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4.10 Solving for the pressure we find

P =
nRT

V − nb
− n2a

V 2
. (4-A2)

a) Differentiating we get

KT = −V

�
∂p

∂V

�
T

=
nRTV

(V − nb)2
− 2an2

V 2
(4-A3)

b) It can become negative for

nRT <
2an2(V − nb)2

V 3
(4-A4)

When K < 0 the gas must condense.

4.11 a) The differential of a function is

dQ =
∂Q

∂T
dT +

∂Q

∂V
dV . (4-A5)

so that A = ∂Q/∂T and B = ∂Q/∂B. Then ∂A/∂V = ∂B/∂T = ∂2Q/∂V ∂T .
b) We have A = CV and B = nRT/V , and thus ∂A/∂V = 0 and ∂B/∂T = nR/V 6=

0.

5 Buoyancy

5.1 Under a shift of the origin of the coordinate system x → x + a the moment of
force transforms to

M =

Z
V

x× f dv →
Z

V

(x+ a)× f dv =M+ a×F
If F = 0, the moment of force is unchanged.

5.2 0.04 m3. 2500 kg/m3.

5.3 Use M = ρ0V0 = ρ1V1 and πa2h = V1 − V0 = M(1/ρ1 − 1/ρ0) to get h = 20 mm.

5.4 a) Displacement M1 + M2 = ρ0((1− f)V1 + V2) with M1 = ρ1V1 and M2 = ρ2V2.
Then

M1

M2
=

1− ρ0

ρ2

(1− f)
ρ0

ρ1
− 1

= 2.36

b) f ≤ 1− ρ1/ρ0 = 0.35.
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5.5

a) d0 =
M

2aLρ0
.

b) d = h + d0.

c) zG0 = b− h(2b− h)

2d
.

d) The movement of the real water inside the hull shifts the center of mass of the
ferry horizontally by exactly the same amount as the center of buoyancy was
shifted by the displaced water (provided h À αa and provided the water is free
to move and can adjust itself fast enough). This means that stability condition
reverts to that of absolute stability zG0 < zB0 . Stability can only be obtained if
there is so much water on the car deck that the center of gravity becomes lower
than the center of buoyancy. This happens for h > b − d0/2, i.e. for sufficiently
much water on the deck (at this point d > b+d0/2 so the ferry is well into sinking
when it finally becomes stable). The conclusion is that any small, but not too
small, amount of water inside the hull tends to destabilize the ferry.

5.6 Using Gauss theorem, the moment of buoyancy is

(MB)i = −
Z

S

X
jk

εijkxjp dSk = −
Z

V

X
jk

εijk∇k(xjp) dV

= −
Z

V

X
jk

εijkxj∇kp dV = −
Z

V

(x×rp)i dV

Using local hydrostatic equilibrium (4-18) we get,

MB = −
Z

V

x× ρfluidg dV (5-A1)

5.10 Under a rotation of the coordinate system by φ, the coordinates transform ac-
cording to (??). The components of the area moment tensor transform as

Ix′x′ = Ixx cos2 φ + Iyy sin2 φ + 2Ixy sin φ cos φ (5-A2)

Iy′y′ = Ixx sin2 φ + Iyy cos2 φ− 2Ixy sin φ cos φ (5-A3)

Ix′y′ = (Iyy − Ixx) sin φ cos φ + Ixy(cos2 φ− sin2 φ) (5-A4)

If the area has a discrete symmetry such there will be at least one angle φ 6= 0, π such
that Ix′x′ = Ixx, Iy′y′ = Iyy and Ix′y′ = Ixy. For this angle we thus have

(Iyy − Ixx) sin2 φ + 2Ixy sin φ cos φ = 0 (5-A5)

(Ixx − Iyy) sin2 φ− 2Ixy sin φ cos φ = 0 (5-A6)

(Iyy − Ixx) sin φ cos φ− 2Ixy sin2 φ = 0 (5-A7)

The two first equations are the same, and the last two can only be satisfied if Ixx = Iyy

and Ixy = 0 when φ 6= 0, π.
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5.11 The center of gravity is at the center of the cube zG = 0 and the submerged
volume is V = 1

2
in all orientations. For symmetry reasons the center of buoyancy is

vertically below the center of gravity in all three cases:
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Here the cube floats with two
faces horizontal and four
vertical. This configuration
is unstable. The x-axis goes
into the paper.

a) The block is floating with two faces horizontal and the other faces vertical. Here
we use (5-32) with a = b = c = 2d = 1 and find the metacentric height zM = − 1

12

which is is below the center of gravity. This configuration is manifestly unstable.

b) The block is floating with one horizontal edge below the water, one above the
water, and two in the waterline. In this configuration the waterline area is a
rectangle with sides 1 and

√
2. Taking the x-axis along the horizontal edges, we

find the moments
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Here the cube floats with
one edge horizontal and two
edges in the waterline. This
configuration is marginally
stable (or unstable). The
x-axis goes into the paper.

Ixx =

Z 1
2

− 1
2

dx

Z 1
2
√

2

− 1
2
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2

dy y2 =
1
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√
2 (5-A8)

Iyy =

Z 1
2
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2

dx

Z 1
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dy x2 =
1

12

√
2 (5-A9)

Ixy = 0 (5-A10)

The center of buoyancy is given by (5-29) with A(z) =
√

2 + 2z at depth z,

zB = 2

Z 0

− 1
2
√

2

z(
√

2 + 2z) dz = −1

6

√
2 (5-A11)

Thus the metacenter (for the smallest moment) is at

zM = zB +
Iyy

V
= 0 (5-A12)

This floating configuration is hus marginally stable for rotations around the y-axis
which lower a corner and raise another. That brings us to the last configuration.
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Here the cube floats with the
lower left corner vertically
below the center of gravity
(gravity points downwards
to the left in this picture).
The waterline area is a
regular hexagon (dashed).

c) The block is floating with one corner vertically below the center of the cube. In
this case the waterline area is a hexagon with sides of length 1

2

√
2. Because of

the symmetry we may calculate the area moment around any axis we choose, for
example one that connects two opposite corners of the hexagon, with length

√
2.

Integrating over the first quadrant we have we have from the geometry of the
hexagon
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Hexagonal waterline area.
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(5-A14)

The center of buoyancy is of the same form as before given by (5-29), but in this
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The general hexagon is an
equilateral triangle with
small equilateral triangles
cut off at the corners.

case it is a bit harder to determine the area A(z) at depth z because the shape
of the area changes from a triangle to a hexagon at z = − 1

6

√
3. For − 1

2

√
3 < z <

− 1
6

√
3 the shape is an equilateral triangle. Since its side length must vary linearly

with z from s = 0 at z = − 1
2

√
3 to s =

√
2 for z = − 1

6

√
3, we have s = 3

2

√
2+z

√
6

and area A(z) = 1
4

√
3 s2. For − 1

6

√
3 < z < 0 the (irregular) hexagon can

be obtained from this triangle by removing smaller equilateral triangles from


