Mathematical Methods of Particle Astrophysics

Both in gamma ray and neutrino astronomy, many experiments
are “counting experiment”. I'll center my discussion on this

topic.

Reference:
Statistics for Nuclear and Particle Physics. Louis Lyons.
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Probability and probability density functions

Throwing a dice results into a finite number of possible outcomes (six).
You can calculate probabilities for each outcome.

For situations in which the outcome is a real number (non-countable
and dense), the probability of specific value being measured can’t be
calculated. Instead you can calculate the probability of measuring a
range of values:

P:/;fd:pf(a:) lzfoodxf(a:)

1 — OO

Example: the height of an infinite group of people. In fact, MDs report
the “percentile” for height — which is the probability that you are at or
above your measured height. Clearly this is an approximation, there is
a finite number of people.
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Probability density functions / distributions

Example: A Gaussian distribution is

L w20
V2mo?
The histogram below was generated for u=0 and o=1, with 500 and
25000 random samples. Note that in a histogram each bin has a well
defined probability, i.e. each bin is an integral over the pdf.

Phys 8803 — Special Topics on Astroparticle Physics — Ignacio Taboada



Moments

For a given pdf, you can define the nthr-moment:

Ho, = /OO 2" f(z)dx

— 00

| = /_O; f(2)dz

The first 4 moments have names:

ph = /OO v f (x)dx s :/ v f (@)da

Recall that

— OO
— OO
mean skewness
O O
o= [ @) o= [ atf(a)ds
— 00 — 00
variance kurtosis
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Mean and variance estimates

The situation arises that you don’t know a distribution or it’s
moments. (If you know all moments, you know the distribution).
You can estimate the mean L and the variance o2 this way:

oy
x PR
N
1=1
N —\2 : 2
(x; — T) You need at least 2 measurements to estimate s-.
Z Hence you have N-1 degres of freedom.
i=1

As N - oo, T — p and s — g2

The standard deviation is s. The standard deviation is a common
estimator for statistical error.
I’ll use a bar to denote estimates ...
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Binomial Distribution

Imagine an experiment that can only have two outcomes. The success
outcome has probability p and the fail outcome has probability 1-p.

The probability of obtaining r successes after N independent tries is
given by the binomial distribution:

P) = sy 1=

The average is:

N
T = ZTP(’I“) — Np
r=0
And the variance is:
o® = Np(1 —p)
If p is unknown: N - -
_ 2
p=T/N S:N—lNN(l_N>
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Binomial distribution

Example: Imagine a detector with 1000 channels. Each channel has a
noise rate of 1 kHz. You want to know the probability of observing 1, 2,
3, etc. noise hits in separate channels in a time window of 1

microsecond.

Because the readout window is small, then p=1 kHz x 1 ps = 1073,

1000!
. /1 .\1000 _ — —p)?? = 0.
Then:  p(0) = (1-p)'* =0368  P(1) = ggorp(l —p)™" = 0.368
B 1000! 2 B 998 . 1000! 3 997 __
(2) = 5w 9031” (1—-p)"*=0.184 P(3) = 3T 99717 (1 —p)”7" =0.061
=103 x 1000 = 1 0% =1000 x 107°(1 — 107°) = 0.999

(You can go ahead and try this with Veritas, IceCube, etc ...)
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Poisson distribution

In the limit N — oo and p — 0 such that Np = i is constant,
the binomial distribution becomes the Poisson distribution.

_
P(r) = e

The average value of the Poisson distribution is L and its
variance is . (Both of this follow trivially from the binomial
distribution values.

This is the basis for the n + v/n estimate of error in a counting
experiment.
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Poisson distribution

Example: Imagine a detector with 1000 channels. Each channel
has a noise rate of 1 kHz. You want to know the probability of
observing 1, 2, 3, etc. noise hits in separate channels in a time
window of 1 microsecond.

Because the readout window is small, thenp=1kHzx 1 s =
103. Andthus i=1ands’=1

P(0) = e " = 0.368 P(1) = pe ™ = 0.368
p p
P(2) = e " =0.184 P(3) = e = 0.061

These are the same results than with binomial... You can go
ahead and try with small N or with large p and check that the
two distributions don’t give the same result anymore.
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Normal (Gaussian) distribution

When L is large, the Poisson distribution is well described by a
Gaussian distribution of variance L.

For arbitrary mean [ and variance o?:

P(z) = 1 o—(x—n)? /207

V2mo?
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Central Limit theorem

The mean of a sufficiently large number number N of
independent random variables, each with finite mean U and
variance o2, will be normally distributed. The mean of the
Gaussian will be 1 and the variance o%/N.

Clearly the Central limit theorem explains why repeating
measurements is a good idea, and why using a normal
distribution is correct in estimating the spread of measurements.

A word of caution: measurement spreads are not always
normally distributed.
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Central Limit Theorem

Example:

Use a ruler to measure the length of a table and you get 99.7 cm
you estimate the error of your measurement to be 0.1 cm.

You measure the table 3 times more, each measurement
vielding 99.7 £ 0.1 cm.

Applying the central limit theorem yields a measurement for the
table of 99.70 £ 0.05 cm.

Think of at least 3 reasons why this is an incorrect application of
the central limit theorem.
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Some properties of the normal distribution

The height of the curve at x = u+o is e/2 = 0.607, so the G is
roughly half width at half height for the normal distribution.

Common values of the fractional area under a normal are:

Range Area 1-Area
H-O < X <p+0 0.683 0.317
M-1.6440 < x <u+1.6440 0.90 0.1
HU-20 < X <U+20 0.9545 0.455
M-2.5750 < x <U+2.5750 0.99 0.01
M-30 < X <p+30 0.99730 0.00270
U-40 < x <U+40 0.9999366 6.334x107
M-50 < X <P+50 0.9999994 5.733x10”7

1 /‘7[j
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Some properties of the normal distribution

Range Area 1- Area
X <M+0 0.8413 0.1587
X <U+20 0.9772 0.0228
X <M+30 0.9987 0.0013
X <p+40 0.9999683  3.167x10°
X <U+50 0.999999713  2.867x10”

This is known as the cumulative distribution function for the
normal distribution:

1 r 2 2 1 xr —
—@mn) /207 g = (1 +erf( ,u))
VvV 2mo? /—ooe 2 ov?2
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P-value

The p-value is the probability of observing a test statistic at least as
extreme as the one actually observed assuming a null hypothesis. The
p-value calculation assume that the null hypothesis IS true.

Example. In a counting experiment with large background B, the null
hypothesis is well described by the pdf

P(z) = I _—@-B)?)2B

V21 B

Recall that in this case the variance is B. If you observed N events, the
p-value of N is:

1 o0 5 1 N — B

_ —~(@=B)?/2B 4. — = (1 _ )
(& €ZT er

b V2B /N 2 ( U V2B )

The test, statistics doesn’t have to be a normal distribution, yet it is
common to translate p-value into sigmas using the table in the
previous slide.
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P-value

The practice of using 5 s as a discovery threshold is widespread.
This is an arbitrary threshold (which is fine).

You should however define the p-value for discovery a priori.
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Sensitivity of a counting experiment

Imagine a detector in which the background, B, is large. Assume that
you can somehow measure B experimentally using on/off-time
techniques, then a given fluctuation in the on-time region has the
significance:

Non — Nogg S

VNt VB

This sensitivity is motivated by comparing the standard deviation of
the background, v/ B to the signal.

Sig =

Li and Ma (1983) have shown that this naive formula is inappropriate

because the uncertainties in the signal and background are ignored.
See Li & Ma (1983) equation 17 for a more appropriate calculation.

However the naive calculation is a very good approximation for small
uncertainties. Li & Ma is the de facto standard in Gamma Ray
astronomy.
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Parameter fitting — least squares

Imagine that you have a set of measurement y, + Ay,
corresponding to a parameter x, e.g. resistance (y) as a function
of temperature (x). You have hypothetical description of y(x,a.),
where o, are Nf, unknown parameters of the function.

We can build the %2 :

(v —ylzi o)\
2 7 1y g
e ()

Here O, are the estimated 1-0 errors from the theoretical
estimate. Note that this is different that using o, = Ay.. This latter
choice is however often incorrectly used.
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Least squares

The best possible values of o, are obtained by minimizing v? with

respect to o

x>

A T—
8aj

In the case of a linear hypothesis (y=a+bx), the minimization is

solving a sent of N-Ng, linear equations.

The %2 value has a probabilistic interpretation. But first note that
there are N-Nf, “degrees of freedom”. There are N-Nfit
independent terms in x?, so:

XQQN—Nﬁt
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Least squares

A very low value of %2 indicates suspiciously overestimated errors, a
very high value of %2 indicates a hypothesis that doesn’t describe the
data. Many different hypothesis can result in reasonable x? values!

The probability P that a value x? obtained from an experiment with d
degrees of freedom is due to chance is:

—1 oo
Py = [zd/Zr(d/z)} / t3/2=1e=t/2 gt
X

2

(this is actually a cumulative distribution function)

An online calculator is:
http://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html
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Least squares example

Measurements
Hypothesis:

1 6 y =a+ b X

2 5 )
Assume error is

3 7 o = 1

4 10

The %2 is:

Y2(a,b) =[6 — (a +10)]* + [5 — (a + 2b)]* + [T — (a + 3b)]*> + [10 — (a + 4b)]?

Minimizing with respect to a and b you have a set of 2 equations (N-Nfit),
that can be solved (this is just linear algebra)

a=35b=14,%>=4.2
The probability of a %2 distribution exceeding 4.2 for 2 degrees of
freedomis P, 2_y 2 g—o = 0.1224
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Parameter fitting — maximum likelihood

Let’s study the example of a particle physics interaction leading
to an angular distribution of the form:
dn
d cosf
Let’s assume that a and b are unknown.

—a+bcos? 0

As a first step we normalize this distribution and transform it
into a probability density function:

y(a/b) = 201 1 b/3a) (1+b/acos”0)

By doing this, we note that the pdf is a function of b/a. It’s this

parameter that we will be able to fit. The overall normalization
of dn/dcosf is not relevant here.

Phys 8803 — Special Topics on Astroparticle Physics — Ignacio Taboada



Parameter fitting — maximum likelihood

Let there be i=1,...,N events, each with a measured 0. angle.
Then for each event we can calculate

1+ b/acos®6;)

YT (11 b/3q) (

We define the likelihood as the joint pdf for all events:

L(b/a) = Hyz

Maximizing L, provides for the best possible value of b/a
assuming that the hypothesis y(b/a) is correct. Observe that the
normalization constant of dn/dcosO depends on b/a — so using a
normalized pdf, instead of just any distribution is critical.
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Parameter fitting — maximum likelihood

There’s no straight forward probabilistic interpretation for the
likelihood. If a fit is a good description of the data, then L__, is
“large”, if it’s bad, then L__ is “small”. The difficulty relies on
determining what is large and what is small.

In some simple cases, a “good” value of L__ can be estimated
directly, in others, it is done brute force by finding the
distribution of L__ for events that fit the hypothesis.

Note that in practice, the maximization of L is done numerically.
It is usually better to minimize —logL, that to maximize L
directly. But this is only for numerical convenience.
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Parameter fitting — maximum likelihood

Imagine a likelihood function of one parameter, i.e. L__ (p). The
best value of p is found via

dL

gy

dp
Near the maximum, the likelihood function is well described by a
second order parabola (this follows trivially from Taylor series
expansion). The uncertainty in p can be found by how wide or
narrow the likelihood is near the maximum

d2£)—1/2

O':(—d—p2
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Relationship between least squares and likelihood

Let (x,y;) be a data set and y(x) a hypothesis. Assume that the
uncertainty of y(x) is normally distributed with constant variance

0. The pdf evaluated at x; is:

]_ 2 2
) — —(%—y(w)) /20
flw:) = 2#026

You can now write a Iikelihood function for the data set:

(mi—y(l’))Q/QUQ

ﬁnm

From which it follows:

1 1 o (2 — y())2
VvV 2mo? 52221 o2

This looks familiar ...

—log(L) = —N log(

Phys 8803 — Special Topics on Astroparticle Physics — Ignacio Taboada



Relationship between least squares and likelihood

The maximization of L is equivalent to minimizing —logL. Since
the first term in —logL is constant, it doesn’t matter for

minimization.

Maximizing L is equivalent to (I dropped the factor of }4)
minimizing:
2

2=y @y

1=1

Least squares is mathematically the same as a the likelihood
method if you assume normally distributed errors.
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Hypothesis testing with least squares

Assume that you have j=1, ..., M (large) experiments, each
experiments with a data set of I = 1,..., N data points (x; ;).
Assume a hypothesis y(x). Each experiment has a minimum value
for least squares ij, with d degrees of freedom. You can
calculate the list of probabilities of of observed c2j exceeding
that value.

—1
Py = [zd/Qr(d/z)} / $d/2=1=t/2 gy
X

X 5
J

Assuming that the hypothesis y(x) is good and assuming that
errors are distributed normally, then P should be distributed
uniformly.
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Likelihood ratio test

Assume two hypothesis for a counting experiment. For the null
hypothesis, and the alternative hypothesis. The null hypothesis is a
special case of the alternative hypothesis. Let N be the observed
events, n, (unknown) signal events and N-n, the background events.

Let L(n,N-n,) be the likelihood for the alternative hypothesis. Then
the null hypothesis likelihood is £(0,N). You can define the likelihood

ratio:
L(ng, N —ny)

A= £(0,N)
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Likelihood ratio test

Maximizing A with respect to n, yields the most likely value of
n.. The distribution of A allows the calculation of a p-value for
the observed A, ., and thus determining a criteria for which
hypothesis is more likely. In practice the distribution of A is
obtained via simulations or from data known to be well
described by background only.

Numerically, it is often more convenient to minimize —logA than
to maximize A.
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