier space duality.

Fri Sect. A24.4 Fourier transform as the limit of a discrete Fourier transform.

Optional reading

• A theoretical physicist’s version of the above notes: Quantum Field Theory - a
cyclist tour, Chapter 1 Lattice field theory motivates discrete Fourier transforms
by computing a free propagator on a lattice.

Exercises
8.1. Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonal difference operator, its inverse (the “free”
propagator of statistical mechanics and quantum field theory) is a messier object. A way
to compute is to start expanding propagator as a power series in the Laplacian

1

m21−∆
=

1

m2

∞∑
n=0

1

m2n
∆n . (8.1)

As ∆ is a finite matrix, the expansion is convergent for sufficiently large m2. To get a
feeling for what is involved in evaluating such series, show that ∆2 is:

∆2 =
1

a4



6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6


. (8.2)

What ∆3, ∆4, · · · contributions look like is now clear; as we include higher and higher
powers of the Laplacian, the propagator matrix fills up; while the inverse propagator
is differential operator connecting only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattice site.
This matrix can be evaluated as is, on the lattice, and sometime it is evaluated this way,
but in case at hand a wonderful simplification follows from the observation that the lattice
action is translationally invariant, exercise 8.2.

http://ChaosBook.org/chapters/ChaosBook.pdf#appendix.X
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.1
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
http://chaosbook.org/FieldTheory/QMlectures/lectQM.pdf#chapter.1
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8.2. Lattice Laplacian diagonalized. Insert the identity
∑
P (k) = 1 wherever you

profitably can, and use the shift matrix eigenvalue equation to convert shift σ matrices
into scalars. If M commutes with σ, then (ϕ†k ·M · ϕk′) = M̃ (k)δkk′ , and the matrix
M acts as a multiplication by the scalar M̃ (k) on the kth subspace. Show that for the
1-dimensional version of the lattice Laplacian (??) the projection on the kth subspace is

(ϕ†k ·∆ · ϕk′) =
2

a2

(
cos

(
2π

N
k

)
− 1

)
δkk′ . (8.3)

In the kth subspace the propagator is simply a number, and, in contrast to the mess gen-
erated by (8.1), there is nothing to evaluating:

ϕ†k ·
1

m21−∆
· ϕk′ =

δkk′

m2 − 2
(ma)2

(cos 2πk/N − 1)
, (8.4)

where k is a site in the N -dimensional dual lattice, and a = L/N is the lattice spacing.





mathematical methods - week 9

Fourier transform

Georgia Tech PHYS-6124
Homework HW #9 due Monday, October 21, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.2 d-dimensional Gaussian integrals 5 points
Exercise 9.3 Convolution of Gaussians 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 18, 2019
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Week 9 syllabus Wednesday, October 16, 2019

Wed Arfken and Weber [1] (click here) Chapter 14. Fourier Series.
Farazmand notes on Fourier transforms.

Fri Grigoriev notes
4. Integral transforms, 4.3-4.4 square wave, Gibbs phenomenon;
5. Fourier transform: 5.1-5.6 inverse, Parseval’s identity, ..., examples

Optional reading

• Stone and Goldbart [4] (click here) Appendix B

• Roger Penrose [3] chapter on Fourier transforms is sophisticated, but too pretty
to pass up.

Question 9.1. Henriette Roux asks
Q You usually explain operations by finite-matrix examples, but in exercise 9.3 you asked us
to show that the Fourier transform of the convolution corresponds to the product of the Fourier
transforms only for continuum integrals. What is that for discrete Fourier transforms? What is a
“convolution theorem” for matrices?
A “Convolution” is a simplified matrix multiplication for translationally invariant matrix oper-
ators, see example 9.2.

9.1 Examples
Example 9.1. Circulant matrices. An [L×L] circulant matrix

C =



c0 cL−1 . . . c2 c1
c1 c0 cL−1 c2
... c1 c0

. . .
...

cL−2

. . .
. . . cL−1

cL−1 cL−2 . . . c1 c0

 , (9.1)

has eigenvectors (discrete Fourier modes) and eigenvalues Cvk = λkvk

vk =
1√
L

(1, ωk, ω2k, . . . , ωk(L−1))T , k = 0, 1, . . . , L − 1

λk = c0 + cL−1ω
k + cL−2ω

2k + . . .+ c1ω
k(L−1) , (9.2)

where
ω = e2πi/L (9.3)

is a root of unity. The familiar examples are the one-lattice site shift matrix (c1 = 1, all
other ck = 0), and the lattice Laplacian �.

http://ChaosBook.org/library/ArWe05chap14.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/FourierLectFaraz.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln4.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/ln5.pdf
http://ChaosBook.org/library/StGoAppB.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/Penr04-9.pdf
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Example 9.2. Convolution theorem for matrices. Translation-invariant matrices
can only depend on differences of lattice positions,

Cij = Ci−j,0 (9.4)

All content of a translation-invariant matrix is thus in its first row Cn0, all other rows are
its cyclic translations, so translation-invariant matrices are always of the circulant form
(9.1). A product of two translation-invariant matrices can be written as

Aim =
∑
j

BijCjm ⇒ Ai−m,0 =
∑
j

Bi−j,0Cj−m,0 ,

i.e., in the “convolution” form

An0 = (BC)n0 =
∑
`

Bn−`,0C`0 (9.5)

which only uses a single row of each matrix; N operations, rather than the matrix multi-
plication N2 operations for each of the N components An0.

A circulant matrix is constructed from powers of the shift matrix, so it is diagonalized
by the discrete Fourier transform, i.e., unitary matrix U . In the Fourier representation,
the convolution is thus simply a product of kth Fourier components (no sum over k):

UAU† = UBU†UCU† → Ãkk = B̃kkC̃kk . (9.6)

That requires only 1 multiplication for each of the N components An0.

9.2 A bit of noise
Fourier invented Fourier transforms to describe the diffusion of heat. How does that
come about?

Consider a noisy discrete time trajectory

xn+1 = xn + ξn , x0 = 0 , (9.7)

where xn is a d-dimensional state vector at time n, xn,j is its jth component, and ξn
is a noisy kick at time n, with the prescribed probability distribution of zero mean and
the covariance matrix (diffusion tensor) ∆,

〈ξn,j〉 = 0 , 〈ξn,i ξTm,j〉 = ∆ij δnm , (9.8)

where 〈· · ·〉 stands for average over many realizations of the noise. Each ‘Langevin’
trajectory (x0, x1, x2, · · · ) is an example of a Brownian motion, or diffusion.

In the Fokker-Planck description individual noisy trajectories (9.7) are replaced by
the evolution of a density of noisy trajectories, with the action of discrete one-time step
Fokker-Planck operator on the density distribution ρ at time n,

ρn+1(y) = [Lρn](y) =

∫
dxL(y, x) ρn(x) , (9.9)
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given by a normalized Gaussian (work through exercise 9.2)

L(y, x) =
1

N
e−

1
2 (y−x)T 1

∆ (y−x) , N = (2π)d/2
√

det (∆) , (9.10)

which smears out the initial density ρn diffusively by noise of covariance (9.8). The
covariance ∆ is a symmetric [d×d] matrix which can be diagonalized by an orthogonal
transformation, and rotated into an ellipsoid with d orthogonal axes, of different widths
(covariances) along each axis. You can visualise the Fokker-Planck operator (9.9) as
taking a δ-function concentrated initial distribution centered on x = 0, and smearing it
into a cigar shaped noise cloud.

As L(y, x) = L(y − x), the Fokker-Planck operator acts on the initial distribution
as a convolution,

[Lρn](y) = [L ∗ ρn](y) =

∫
dxL(y − x) ρn(x)

Consider the action of the Fokker-Planck operator on a normalized, cigar-shaped
Gaussian density distribution

ρn(x) =
1

Nn
e−

1
2x
T 1

∆n
x , Nn = (2π)d/2

√
det (∆n) . (9.11)

That is also a cigar, but in general of a different shape and orientation than the Fokker-
Planck operator (9.10). As you can check by working out exercise 9.3, a convolution
of a Gaussian with a Gaussian is again a Gaussian, so the Fokker-Planck operator maps
the Gaussian ρn(xn) into the Gaussian

ρn+1(x) =
1

Nn+1
e−

1
2x
T 1

∆n+∆ x , Nn+1 = (2π)d/2
√

det (∆n + ∆) (9.12)

one time step later.
In other words, covariances ∆n add up. This is the d-dimensional statement of the

familiar fact that cumulative error squared is the sum of squares of individual errors.
When individual errors are small, and you are adding up a sequence of them in time,
you get Brownian motion. If the individual errors are small and added independently
to a solution of deterministic equations (so-called ‘drift’), you get the Langevin and the
Fokker-Planck equations.

References
[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-

hensive Guide, 6th ed. (Academic, New York, 2005).

[2] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals (Dover,
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(A. A. Knopf, New York, 2005).
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http://books.google.com/books?vid=ISBN9780120598762
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Exercises
9.1. Who ordered

√
π ? Derive the Gaussian integral

1√
2π

∫ ∞
−∞

dx e−
x2

2a =
√
a , a > 0 .

assuming only that you know to integrate the exponential function e−x. Hint, hint: x2 is
a radius-squared of something. π is related to the area or circumference of something.

9.2. d-dimensional Gaussian integrals. Show that the Gaussian integral in d-dimensions
is given by

Z[J ] =

∫
ddx e−

1
2
x>·M−1·x+x>·J

= (2π)d/2|detM |
1
2 e

1
2
J>·M·J , (9.13)

where M is a real positive definite [d × d] matrix, i.e., a matrix with strictly positive
eigenvalues, x and J are d-dimensional vectors, and (· · · )> denotes the transpose.
This integral you will see over and over in statistical mechanics and quantum field the-
ory: it’s called ‘free field theory’, ‘Gaussian model’, ‘Wick expansion’, etc.. This is the
starting, ‘propagator’ term in any perturbation expansion.
Here we require that the real symmetric matrix M in the exponent is strictly positive def-
inite, otherwise the integral is infinite. Negative eigenvalues can be accommodated by
taking a contour in the complex plane [2], see exercise 6.3 Fresnel integral. Zero eigen-
values require stationary phase approximations that go beyond the Gaussian saddle point
approximation, typically to the Airy-function type stationary points, see exercise 7.2 Airy
function for large arguments.

9.3. Convolution of Gaussians.
(a) Show that the Fourier transform of the convolution

[f ∗ g](x) =

∫
ddy f(x− y)g(y)

corresponds to the product of the Fourier transforms

[f ∗ g](x) =
1

(2π)d

∫
ddk F (k)G(k)e−ik·x , (9.14)

where

F (k) =

∫
ddx

(2π)d/2
f(x) e−ik·x , G(k) =

∫
ddx

(2π)d/2
g(x) e−ik·x .

http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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(b) Consider two normalized Gaussians

f(x) =
1

N1
e
− 1

2
x>· 1

∆1
·x
, N1 =

√
det (2π∆1)

g(x) =
1

N2
e
− 1

2
x>· 1

∆2
·x
, N2 =

√
det (2π∆2)

1 =

∫
ddk f(x) =

∫
ddk g(x) .

Evaluate their Fourier transforms

F (k) =
1

(2π)d/2
e

1
2
k>·∆1·k , G(k) =

1

(2π)d/2
e

1
2
k>·∆2·k .

Show that the convolution of two normalized Gaussians is a normalized Gaussian

[f ∗ g](x) =
(2π)−d/2√

det (∆1 + ∆2)
e
− 1

2
x>· 1

∆1+∆2
·x
.

In other words, covariances ∆j add up. This is the d-dimenional statement of the famil-
iar fact that cumulative error squared is the sum of squares of individual errors. When
individual errors are small, and you are adding up a sequence of them in time, you get
Brownian motion. If the individual errors are small and added independently to a solution
of a deterministic equation, you get Langevin and Fokker-Planck equations.



mathematical methods - week 10

Finite groups

Georgia Tech PHYS-6124
Homework HW #10 due Monday, October 28, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 10.1 1-dimensional representation of anything 1 point
Exercise 10.2 2-dimensional representation of S3 4 points
Exercise 10.3 D3: symmetries of an equilateral triangle 5 points

Bonus points
Exercise 10.4 (a), (b) and (c) Permutation of three objects 2 points
Exercise 10.5 3-dimensional representations of D3 3 points

Total of 10 points = 100 % score.

edited October 23, 2019
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Week 10 syllabus Monday, October 21, 2019

I have given up Twitter in exchange for Tacitus & Thucydides,
for Newton & Euclid; & I find myself much the happier.

— Thomas Jefferson to John Adams, 21 January 1812

Mon Groups, permutations, D3
∼= C3v

∼= S3 symmetries of equilateral triangle, rear-
rangement theorem, subgroups, cosets.

– Chapter 1 Basic Mathematical Background: Introduction
Dresselhaus et al. [3] (click here)

– by Socratica:
a delightful introduction to group multiplication (or Cayley) tables.

– ChaosBook Chapter 10. Flips, slides and turns

– For deeper insights, read Roger Penrose [8] (click here).

Wed Irreps, unitary reps and Schur’s Lemma.

– Chapter 2 Representation Theory and Basic Theorems
Dresselhaus et al. [3], up to and including
Sect. 2.4 The Unitarity of Representations (click here)

Fri “Wonderful Orthogonality Theorem.”

In this course, we learn about full reducibility of finite and compact continuous
groups in two parallel ways. On one hand, I personally find the multiplicative
projection operators (1.32), coupled with the notion of class algebras (Harter [4]
(click here) appendix C) most intuitive - a block-diagonalized subspace for each
distinct eigenvalue of a given all-commuting matrix. On the other hand, the char-
acter weighted sums (here related to the multiplicative projection operators as
in ChaosBook Example A24.2 Projection operators for discrete Fourier trans-
form) offer a deceptively ‘simple’ and elegant formulation of full-reducibility
theorems, preferred by all standard textbook expositions:

– Dresselhaus et al. [3] Sects. 2.5 and 2.6 Schur’s Lemma.
a first go at sect. 2.7

Optional reading

• There is no need to learn all these “Greek” words.

• Bedside crocheting.

Question 10.1. Henriette Roux asks
Q What are cosets good for?
A Apologies for glossing over their meaning in the lecture. I try to minimize group-theory
jargon, but cosets cannot be ignored.

Dresselhaus et al. [3] (click here) Chapter 1 Basic Mathematical Background: Introduction
needs them to show that the dimension of a subgroup is a divisor of the dimension of the group.
For example, C3 of dimension 3 is a subgroup of D3 of dimension 6.

https://founders.archives.gov/documents/Jefferson/03-04-02-0334
http://ChaosBook.org/library/Dresselhaus07.pdf
http://youtu.be/BwHspSCXFNM
https://www.youtube.com/playlist?list=PLi01XoE8jYoi3SgnnGorR_XOW3IcK-TP6
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
http://ChaosBook.org/library/Penr04-13.pdf
http://ChaosBook.org/library/Dresselhaus07sect2_4.pdf
http://ChaosBook.org/library/Harter78.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
http://www.theonion.com/articles/historians-admit-to-inventing-ancient-greeks,18209/
http://www.theiff.org/oexhibits/oe1e.html
http://ChaosBook.org/library/Dresselhaus07.pdf
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D3 e C C2 σ(1) σ(2) σ(3)

e e C C2 σ(1) σ(2) σ(3)

C C C2 e σ(3) σ(1) σ(2)

C2 C2 e C σ(2) σ(3) σ(1)

σ(1) σ(1) σ(2) σ(3) e C C2

σ(2) σ(2) σ(3) σ(1) C2 e C
σ(3) σ(3) σ(1) σ(2) C C2 e

Table 10.1: The D3 group multiplication table.

In ChaosBook Chapter 10. Flips, slides and turns cosets are absolutely essential. The
significance of the coset is that if a solution has a symmetry, then the elements in a coset act on
the solution the same way, and generate all equivalent copies of this solution. Example 10.7.
Subgroups, cosets of D3 should help you understand that.

10.1 Group presentations
Group multiplication (or Cayley) tables, such as Table 10.1, define each distinct dis-
crete group, but they can be hard to digest. A Cayley graph, with links labeled by
generators, and the vertices corresponding to the group elements, has the same infor-
mation as the group multiplication table, but is often a more insightful presentation of
the group.

Figure 10.1: A Cayley graph presentation of
the dihedral group D4. The ‘root vertex’ of the
graph, marked e, is here indicated by the letter
F, the links are multiplications by two genera-
tors: a cyclic rotation by left-multiplication by
element a (directed red link), and the flip by b
(undirected blue link). The vertices are the 8
possible orientations of the transformed letter F.

For example, the Cayley graph figure 10.1 is a clear presentation of the dihedral
group D4 of order 8,

D4 = (e, a, a2, a3, b, ba, ba2, ba3) , generators a4 = e , b2 = e . (10.1)

Quaternion group is also of order 8, but with a distinct multiplication table / Cayley
graph, see figure 10.2. For more of such, see, for example, mathoverflow Cayley graph
discussion.

http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
https://en.wikipedia.org/wiki/Quaternion_group
https://mathoverflow.net/questions/244524/when-can-the-cayley-graph-of-the-symmetries-of-an-object-have-those-symmetries
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Figure 10.2: A Cayley graph presentation of
the quaternion group Q8. It is also of order 8,
but distinct from D4.

10.1.1 Permutations in birdtracks

In 1937 R. Brauer [1] introduced diagrammatic notation for the Kronecker δij op-
eration, in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically. His equation (39)

(send index 1 to 2, 2 to 4, contract ingoing (3·4), outgoing (1·3)) is the earliest published
diagrammatic notation I know about. While in kindergarten (disclosure: we were too
poor to afford kindergarten) I sat out to revolutionize modern group theory [2]. But I
suffered a terrible setback; in early 1970’s Roger Penrose pre-invented my “birdtracks,”
or diagrammatic notation, for symmetrization operators [7], Levi-Civita tensors [9],
and “strand networks” [6]. Here is a little flavor of how one birdtracks:

We can represent the operation of permuting indices (d “billiard ball labels,” tensors
with d indices) by a matrix with indices bunched together:

σβα = σ
a1a2...aq
b1...bp

,dp...d1
cq...c2c1 . (10.2)

To draw this, Brauer style, it is convenient to turn his drawing on a side. For 2-index
tensors, there are two permutations:

identity: 1ab,
cd = δdaδ

c
b =

flip: σ(12)ab,
cd = δcaδ

d
b = . (10.3)
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For 3-index tensors, there are six permutations:

1a1a2a3
,b3b2b1 = δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 = δb2a1

δb1a2
δb3a3

=

σ(23) = , σ(13) =

σ(123) = , σ(132) = . (10.4)

Here group element labels refer to the standard permutation cycles notation. There is
really no need to indicate the “time direction" by arrows, so we omit them from now
on.

The symmetric sum of all permutations,

Sa1a2...ap ,
bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap + δb1a2

δb2a1
. . . δbpap + . . .

}
S =

...

=
1

p!

{

...

+

...

+
...

+ . . .

}
, (10.5)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn across
p lines [7] will always denote symmetrization of the lines crossed. A factor of 1/p! has
been introduced in order for S to satisfy the projection operator normalization

S2 = S

... = ... . (10.6)

You have already seen such “fully-symmetric representation,” in the discussion of
discrete Fourier transforms, ChaosBook Example A24.3 ‘Configuration-momentum’
Fourier space duality, but you are not likely to recognize it. There the average was not
over all permutations, but the zero-th Fourier mode φ̃0 was the average over only cyclic
permutations. Every finite discrete group has such fully-symmetric representation, and
in statistical mechanics and quantum mechanics this is often the most important state
(the ‘ground’ state).

A subset of indices a1, a2, . . . aq , q < p can be symmetrized by symmetrization
matrix S12...q

(S12...q)a1a2...aq...ap ,
bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq + δb1a2

δb2a1
. . . δbqaq + . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =

...
... ...

2
1

q . (10.7)

http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6


74 MATHEMATICAL METHODS - WEEK 10. FINITE GROUPS

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...
......

...

... =

... ...

... ... . (10.8)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

...

=

...

. (10.9)

Diagrammatically this means that legs can be crossed and uncrossed at will.
One can construct a projection operator onto the fully antisymmetric space in a

similar manner [2]. Other representations are trickier - that’s precisely what the theory
of finite groups is about.

10.2 Literature
It’s a matter of no small pride for a card-carrying dirt physics theorist to claim full and
total ignorance of group theory (read sect. A.6 Gruppenpest of ref. [5]). The exposi-
tion (or the corresponding chapter in Tinkham [10]) that we follow here largely comes
from Wigner’s classic Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra [11], which is a harder going, but the more group theory you learn the
more you’ll appreciate it. Eugene Wigner got the 1963 Nobel Prize in Physics, so by
mid 60’s gruppenpest was accepted in finer social circles.

The structure of finite groups was understood by late 19th century. A full list of
finite groups was another matter. The complete proof of the classification of all finite
groups takes about 3 000 pages, a collective 40-years undertaking by over 100 mathe-
maticians, read the wiki. Not all finite groups are as simple or easy to figure out as D3.
For example, the order of the Ree group 2F4(2)′ is 212(26 + 1)(24− 1)(23 + 1)(2−
1)/2 = 17 971 200 .

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs.

Question 10.2. Henriette Roux asks
Q What did you do this weekend?
A The same as every other weekend - prepared week’s lecture, with my helpers Avi the Little,
Edvard the Nordman, and Malbec el Argentino, under Master Roger’s watchful eye, see here.

https://www.youtube.com/embed/CvuoY_yPZeM
https://www.youtube.com/embed/CvuoY_yPZeM
http://youtube.com/embed/CvuoY_yPZeM
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/List_of_finite_simple_groups
http://www.concinnitasproject.org/portfolio/gallery.php?id=Bombieri_Enrico
https://cosmosmagazine.com/mathematics/moonshine-doughnut-maths-proves-pariahs-are-real
https://flic.kr/p/2hxYHTx
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[2] P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups (Prince-
ton Univ. Press, Princeton NJ, 2004).

[3] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to
the Physics of Condensed Matter (Springer, New York, 2007).

[4] W. G. Harter and N. dos Santos, “Double-group theory on the half-shell and the
two-level system. I. Rotation and half-integral spin states”, Amer. J. Phys. 46,
251–263 (1978).
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and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and
G. Vattay (Niels Bohr Inst., Copenhagen, 2017).

[6] R. Penrose, “Angular momentum: An approach to combinatorical space-time”,
in Quantum Theory and Beyond, edited by T. Bastin (Cambridge Univ. Press,
Cambridge, 1971).

[7] R. Penrose, “Applications of negative dimensional tensors”, in Combinatorial
mathematics and its applications, edited by D. J. J.A. Welsh (Academic, New
York, 1971), pp. 221–244.

[8] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe
(A. A. Knopf, New York, 2005).

[9] R. Penrose and M. A. H. MacCallum, “Twistor theory: An approach to the quan-
tisation of fields and space-time”, Phys. Rep. 6, 241–315 (1973).

[10] M. Tinkham, Group Theory and Quantum Mechanics (Dover, New York, 2003).

[11] E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of
Atomic Spectra (Academic, New York, 1931).

http://dx.doi.org/10.2307/1968843
http://dx.doi.org/10.2307/1968843
https://doi.org/10.2307/1968843
https://press.princeton.edu/titles/8839.html
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1007/978-3-540-32899-5
http://dx.doi.org/10.1119/1.11134
http://dx.doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
https://doi.org/10.1119/1.11134
http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist
http://ChaosBook.org/paper.shtml#appendHist
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://homepages.math.uic.edu/~kauffman/Penrose.pdf
http://books.google.com/books?vid=ISBN9781446418208
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1016/c2013-0-01646-5
http://books.google.com/books?vid=ISBN9780323152785
http://books.google.com/books?vid=ISBN9780323152785


76 EXERCISES

Exercises
10.1. 1-dimensional representation of anything. Let D(g) be a representation of a group

G. Show that d(g) = detD(g) is one-dimensional representation of G as well.
(B. Gutkin)

10.2. 2–dimensional representation of S3.

(i) Show that the group S3 of permutations of 3 objects can be generated by two per-
mutations, a transposition and a cyclic permutation:

a =

(
1 2 3
1 3 2

)
, d =

(
1 2 3
3 1 2

)
.

(ii) Show that matrices:

ρ(e) =

(
1 0
0 1

)
, ρ(a) =

(
0 1
1 0

)
, ρ(d) =

(
z 0
0 z2

)
,

with z = ei2π/3, provide proper (faithful) representation for these elements and
find representation for the remaining elements of the group.

(iii) Is this representation irreducible?
One of those tricky questions so simple that one does not necessarily get them. If it
were reducible, all group element matrices could be simultaneously diagonalized.
A motivational (counter)example: as multiplication tables for D3 and S3 are the
same, consider D3. Is the above representation of its C3 subgroup irreducible?

(B. Gutkin)

10.3. D3: symmetries of an equilateral triangle. Consider group D3
∼= C3v

∼= S3, the sym-
metry group of an equilateral triangle:

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 11.2 and
exercise 11.3)

10.4. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the equivalence classes of S3?
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(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

10.5. 3-dimensional representations of D3. The group D3 is the symmetry group of the
equilateral triangle. It has 6 elements

D3 = {E,C,C2, σ(1), σ(2), σ(3)} ,

where C is rotation by 2π/3 and σ(i) is reflection along one of the 3 symmetry axes.

(i) Prove that this group is isomorphic to S3

(ii) Show that matrices

D(E) =

 1 0 0
0 1 0
0 0 1

 ,D(C) =

 z 0 0
0 1 0
0 0 z2

 ,D(σ(1)) =

 0 0 1
0 −1 0
1 0 0

 ,

(10.10)
generate a 3-dimensional representation D of D3. Hint: Calculate products for

representations of group elements and compare with the group table (see lecture).

(iii) Show that this is a reducible representation which can be split into one dimensional
A and two-dimensional representation Γ. In other words find a matrix R such that

RD(g)R−1 =

(
A(g) 0

0 Γ(g)

)
for all elements g of D3. (Might help: D3 has only one (non-equivalent) 2-dim
irreducible representation).

(B. Gutkin)





mathematical methods - week 11

Continuous groups

Georgia Tech PHYS-6124
Homework HW #11 due Monday, November 4, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 Decompose a representation of S3

(a) 2; (b) 2; (c) 3; and (d) 3 points
(e) 2 and (f) 3 points bonus points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited November 7, 2019
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Week 11 syllabus Monday, October 28, 2019

Irreps, or “irreducible representations.”.

Mon Harter’s Sect. 3.2 First stage of non-Abelian symmetry analysis
group multiplication table (3.1.1); class operators; class multiplication table (3.2.1b);
all-commuting or central operators;

Wed Harter’s Sect. 3.3 Second stage of non-Abelian symmetry analysis
projection operators (3.2.15); 1-dimensional irreps (3.3.6); 2-dimensional irrep
(3.3.7); Lagrange irreps dimensionality relation (3.3.17)

Fri Lie groups, sect. 11.3

– Definition of a Lie group

– Cyclic group CN → continuous SO(2) plane rotations

– Infinitesimal transformations, SO(2) generator of rotations

– SO(2) (group element) = exp(generator)

11.1 It’s all about class
You might want to have a look at Harter [4] Double group theory on the half-shell
(click here). Read appendices B and C on spectral decomposition and class algebras.
Article works out some interesting examples.

See also remark 1.1 Projection operators and perhaps watch Harter’s online lecture
from Harter’s online course.

There is more detail than what we have time to cover here, but I find Harter’s
Sect. 3.3 Second stage of non-Abelian symmetry analysis particularly illuminating. It
shows how physically different (but mathematically isomorphic) higher-dimensional
irreps are constructed corresponding to different subgroup embeddings. One chooses
the irrep that corresponds to a particular sequence of physical symmetry breakings.

11.2 Lie groups
In week 1 we introduced projection operators (1.33). How are they related to the char-
acter projection operators constructed in the group theory lectures? While the character
orthogonality might be wonderful, it is not very intuitive - it’s a set of solutions to a
set of symmetry-consistent orthogonality relations. You can learn a set of rules that en-
ables you to construct a character table, but it does not tell you what it means. Similar
thing will happen again when we turn to the study of continuous groups: all semisimple
Lie groups will be classified by Killing and Cartan by a more complex set of orthog-
onality and integer-dimensionality (Diophantine) constraints. You obtain all possible
Lie algebras, but have no idea what their geometrical significance is.

In my own Group Theory book [1] I (almost) get all simple Lie algebras using
projection operators constructed from invariant tensors. What that means is easier to

http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://ChaosBook.org/library/Harter78.pdf
https://www.youtube.com/watch?v=jLO7-Pks0QM
http://www.uark.edu/ua/modphys/markup/GTQM_TitlePage_2015.html
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
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understand for finite groups, and here I like the Harter’s exposition [3] best. Harter
constructs ‘class operators’, shows that they form a basis for the algebra of ‘central’
or ‘all-commuting’ operators, and uses their characteristic equations to construct the
projection operators (1.34) from the ‘structure constants’ of the finite group, i.e., its
class multiplication tables. Expanded, these projection operators are indeed the same
as the ones obtained from character orthogonality.

11.3 Continuous groups: unitary and orthogonal
Friday’s lecture is not taken from any particular book, it’s about basic ideas of how
one goes from finite groups to the continuous ones that any physicist should know. We
have worked one example out earlier, in ChaosBook Sect. A24.4. It gets you to the
continuous Fourier transform as a representation of U(1) ' SO(2), but from then on
this way of thinking about continuous symmetries gets to be increasingly awkward.
So we need a fresh restart; that is afforded by matrix groups, and in particular the
unitary group U(n) = U(1) ⊗ SU(n), which contains all other compact groups, finite
or continuous, as subgroups.

The main idea in a way comes from discrete groups: the whole cyclic group CN is
generated by the powers of the smallest rotation by 2π/N , and in theN →∞ limit one
only needs to understand the algebra of T`, generators of infinitesimal transformations,
D(θ) = 1 + i

∑
` θ`T`.

These thoughts are spread over chapters of my book [1] Group Theory - Birdtracks,
Lie’s, and Exceptional Groups that you can steal from my website, but the book itself is
too sophisticated for this course. If you ever want to learn some group theory in depth,
you’ll have to petition the School to offer it.
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Exercises
11.1. Decompose a representation of S3. Consider a reducible representation D(g), i.e.,

a representation of group element g that after a suitable similarity transformation takes
form

D(g) =


D(a)(g) 0 0 0

0 D(b)(g) 0 0

0 0 D(c)(g) 0

0 0 0
. . .

 ,

with character for class C given by

χ(C) = ca χ
(a)(C) + cb χ

(b)(C) + cc χ
(c)(C) + · · · ,

where ca, the multiplicity of the ath irreducible representation (colloquially called “ir-
rep”), is determined by the character orthonormality relations,

ca = χ(a)∗ χ =
1

h

class∑
k

Nkχ
(a)(C−1

k ) χ(Ck) . (11.1)

Knowing characters is all that is needed to figure out what any reducible representation
decomposes into!
As an example, let’s work out the reduction of the matrix representation of S3 permuta-
tions. The identity element acting on three objects [a b c] is a 3× 3 identity matrix,

D(E) =

1 0 0
0 1 0
0 0 1


Transposing the first and second object yields [b a c], represented by the matrix

D(A) =

0 1 0
1 0 0
0 0 1


since 0 1 0

1 0 0
0 0 1

ab
c

 =

ba
c


a) Find all six matrices for this representation.

b) Split this representation into its conjugacy classes.

c) Evaluate the characters χ(Cj) for this representation.

d) Determine multiplicities ca of irreps contained in this representation.

e) Construct explicitly all irreps.

f) Explain whether any irreps are missing in this decomposition, and why.

11.2. Invariance under fractional rotations. Argue that if the isotropy group of the velocity
field v(x) is the discrete subgroup Cm of SO(2) rotations about an axis (let’s say the ‘z-
axis’),

C1/mv(x) = v(C1/mx) = v(x) , (C1/m)m = e ,
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the only non-zero components of Fourier-transformed equations of motion are ajm for
j = 1, 2, · · · . Argue that the Fourier representation is then the quotient map of the
dynamics, M/Cm. (Hint: this sounds much fancier than what is - think first of how it
applies to the Lorenz system and the 3-disk pinball.)

11.3. Characters of D3. (continued from exercise 10.3) D3
∼= C3v , the group of symmetries

of an equilateral triangle: has three irreducible representations, two one-dimensional and
the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a permutation group or one of its sub-
groups, and elements of the permutation group can be expressed as cycles. Express
the elements of the group D3 as cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2→ 3, and 3→ 1.

(b) Use your representation from exercise 10.3 to compute the D3 character table.

(c) Use a more elegant method from the group-theory literature to verify your D3 char-
acter table.

(d) Two D3 irreducible representations are one dimensional and the third one of multi-
plicity 2 is formed by [2×2] matrices. Find the matrices for all six group elements
in this representation.

(Hint: get yourself a good textbook, like Hamermesh [2] or Tinkham [5], and read up on
classes and characters.)





mathematical methods - week 12

SO(3) and SU(2)

Georgia Tech PHYS-6124
Homework HW #12 due Monday, November 11, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 12.1 Irreps of SO(2) 3 points
Exercise 12.2 Conjugacy classes of SO(3) 4 points (+ 2 bonus points, if complete)
Exercise 12.3 The character of SO(3) 3-dimensional representation 3 points

Bonus points
Exercise 12.4 The orthonormality of SO(3) characters 2 points

Total of 10 points = 100 % score.

edited November 11, 2019
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Week 12 syllabus Monday, November 4, 2019

Mon The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of SO(2), but from then on this way of thinking about continu-
ous symmetries gets to be increasingly awkward. So we need a fresh restart;
that is afforded by matrix groups, and in particular the unitary group U(n) =
U(1)⊗ SU(n), which contains all other compact groups, finite or continuous, as
subgroups.

– Reading: Chen, Ping and Wang [2] Group Representation Theory for Physi-
cists, Sect 5.2 Definition of a Lie group, with examples (click here).

– Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sect. 6.6 completes discussion of Fourier analysis as continuum limit of
cyclic groups Cn, compares SO(2), O(2), discrete translations group, and
continuous translations group.

Wed What’s the payback? While for you the geometrically intuitive representation is
the set of rotation [2×2] matrices, group theory says no! They split into pairs of 1-
dimensional irreps, and the basic building blocks of our 2-dimensional rotations
on our kitchen table (forget quantum mechanics!) are the U(1) [1×1] complex
unit vector phase rotations.

– Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2).

Fri OK, I see that formally SU(2) ' SO(3), but who ordered “spin?”

– For overall clarity and pleasure of reading, I like Schwichtenberg [6] (click
here) discussion best. If you read anything for this week’s lectures, read
Schwichtenberg.

– Read sect. 12.3 SU(2) ' SO(3)

Optional reading

• We had started the discussion of continuous groups last Friday - you might want
to have a look at the current version of week 11 notes.

• Dirac belt trick applet

• If still anxious, maybe this helps: Mark Staley, Understanding quaternions and
the Dirac belt trick arXiv:1001.1778.

• I have enjoyed reading Mathews and Walker [5] Chap. 16 Introduction to groups
(click here). Goldbart writes that the book is “based on lectures by Richard
Feynman at Cornell University.” Very clever. In particular, work through the
example of fig. 16.2: it is very cute, you get explicit eigenmodes from group
theory alone. The main message is that if you think things through first, you
never have to go through using explicit form of representation matrices - thinking
in terms of invariants, like characters, will get you there much faster.

http://youtube.com/embed/3NeR6RqNA6g
http://ChaosBook.org/library/Chen5-2.pdf
http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/week11.pdf
https://www.gregegan.net/APPLETS/21/21.html
http://arXiv.org/abs/1001.1778
http://ChaosBook.org/library/MathWalk73.pdf
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• Any book, like Arfken & Weber [1], or Cornwell [3] Group Theory in Physics:
An introduction that covers group theory might be more in your taste.

Question 12.1. Predrag asks
Q You are graduate students now. Are you ready for The Talk?
A Henriette Roux: I’m ready!

12.1 Linear algebra
In this section we collect a few basic definitions. A sophisticated reader might prefer
skipping straight to the definition of the Lie product (12.8), the big difference between
the group elements product used so far in discussions of finite groups, and what is
needed to describe continuous groups.

Vector space. A set V of elements x,y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under addi-
tion, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x,y ∈ V
(a+ b)x = ax + bx

a(bx) = (ab)x

1x = x , 0x = 0 . (12.1)

Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of V0,
or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.
The number of basis elements d is the dimension of the vector space V.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n,F), the
row of basis vectors transforms by right multiplication as e(j) =

∑
k(g−1)jk e

(k), and
the column of xa’s transforms by left multiplication as x′ = gx. Under left multiplica-
tion the column (row transposed) of basis vectors e(k) transforms as e(j) = (g†)j

ke(k),
where the dual rep g† = (g−1)> is the transpose of the inverse of g. This observation
motivates introduction of a dual representation space V̄ , the space on which GL(n,F)
acts via the dual rep g†.
Definition. If V is a vector representation space, then the dual space V̄ is the set of all
linear forms on V over the field F.

https://www.smbc-comics.com/comic/the-talk-3
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If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e(j) · e(k) = δkj ,

where δkj is the Kronecker symbol, δkj = 1 if j = k, and zero otherwise. The compo-
nents of dual representation space vectors ȳ ∈ V̄ will here be distinguished by upper
indices

(y1, y2, . . . , yn) . (12.2)

They transform under GL(n,F) as

y′a = (g†)aby
b . (12.3)

For GL(n,F) no complex conjugation is implied by the † notation; that interpretation
applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation, g can be
distinguished from g† by keeping track of the relative ordering of the indices,

(g)ba → ga
b , (g†)ba → gba . (12.4)

Algebra. A set of r elements tα of a vector space T forms an algebra if, in addition
to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any two
elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =

r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (12.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβγ are called the structure constants. They form a matrix rep of
the algebra,

(tα)β
γ ≡ ταβγ , (12.6)

whose dimension is the dimension r of the algebra itself.
Depending on what further assumptions one makes on the multiplication, one ob-

tains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)ca = (tα)ba(tβ)cb , tα ∈ V ⊗ V̄ , (12.7)

and the Lie product

(tα · tβ)ca = (tα)ba(tβ)cb − (tα)bc(tβ)ab , tα ∈ V ⊗ V̄ (12.8)

which defines a Lie algebra.
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12.2 SO(3) character orthogonality
In 3 Euclidean dimensions, a rotation around z axis is given by the SO(2) matrix

R3(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 = expϕ

0 −1 0
1 0 0
0 0 0

 . (12.9)

An arbitrary rotation in R3 can be represented by

Rn(ϕ) = e−iϕn·L L = (L1, L2, L3) , (12.10)

where the unit vector n determines the plane and the direction of the rotation by angle
ϕ. Here L1, L2, L3 are the generators of rotations along x, y, z axes respectively,

L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 ,

(12.11)
with Lie algebra relations

[Li, Lj ] = iεijkLk . (12.12)

All SO(3) rotations by the same angle θ around different rotation axis n are conjugate
to each other,

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L , (12.13)

with eiφn2·L and e−iθn2·L mapping the vector n1 to n3 and back, so that the rotation
around axis n1 by angle θ is mapped to a rotation around axis n3 by the same θ. The
conjugacy classes of SO(3) thus consist of rotations by the same angle about all distinct
rotation axes, and are thus labelled the angle θ. As the conjugacy class depends only on

exercise 12.3
θ, the characters can only be a function of θ. For the 3-dimensional special orthogonal
representation, the character is

χ = 2 cos(θ) + 1 . (12.14)

For an irrep labeled by j, the character of a conjugacy class labeled by θ is

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(12.15)

To check that these characters are orthogonal to each other, one needs to define
the group integration over a parametrization of the SO(3) group manifold. A group
element is parametrized by the rotation axis n and the rotation angle θ ∈ (−π, π] ,
with n a unit vector which ranges over all points on the surface of a unit ball. Note
however, that a π rotation is the same as a −π rotation (n and −n point along the
same direction), and the n parametrization of SO(3) is thus a 2-dimensional surface of
a unit-radius ball with the opposite points identified.
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The Haar measure for SO(3) requires a bit of work, here we just note that after the
integration over the solid angle (characters do not depend on it), the Haar measure is

dg = dµ(θ) =
dθ

2π
(1− cos(θ)) =

dθ

π
sin2(θ/2) . (12.16)

With this measure the characters are orthogonal, and the character orthogonality the-
exercise 12.4

orems follow, of the same form as for the finite groups, but with the group averages
replaced by the continuous, parameter dependant group integrals

1

|G|
∑
g∈G
→
∫
G

dg .

The good news is that, as explained in ChaosBook.org Chap. Relativity for cyclists
(and in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [4]), one never needs
to actually explicitly construct a group manifold parametrizations and the correspond-
ing Haar measure.

12.3 SU(2) and SO(3)
K. Y. Short

An element of SU(2) can be written as

Uvecn̂(φ) = eiφ σ·n̂/2 (12.17)

where σj is a Pauli matrix and φ is a real number. What is the significance of the 1/2
factor in the argument of the exponential?

Consider a generic position vector x = (x, y, z) and construct a matrix of the form

σ · x = σxx+ σyy + σzz

=

(
0 x
x 0

)
+

(
0 −iy
iy 0

)
+

(
z 0
0 −z

)
=

(
z x− iy

x+ iy −z

)
(12.18)

Its determinant

det
(

z x− iy
x+ iy −z

)
= −(x2 + y2 + z2) = −x2 (12.19)

gives the length of a vector. Consider a SU(2) transformation (12.17) of this matrix,
U†(σ · x)U . Taking the determinant, we find the same expression as before:

detU(σ · x)U† = detU det (σ · x) detU† = det (σ · x) . (12.20)

Just as SO(3), SU(2) preserves the lengths of vectors.

http://birdtracks.eu/courses/PHYS-7143-19/continuous.pdf
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To make the correspondence between SO(3) and SU(2) more explicit, consider a
SU(2) transformation on a complex two-component spinor

ψ =

(
α
β

)
(12.21)

related to x by

x =
1

2
(β2 − α2), y = − i

2
(α2 + β2), z = αβ (12.22)

Check that a SU(2) transformation of ψ is equivalent to a SO(3) transformation on x.
From this equivalence, one sees that a SU(2) transformation has three real parameters
that correspond to the three rotation angles of SO(3). If we label the “angles” for the
SU(2) transformation by α, β, and γ, we observe, for a “rotation” about x̂

Ux(α) =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
, (12.23)

for a “rotation” about ŷ,

Uy(β) =

(
cosβ/2 sinβ/2
− sinβ/2 cosβ/2

)
, (12.24)

and for “rotation” about ẑ,

Uz(γ) =

(
eiγ/2 0

0 e−iγ/2

)
. (12.25)

Compare these three matrices to the corresponding SO(3) rotation matrices:

Rx(ζ) =

1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ

 , Ry(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (12.26)

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

What does this mean? At this point, probably best to switch to Schwichtenberg [6]
(click here) who explains clearly that SU(2) is a simply-connected group, and thus the
“mother" or covering group, or the double cover of SO(3). This means there is a two-
to-one map from SU(2) to SO(3); an SU(2) turn by 4π corresponds to an SO(3) turn
by 2π. So, the building blocks of your 3-dimensional world are not 3-dimensional real
vectors, but the 2-dimensional complex spinors! Quantum mechanics chose electrons
to be spin 1/2, and there is nothing Fox Channel can do about it.

http://ChaosBook.org/library/Schwicht15-2edited.pdf
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12.4 What really happened
They do not make Norwegians as they used to. In his brief biographical sketch of So-
phus Lie, Burkman writes: “I feel that I would be remiss in my duties if I failed to
mention avery interesting event that took place in Lie’s life. Klein (a German) and Lie
had moved to Paris in the spring of 1870 (they had earlier been working in Berlin).
However, in July 1870, the Franco-Prussian war broke out. Being a German alien in
France, Klein decided that it would be safer to return to Germany; Lie also decided to
go home to Norway. However (in a move that I think questions his geometric abilities),
Lie decided that to go from Paris to Norway, he would walk to Italy (and then presum-
ably take a ship to Norway). The trip did not go as Lie had planned. On the way, Lie
ran into some trouble–first some rain, and he had a habit of taking off his clothes and
putting them in his backpack when he walked in the rain (so he was walking to Italy
in the nude). Second, he ran into the French military (quite possibly while walking in
the nude) and they discovered in his sack(in addition to his hopefully dry clothing) let-
ters written to Klein in German containing the words ‘lines’ and ‘spheres’ (which the
French interpreted as meaning ‘infantry’ and ‘artillery’). Lie was arrested as a (insane)
German spy. However, due to intervention by Gaston Darboux, he was released four
weeks later and returned to Norway to finish his doctoral dissertation.”

Question 12.2. Henriette Roux asks
Q This is a math methods course. Why are you not teaching us Bessel functions?
A Blame Feynman: On May 2, 1985 my stay at Cornell was to end, and Vinnie of college town
Italian Kitchen made a special dinner for three of us regulars. Das Wunderkind noticed Feynman
ambling down Eddy Avenue, kidnapped him, and here we were, two wunderkinds, two humans.

Feynman was a very smart, forever driven wunderkind. He naturally bonded with our very
smart, forever driven wunderkind, who suddenly lurched out of control, and got very competive
about at what age who summed which kind of Bessel function series. Something like age twelve,
do not remember which one did the Bessels first. At that age I read “ Palle Alone in the World,”
while my nonwunderkind friend, being from California, watched television 12 hours a day.

When Das Wunderkind taught graduate E&M, he spent hours creating lectures about sym-
metry groups and their representations as various eigenfunctions. Students were not pleased.

So, fuggedaboutit! if you have not done your Bessels yet, they are eigenfunctions, just like
your Fourier modes, but for a spherical symmetry rather than for a translation symmetry; wiggle
like a cosine, but decay radially.

When you need them you’ll figure them out. Or sue me.
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Exercises
12.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(12.27)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e(k)

1 − i e(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?

12.2. Conjugacy classes of SO(3): Show that all SO(3) rotations (12.10) by the same angle
θ around any rotation axis n are conjugate to each other:

eiφn2·Leiθn1·Le−iφn2·L = eiθn3·L (12.28)

Check this for infinitesimal φ, and argue that from that it follows that it is also true for
finite φ. Hint: use the Lie algebra commutators (12.12).

12.3. The character of SO(3) 3-dimensional representation: Show that for the 3-dimen-
sional special orthogonal representation (12.10), the character is

χ = 2 cos(θ) + 1 . (12.29)

Hint: evaluate the character explicitly for Rx(θ), Ry(θ) and Rz(θ), then explain what is
the intuitive meaning of ‘class’ for rotations.

12.4. The orthonormality of SO(3) characters: Verify that given the Haar measure (12.16),
the characters (12.15) are orthogonal:

〈χ(j)|χ(j′)〉 =

∫
G

dg χ(j)(g−1)χ(j′)(g) = δjj′ . (12.30)

https://press.princeton.edu/titles/8839.html
http://dx.doi.org/10.2307/2316002
http://dx.doi.org/10.1007/978-3-319-19201-7




mathematical methods - week 13

Probability

Georgia Tech PHYS-6124
Homework HW #13 due Monday, November 18, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Bonus points
Exercise 13.1 Lyapunov equation 12 points

This week there are no required exercises. Whatever you do, you get bonus points.

edited November 15, 2019
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek13.tex
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Week 13 syllabus November 11, 2019

Mon A summary of key concepts

– ChaosBook appendix A20.1 Moments, cumulants

Wed Why Gaussians again?

– ChaosBook 33.2 Brownian diffusion

– ChaosBook 33.3 Noisy trajectories

Fri A glimpse of Orstein-Uhlenbeck, the “harmonic oscillator" of the theory of
stochastic processes. And the one "Lyapunov" thing Lyapunov actually did:)

– Noise is your friend

– ChaosBook 33.4 Noisy maps

– ChaosBook 33.5 All nonlinear noise is local

13.1 Literature
Really going into the Ornstein-Uhlenbeck equation might take too much of your time,
so this week we skip doing exercises, and if you are curious, and want to try your hand
at solving exercise 13.1 Lyapunov equation, you probably should first skim through
our lectures on the Ornstein-Uhlenbeck spectrum, Sect. 4.1 and Appen. B.1 here.
Finally! we get something one expects from a math methods course, an example of
why orthogonal polynomials are useful, in this case the Hermite polynomials :) .

The reason why I like this example is that again the standard ‘physics’ intuition
misleads us. Brownian noise spreads with time as

√
t, but the diffusive dynamics

of nonlinear flows is fundamentally different - instead of spreading, in the Ornstein-
Uhlenbeck example the noise contained and balanced by the nonlinear dynamics.

• D. Lippolis and P. Cvitanović, How well can one resolve the state space of a
chaotic map?, Phys. Rev. Lett. 104, 014101 (2010); arXiv:0902.4269

• P. Cvitanović and D. Lippolis, Knowing when to stop: How noise frees us from
determinism, in M. Robnik and V.G. Romanovski, eds., Let’s Face Chaos through
Nonlinear Dynamics (Am. Inst. of Phys., 2012); arXiv:1206.5506

• J. M. Heninger, D. Lippolis and P. Cvitanović, Neighborhoods of periodic orbits
and the stationary distribution of a noisy chaotic system; arXiv:1507.00462

Question 13.1. Henriette Roux asks
Q What percentage score on problem sets is a passing grade?
A That might still change, but currently it looks like 60% is good enough to pass the course.
70% for C, 80% for B, 90% for A. Very roughly - will alert you if this changes. Here is the
percentage score as of week 10.

http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.1
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.2
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.3
http://chaosbook.org/~predrag/courses/PHYS-6124-19/noiseURfriend.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.4
http://www.cns.gatech.edu/~predrag/papers/CviLip12.pdf
http://arXiv.org/abs/0902.4269
http://arXiv.org/abs/1206.5506
http://arXiv.org/abs/1507.00462
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/grades.png
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Question 13.2. Henriette Roux asks
Q How do I subscribe to the nonlinear and math physics and other seminars mailing lists?
A click here

Exercises
13.1. Lyapunov equation. Consider the following system of ordinary differential equations,

Q̇ = AQ+QA> + ∆ , (13.1)

in which {Q,A,∆} = {Q(t), A(t),∆(t)} are [d×d] matrix functions of time t through
their dependence on a deterministic trajectory,A(t) = A(x(t)), etc., with stability matrix
A and noise covariance matrix ∆ given, and density covariance matrix Q sought. The
superscript ( )> indicates the transpose of the matrix. Find the solution Q(t), by taking
the following steps:

(a) Write the solution in the form Q(t) = J(t)[Q(0) + W (t)]J>(t), with Jacobian
matrix J(t) satisfying

J̇(t) = A(t) J(t) , J(0) = 1 , (13.2)

with 1 the [d×d] identity matrix. The Jacobian matrix at time t

J(t) = T̂ e

t∫
0
dτ A(τ)

, (13.3)

where T̂ denotes the ‘time-ordering’ operation, can be evaluated by integrating
(13.2).

(b) Show that W (t) satisfies

Ẇ =
1

J
∆

1

J>
, W (0) = 0 . (13.4)

(c) Integrate (13.1) to obtain

Q(t) = J(t)

Q(0) +

t∫
0

dτ
1

J(τ)
∆(τ)

1

J>(τ)

 J>(t) . (13.5)

(d) Show that if A(t) commutes with itself throughout the interval 0 ≤ τ ≤ t then
the time-ordering operation is redundant, and we have the explicit solution J(t) =

exp

{
t∫

0

dτ A(τ)

}
. Show that in this case the solution reduces to

Q(t) = J(t) Q(0) J(t)> +

t∫
0

dτ ′ e

t∫
τ′
dτ A(t)

∆(τ ′) e

t∫
τ′
dτ A>(t)

. (13.6)

http://www.cns.gatech.edu/computers/info.html
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(e) It is hard to imagine a time dependent A(t) = A(x(t)) that would be commuting.
However, in the neighborhood of an equilibrium point x∗ one can approximate the
stability matrix with its time-independent linearization, A = A(x∗). Show that in
that case (13.3) reduces to

J(t) = et A ,

and (13.6) to what?



mathematical methods - week 14

Math for experimentalists

Georgia Tech PHYS-6124
Homework HW #14 due Monday, November 25, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 14.1 A “study” of stress and life satisfaction a) to d) 10 points

Bonus points
Exercise 14.1 A “study” of stress and life satisfaction e) 4 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited November 22, 2019
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek14.tex
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Week 14 syllabus November 18, 2019

Lecturer: Ignacio Taboada

Mon Uncertainty, probability, probability density functions, error matrix, etc.

– Ignacio’s lecture notes.

– Predrag’s summary of key concepts for a physicist:
ChaosBook appendix A20.1 Moments, cumulants.

Wed Distributions: binomial; Poisson; normal; uniform. Moments; quantiles.

– Ignacio’s lecture notes.

– For binomial theorem, Poisson and Gaussian distributions, see Arfken and
Weber [1] (click here) Mathematical Methods for Physicists: A Compre-
hensive Guide, Chapter 19.

Fri Monte Carlo (why you need the uniform ditribution); central limit theorem (why
you need normal dist). Multi-dimensional PDFs; correlation error propagation.

– Ignacio’s lecture notes.

– Predrag’s Noise is your friend and ChaosBook 33.3 Noisy trajectories
derive the closely related covariance matrix evolution formula

14.1 Statistics for experimentalists: desiderata
I have solicited advice from my experimental colleagues. You tell me how to cover this
in less than two semesters :)

2012-09-24 Ignacio Taboada Cover least squares. To me, this is the absolute most
basic thing you need to know about data fitting - and usually I use more advanced
methods.

For a few things that particle and astroparticle people do often for hypothesis
testing, read Li and Ma [3], Analysis methods for results in gamma-ray astron-
omy, and Feldman and Cousins [2] Unified approach to the classical statistical
analysis of small signals. Both papers are too advanced to cover in this course,
but the idea of hypothesis testing can be studied in simpler cases.

2012-09-24 Peter Dimon thoughts on how to teach math methods needed by experi-
mentlists:

1. Probability theory

(a) Inference
(b) random walks
(c) Conditional probability
(d) Bayes rule (another look at diffusion)

http://www.taboada.gatech.edu/
http://chaosbook.org/~predrag/courses/PHYS-6124-19/Probability_and_uncertainty_1.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.1
http://chaosbook.org/~predrag/courses/PHYS-6124-19/Distributions.pdf
http://ChaosBook.org/library/ArWe05chap19.pdf
http://chaosbook.org/~predrag/courses/PHYS-6124-19/Multi-Dpdf.pdf
http://chaosbook.org/~predrag/courses/PHYS-6124-19/noiseURfriend.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.3
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(e) Machlup has a classic paper on analysing simple on-off random spec-
trum. Hand out to students. (no Baysians use of information that you
do not have) (Peter takes a dim view)

2. Fourier transforms

3. power spectrum - Wiener-Kitchen for correlation function

(a) works for stationary system
(b) useless on drifting system (tail can be due to drift only)
(c) must check whether the data is stationary

4. measure: power spectrum, work in Fourier space

(a) do this always in the lab

5. power spectra for processes: Brownian motion,

(a) Langevin→ get Lorenzian
(b) connect to diffusion equation

6. they need to know:

(a) need to know contour integral to get from Langevin power spectrum,
to the correlation function

7. why is power spectrum Lorenzian - look at the tail 1/ω2

(a) because the cusp at small times that gives the tails
(b) flat spectrum at origin gives long time lack of correlation

8. position is not stationary

(a) diffusion

9. Green’s function

(a) δ fct→ Gaussian + additivity

10. Nayquist theorem

(a) sampling up to a Nayquist theorem (easy to prove)

11. Other processes:

(a) what signal you expect for a given process

12. Fluctuation-dissipation theorem

(a) connection to response function (lots of them measure that)
(b) for Brownian motion power spectrum related to imaginary part of re-

sponse function

13. Use Numerical Recipes (stupid on correlation functions)

(a) zillion filters (murky subject)
(b) Kalman (?)

14. (last 3 lecturs)

(a) how to make a measurement
(b) finite time sampling rates (be intelligent about it)
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PS: Did I suggest all that? I thought I mentioned, like, three things.

Did you do the diffusion equation? It’s an easy example for PDEs, Green’s
function, etc. And it has an unphysically infinite speed of information, so you
can add a wave term to make it finite. This is called the Telegraph Equation (it
was originally used to describe damping in transmission lines).

What about Navier-Stokes? There is a really cool exact solution (stationary) in
two-dimensions called Jeffery-Hamel flow that involves elliptic functions and
has a symmetry-breaking. (It’s outlined in Landau and Lifshitz, Fluid Dynam-
ics).

2012-09-24 Mike Schatz .

1. 1D bare minimum:

(a) temporal signal, time series analysis
(b) discrete Fourier transform, FFT in 1 and 2D - exercises
(c) make finite set periodic

2. Image processing:

(a) Fourier transforms, correlations,
(b) convolution, particle tracking

3. PDEs in 2D (Matlab): will give it to Predrag

References
[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Compre-

hensive Guide, 6th ed. (Academic, New York, 2005).

[2] G. J. Feldman and R. D. Cousins, “Unified approach to the classical statistical
analysis of small signals”, Phys. Rev. D 57, 3873–3889 (1998).

[3] T.-P. Li and Y.-Q. Ma, “Analysis methods for results in gamma-ray astronomy”,
Astrophys. J. 272, 317–324 (1983).

Exercises
14.1. A “study” of stress and life satisfaction.

Participants completed a measure on how stressed they were feeling (on a 1 to 30 scale)
and a measure of how satisfied they felt with their lives (measured on a 1 to 10 scale).
Participants’ scores are given in table 14.1.
You can do this homework with pencil and paper, in Excel, Python, whatever:

a) Calculate the average stress and satisfaction.

http://books.google.com/books?vid=ISBN9780120598762
http://books.google.com/books?vid=ISBN9780120598762
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1103/PhysRevD.57.3873
https://doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1086/161295
https://doi.org/10.1086/161295
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Participant Stress score (X) Life Satisfaction (Y)
1 11 7
2 25 1
3 19 4
4 7 9
5 23 2
6 6 8
7 11 8
8 22 3
9 25 3
10 10 6

Table 14.1: Stress vs. satisfaction for a sample of 10 individuals.

b) Calculate the variance of each.

c) Plot Y vs. X.

d) Calculate the correlation coefficient matrix and indicate the value of the covariance.

e) Bonus: Read the article on “The Economist” (if you can get past the paywall), or,
more seriously, D. Kahneman and A. Deaton -the 2002 Nobel Memorial Prize in
Economic Sciences- about the correlation between income and happiness. Report
on your conclusions.

https://www.economist.com/graphic-detail/2013/05/02/money-can-buy-happiness
https://www.pnas.org/content/107/38/16489.full




mathematical methods - week 15

(Non)linear dimensionality
reduction

Georgia Tech PHYS-6124
Homework HW #15 due Monday, December 2, 2019

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 15.1 Unbiased sample variance 5 points

Bonus points
Exercise 15.2 Standard error of the mean 5 points
Exercise 15.3 Bayesian statistics, by Sara A. Solla 10 points

Total of 10 points = 100 % score. Extra points accumulate, can help you still if you
had missed a few problems.

edited December 2, 2019
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http://chaosbook.org/~predrag/courses/PHYS-6124-19/exerWeek15.tex
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/HW15Solla.pdf
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Week 15 syllabus Monday, November 25, 2019

Linear and nonlinear dimensionality reduction:
applications to neural data
Lecturer: Sara A. Solla

Mon Neural recordings; Principal Components Analysis (PCA); Singular Value De-
composition (SVD); ISOMAP nonlinear dimensionality reduction; Multidimen-
sional scaling

– Sara’s lecture notes.

– Predrag’s summary of key concepts for a physicist:
ChaosBook appendix A20.1 Moments, cumulants.

15.1 Optional reading: Bayesian statistics
Sara A. Solla

Natural sciences aim at abstracting general principles from the observation of natural
phenomena. Such observations are always affected by instrumental restrictions and
limited measurement time. The available information is thus imperfect and to some
extent unreliable; scientists in general and physicists in particular thus have to face the
task of extracting valid inferences from noisy and incomplete data. Bayesian proba-
bility theory provides a systematic framework for quantitative reasoning in the face of
such uncertainty.

In this lecture (not given in the Fall 2019 course) we will focus on the problem
of inferring a probabilistic relationship between a dependent and an independent vari-
able. We will review the concepts of joint and conditional probability distributions, and
justify the commonly adopted Gaussian assumption on the basis of maximal entropy
arguments. We will state Bayes’ theorem and discuss its application to the problem of
integrating prior knowledge about the variables of interest with the information pro-
vided by the data in order to optimally update our knowledge about these variables.
We will introduce and discuss Maximum Likelihood (ML) and Maximum A Posteri-
ori (MAP) for optimal inference. These methods provide a solution to the problem of
specifying optimal values for the parameters in a model for the relationship between
independent and dependent variables. We will discuss the general formulation of this
framework, and demonstrate that it validates the method of minimizing the sum-of-
squared-errors in the case of Gaussian distributions.

• A quick but superficial read: Matthew R. Francis, So what’s all the fuss about
Bayesian statistics?

• Reading: Lyons [1], Bayes and Frequentism: a particle physicist’s perspective
(click here)

https://www.feinberg.northwestern.edu/faculty-profiles/az/profile.html?xid=16584
http://chaosbook.org/~predrag/courses/PHYS-6124-19/GATech 112519.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.1
http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://ChaosBook.org/library/Lyons13.pdf
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References
[1] L. Lyons, “Bayes and Frequentism: a particle physicist’s perspective”, Contem-

porary Physics 54, 1–16 (2013).

Exercises
15.1. Unbiased sample variance. Empirical estimates of the mean µ̂ and the variance σ̂2 are

said to be “unbiased” if their expectations equal the exact values,

E[µ̂] = µ , E[σ̂2] = σ2 . (15.1)

(a) Verify that the empirical mean

µ̂ =
1

N

N∑
i=1

ai (15.2)

is unbiased.
(b) Show that the naive empirical estimate for the sample variance

σ̄2 =
1

N

N∑
i=1

(ai − µ̂)2 =
1

N

N∑
i=1

a2
i −

1

N2

(
N∑
i=1

ai

)2

is biased. Hint: note that in evaluating E[· · · ] you have to separate out the diagonal terms
in (

N∑
i=1

ai

)2

=

N∑
i=1

a2
i +

N∑
i6=j

aiaj . (15.3)

(c) Show that the empirical estimate of form

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 , (15.4)

is unbiased.
(d) Is this empirical sample variance unbiased for any finite sample size, or is it unbiased
only in the n→∞ limit?

Sara A. Solla

15.2. Standard error of the mean.
Now, estimate the empirical mean (15.2) of observable a by j = 1, 2, · · · , N attempts to
estimate the mean µ̂j , each based on M data samples

µ̂j =
1

M

M∑
i=1

ai . (15.5)

Every attempt yields a different sample mean.

http://dx.doi.org/10.1080/00107514.2012.756312
https://doi.org/10.1080/00107514.2012.756312
https://doi.org/10.1080/00107514.2012.756312
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(a) Argue that µ̂j itself is an idd random variable, with unbiased expectation E[µ̂] = µ.
(b) What is its variance

Var[µ̂] = E[(µ̂− µ)2] = E[µ̂2]− µ2

as a function of variance expectation (15.1) and N , the number of µ̂j estimates? Hint;
one way to do this is to repeat the calculations of exercise 15.1, this time for µ̂j rather
than ai.
(c) The quantity

√
Var[µ̂] = σ/

√
N is called the standard error of the mean (SEM); it

tells us that the accuracy of the determination of the mean µ. How does SEM decrease as
the N , the number of estimate attempts, increases?

Sara A. Solla

15.3. Bayes. Bayesian statistics.

http://ChaosBook.org/~predrag/courses/PHYS-6124-19/HW15Solla.pdf


mathematical methods - week 16

Calculus of variations

Georgia Tech PHYS-6124
Homework HW #16 due whenever in 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort

Optional exercises
Problem set #0 Farmer and the pig 0 points

Problem set #1 Fermat’s principle 0 points

Problem set #2 Lagrange multipliers 0 points

No points for any of these, but solutions available upon request.
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http://ChaosBook.org/~predrag/courses/PHYS-6124-12/05_hw_00.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/06_hw_01.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/PCset2.pdf
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Perhaps, by now, you have gotten drift of what this course is about. We always start
with something intuitively simple and obvious; all topics are picked from current, on-
going research across physics and engineering. Then we let mathematics take over,
and bang! math takes you someplace where your intuition fails you, and the surprising
path that Nature had picked instead is stunningly beautiful. Like quantum mechanics,
or electron spin.

There is so much more essential mathematical physics we never got to... For ex-
ample, I would have loved to discuss the calculus of variations, and whether the God
does exist?

In either case, I wish you a great, stimulating, rewarding 2020!

Mon Calculus of variations.

– ChaosBook sect. 34.3 Least action method

– P. Goldbart notes

– M. Stone & P. Goldbart Chapter 1

Wed (No class meeting) Lagrange-Euler equations; Lagrange multipliers.

– M. Stone & P. Goldbart Chapter 1

– M. Stone & P. Goldbart Section 1.5

– Example 16.1 Gaussian minimizes information

– Read only if things nonlinear interest you: A variational principle for
periodic orbit searches; read Turbulent fields and their recurrences first.

Fri (No class meeting) From Lagrange to Hamilton; Constrained Hamiltonian sys-
tems; Dirac constraints.

– Cristel Chandre Lagrange to Hamilton notes

– Cristel Chandre Dirac constraints notes

16.1 Calculus of variations
Think globally, act locally.

— Patrick Geddes

It all started by pondering elementary geometrical problems, such as ChaosBook 34.3
Least action method reflection and refraction of light rays, but by the end of 18th
century d’Alembert (1742), Maupertuis (1744), and an Italian immigrant to France,
Joseph-Louis de La Grange (1788) knew that classical mechanics in phase-space of
any dimensions can be recast -in a demonstration of divine elegance- as a variational
condition on a single scalar (!) function. In physics that is known as “the principle of
least action,” in engineering as “constrained optimization,” and the function is known
as respectively the “Lagrangian” or the “cost” function.

https://gatech.instructure.com/courses/56198
https://gatech.instructure.com/courses/56198
http://ChaosBook.org/chapters/ChaosBook.pdf#section.34.3
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/PG93-calcVar.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/StGoChap1.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/StGoChap1.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/StGoChap1.pdf
http://ChaosBook.org/~predrag/papers/preprints.html#POextract
http://ChaosBook.org/~predrag/papers/preprints.html#POextract
http://www.chandre.fr/
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/Lagrange-Hamilton.pdf
http://ChaosBook.org/~predrag/courses/PHYS-6124-12/Hamilton-Dirac.pdf
http://en.wikipedia.org/wiki/Think_globally,_act_locally
http://ChaosBook.org/chapters/ChaosBook.pdf#section.34.3
http://ChaosBook.org/chapters/ChaosBook.pdf#section.34.3
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In the regulation physics indoctrination classes, Lagrangians are always presented
as an partial derivative gymnastics orgy relatives of the cuddly old Hamiltonians. But
that totally misses the point. Hamiltonian formulation obtains solutions of natural laws
by integration in time for given, locally specified initial conditions. Lagrangian formu-
lation seeks global solutions, to be obtained without any time or space integrations.

Maupertuis saw this as a proof of the existence of God, Lagrange as merely a bag
of useful mathematical tricks to solve mechanical problems with constraints. Neither
could dream that in 20th century the masters of Lagrangians would be not physicists,
but robotics engineers, and that Lagrangians would be central to the formulation of
special and general relativity, quantum mechanics and quantum field theory (Feynman
path integrals), a succinct statement of the myriad spatiotemporal and internal symme-
tries of modern particle physics.

In 21st century this goes by name of “Machine Learning" or even “Deep Learn-
ing;" I have invited our friend from Minsk to tell us all about it. “Machine learning"
is typically a gradient-descent method or a neural network for searching for desired
answers, and that would be vastly improved if we knew how to impose natural laws as
constraints on the spaces one searches in. That turns out to be surprisingly hard. In
the class I tried to explain how one imposes constraints in the Lagrangian constrained-
optimization formalism.

We illustrate the principle by answering the question that might have bugged you
in the recent weeks - what’s so special about Gaussians?

Example 16.1. Gaussian minimizes information. Shannon information entropy is
given by

S[ρ] = −〈ln ρ〉 = −
∫
M
dx ρ(x) ln ρ(x) , (16.1)

where ρ is a probability density. Shannon thought of − ln ρ as ‘information’ in the sense
that if -for example- ρ(x) = 2−6, it takes − ln ρ = 6 bits of ‘information’ to specify the
probability density ρ at the point x. Information entropy (16.1) is the expectation value
of (or average) information.

A probability density ρ ≥ 0 is an arbitrary function, of which we only require that it is
normalized as a probability, ∫

M
dx ρ(x) = 1 , (16.2)

has a mean value, ∫
M
dx x ρ(x) = µ , (16.3)

and has a variance ∫
M
dx x2ρ(x) = µ2 + σ2 . (16.4)

As ρ can be arbitrarily wild, it might take much “information” to describe it. Is there
a function ρ(x) that contains the least information, i.e., that minimizes the information
entropy (16.1)?

To find it, we minimize (16.1) subject to constraints (16.2)-(16.4), implemented by

https://youtu.be/gXlfXirQF3A
https://en.wikipedia.org/wiki/Entropy_(information_theory)
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adding Lagrange multipliers λj

C[ρ] =

∫
M
dx ρ(x) ln ρ(x)

+λ0

(∫
M
dx ρ(x)− 1

)
+ λ1

(∫
M
dx x ρ(x)− µ

)
+λ2

(∫
M
dx (x− µ)2ρ(x)− σ2

)
, (16.5)

and looking for the extremum δC = 0,

δC[ρ]

δρ(x)
= (ln ρ(x) + 1) + λ0 + λ1x+ λ2x

2 = 0 , (16.6)

so
ρ(x) = e−(1+λ0+λ1x+λ2x

2) . (16.7)

The Lagrange multipliers λj can be expressed in terms of distribution parameters µ and
σ by substituting this ρ(x) into the constraint equations (16.2)-(16.4), and we find that
the probability density that minimizes information entropy is the Gaussian

ρ(x) =
1√
2πσ

e
− (x−µ)2

2σ2 . (16.8)

In what sense is that the distribution with the ‘least information’? As we saw in the
derivation of the ChaosBook appendix A20.1 cumulant expansion eq. (A20.7), for a
Gaussian distribution all cumulants but the mean µ and the variance σ2 vanish, it is a
distribution specified by only two ‘informations’, the location of its peak and its width.

Sara A. Solla

And that’s all, folks.

http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.1
http://ChaosBook.org/~predrag/courses/PHYS-6124-19/applause-4.mp3
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The epilogue, and what next?

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

Student evaluations : 11 out of 21 students filled in the questionnaire, with a
bimodal distribution, typically 4 at the “Exceptional” end, and 4 at the other, “Very
Poor’ end.

Positive evaluations along lines of “This course’s best aspect was the breadth of
material covered,” “This expended effort for this course was proportional to the amount
of material I wanted to learn,” are not included in what follows; we focus on criticisms,
and how to improve the course for the future students.

Several students have written in depth about the problems with the course. These
valuable comments are merged (for student privacy) and addressed below, to assist
future instructors in preparing this annual physics Fall course aimed at the incoming
graduate students.

Structure of the course comments :

The course is taught as a very rushed sweep of complicated mathematical con-
cepts, trying to go much more in-depth with the topics than we had time for,
and, as result, I understood almost nothing. The beginning of the course was
on topics some had seen in other physics or math courses, but from the start the
course often felt inaccessible if you did not already have some familiarity with
whichever topic was being lectured on. By the last third, we faced quite ad-
vanced math topics that only a student with a degree in mathematics would have
possibly seen, so attempting to research these topics without any background or
any semblance of a direction to start was mind-numbingly frustrating at best, and
a complete waste of time at worst.

There is no consistent textbook for the course. The recommended multiple texts
for each individual topic lead to a disorienting mess of information hunting that
ends up with the student cutting their losses and giving up.

The homework was extremely abstractly related to the lecture and did not touch
upon the aspects we talked about in class. Homework problems varied between

113
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very easy to wildly difficult (or difficultly worded). One had to research for
hours to figure out the material necessary to do the homework, as it was never
addressed in class nor was there any dedicated textbook on which to rely.

The most important issue of this course is consistency, the severe lack of cor-
relation between lecture, study, and homework. Lectures are inconsistent with
homework assignments, and often one finds that the information required to do
a problem is revealed the same day the homework is due, maybe even days later.

The workload for this course was not appropriate for a pass/fail class. It was
unclear what grade constitutes a pass until about 2/3 through the course. The
best part of the course was that it was pass/fail. This reduced the overall stress
of the ineffectiveness of the course, so it did not impact my other courses at all.

With the lecturing to the board, many minutes can pass with your hand up
before the instructor turns to the class to notice you might have a question.

If I’m getting next to nothing of value from lecture and have to do all this re-
search on my own just to stand a chance at completing a homework problem,
why show up? I was so lost in this course almost all the time that I eventually
found it useless to attend class, and learned much more by reading textbooks
not assigned by the course, in order to hopefully glean something useful to solve
the esoteric problems. These severe issues encouraged skipping class; minimal
practice/learning was actually achieved.

Action :

In the first semester of graduate school, and as a required course, the incoming
class of graduate students needs a traditional, clearly structured textbook course,
with clearly spelled out expectations for each learning step, and much better
learning practices than what this version of the course offered.

Use one consistent textbook that guides the entire course (lecture, study, and
homework).

Assign homework directly relevant to what students learned in class (the lecture
taking place before the homework is due), and requiring no outside research.
Have someone read over the homework questions before they are assigned to
make sure that what is being asked is clear. For advanced topics, make home-
work optional.
State on course homepage the grade required for a pass.

Keep the course pass/fail if it remains a required course. (However, starting
Fall 2020 Math Methods will no longer be required for all 1st year physics grad
students. It will be an elective, letter grade course, not pass/fail.)

Have a deep look at how this course was taught and what students found dif-
ficult; try to relate to the average learner. Understand better what a student is
asking. To facilitate that, at the beginning of a class go through a bullet-point list
of concepts covered in the previous class, ask for questions related to each. On
the days the homework is due, go through problems, ask what difficulties were
there with each one.
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Integrate the students into teaching by asking them more questions. Allow for
more time to fully discuss the topics. Give clear explanations, not slowing down
but actually taking ideas step by step, with students contributing.

Instructor comment :

This is one of the first graduate school courses encountered by incoming stu-
dents, of vastly different backgrounds. Not only should I have not assumed a
high level of prior knowledge, but at this point students do not need to be taught
in a style that reflects the ways knowledge is acquired in actual research, involv-
ing multiple sources, approaches, and notations.

Advanced approach is better suited to second or later years of graduate study.
Indeed, the School of Physics plans to offer such research oriented course (PHYS
4740/6740, to be initially taught by Grigoriev) as an advanced elective.

Course content comments :

The course topics were very interesting, and it is a shame that there was not
enough time to explore them in depth. Great balance on the wide scope and
enough difficulty of the course. Such a class is very useful and I would still be
interested to learn more about the topics covered.

Cover less group theory.

Dedicate one week to the calculus of variations.

Action :

Teach fewer topics; spend more time on each topic.

Instructor comment :

There were no detailed students comments on course content, except the two
listed above.

The choice of course topics was quite different from what is covered in tradi-
tional mathematical methods courses, in order to reflect the current research in
the School of Physics and in the engineering schools; fewer topics preparatory
to E&M and QM courses, more topics related to physics of living systems, soft
condensed matter and the analysis of experimental data. I am not aware of any
textbook that covers this ground.


	Linear algebra
	HomeworkHW1
	Literature
	Matrix-valued functions
	A linear diversion
	Eigenvalues and eigenvectors
	Yes, but how do you really do it?

	References

	Eigenvalue problems
	HomeworkHW2
	Normal modes
	Stable/unstable manifolds
	References

	Go with the flow
	HomeworkHW3
	Linear flows
	Stability of linear flows
	Nonlinear flows
	Optional listening
	References

	Complex differentiation
	HomeworkHW4
	References

	Complex integration
	HomeworkHW5
	References

	Cauchy - applications
	HomeworkHW6
	References

	Method of steepest descent
	HomeworkHW7
	Saddle-point expansions are asymptotic
	Notes on life in extreme dimensions
	References

	Discrete Fourier transform
	HomeworkHW8

	Fourier transform
	HomeworkHW9
	Examples
	A bit of noise
	References

	Finite groups
	HomeworkHW10
	Group presentations
	Permutations in birdtracks

	Literature
	References

	Continuous groups
	Homework 11
	It's all about class
	Lie groups
	Continuous groups: unitary and orthogonal
	References

	SO(3) and SU(2)
	Homework 12
	Linear algebra
	SO(3) character orthogonality
	SU(2) and SO(3)
	What really happened
	References

	Probability
	Homework 13
	Literature

	Math for experimentalists
	Homework 14
	Statistics for experimentalists: desiderata
	References

	(Non)linear dimensionality reduction
	Homework 15
	Optional reading: Bayesian statistics
	References

	Calculus of variations
	Homework 16
	Calculus of variations

	The epilogue, and what next?

