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19.20 The volume of fluid carried along by the flow between cylinders of length L
per unit of time becomes
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This is equivalent to the volumetric discharge rate for pipe flow, although no fluid is
actually discharged here.

19.21 Per unit of length the kinetic energy is
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19.22 In cylindrical coordinates assume that the flow field is radial, v = vr(r)er

outside the pipe. Volume conservation implies that vr2πrL is the same for all r. Hence
vr(r) = Q/2πr where Q is the volume flow through the pipe wall per unit of pipe length.

19.25 a) Q = adLΩ/2 ≈ 470cm3/s. b) E = 2πηΩ2a3L/d ≈ 10J/s.

19.26 Using (18-18) we obtain
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20 Creeping flow

20.2 Let v be the velocity field in the rest frame of the body. The total work of the
body on the fluid is in the rest frame of the asymptotic fluidI

S

X
ij

(vi − Ui)(−σij) dSj =
X

i

Ui

I
S

X
j

σij dSj = U ·F = UD (20-A1)

where it is used that vi = 0 at the surface of the body.

20.3 a) Follows from linearity of the field equations and the pressure independence
of the boundary conditions.

b) The field equations are

r2Rij =riQj (20-A2)X
i

∇iRij = 0 (20-A3)

The boundary conditions are for |x| → ∞
Rij(x) → δij (20-A4)

Qi(x) → 0 (20-A5)
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20. CREEPING FLOW 701

At the surface of the body the velocity field must vanish, n ·RRR(x) = 0.
c) The stress tensor is

σij = −pδij + η(∇ivj +∇jvi) = η
X

k

τijkUk (20-A6)

where

τijk = −δijQk +∇iRjk +∇jRik (20-A7)

The total force on the body with surface S is
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This shows that

Sik =
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may be understood as a form factor, such that
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20.4 a) The discharge is at θ = π/2
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c) The ratio vanishes because of the no-slip condition which requires the velocity to
vanish at the surface of the sphere.

20.6
(a) Write x = rer and use (C-15) to obtain

dx
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(b) Combine the differential equations to obtain
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which is a solvable first order equation. The integral over r is carried out by
means of partial fractions
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(c) For r →∞ we get d → r sin θ =
p

x2 + y2.

(d) Put θ = π
2

to get d = (r− a)
p

1 + a/2r where r is the point of closest approach.
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