
Chapter 4. MAC Scheme

§4.1. MAC Scheme and the Staggered Grid.

The MAC scheme is a numerical method used to solve the incompressible Navier-Stokes

equation in the velocity-pressure formulation:

(4.1.1)











∂tu + (u·∇)u +∇p = ν∆u ,

∇·u = 0

where u = (u, v). A special feature of the MAC scheme is the use of a staggered grid. One

such grid is displayed in Figure 3. The pressure variable p is defined at the “∗” points, and

the first and second components of the velocity, u and v, are defined at the “4” and the

“©” points, respectively. Define

D̃xu(x, y) =
u(x+ ∆x, y)− u(x−∆x, y)

2∆x
, Dxu(x, y) =

u(x+ ∆x/2, y)− u(x−∆x/2, y)

∆x
,

Ẽxu(x, y) =
u(x+ ∆x, y) + u(x−∆x, y)

2
, Exu(x, y) =

u(x+ ∆x/2, y) + u(x−∆x/2, y)

2
,

and similarly for D̃yu, Ẽyu, Dyu, Eyu. With this notation we have

∆hu = (D2
x +D2

y)u .

We can then write the MAC scheme as follows:

(4.1.2)











































du

dt
+ u D̃xu+ExEyv D̃yu+Dxp = ν∆hu , at “4” points,

dv

dt
+ExEyu D̃xv + vD̃yv +Dyp = ν∆hv , at “©” points,

Dxu+Dyv = 0 , at “∗” points.

The simplest way of treating the boundary is to use the reflection technique. On the segment

of Γx (see Figure 3), the boundary condition v = 0 is imposed exactly at the “©” points:

vi−1/2,0 = 0. The boundary condition u = 0 is imposed approximately at the “•” points by

letting

(4.1.3) ui,−1/2 = −ui,1/2.
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Similarly for Γy, we have

v
−1/2,j = −v1/2,j , u0,j−1/2 = 0.

The fully discrete MAC scheme,i.e. including the time discretization, with the viscous

term treated explicitly,is given by:

(4.1.4)











































un+1 − un

∆t
+ un D̃xu

n +ExEyv
n D̃yu

n +Dxp
n = ν∆hu

n , at “4” points,

vn+1 − vn

∆t
+ExEyu

n D̃xv
n + vnD̃yv

n +Dyp
n = ν∆hv

n , at “©” points,

Dxu
n+1 +Dyv

n+1 = 0 , at “∗” points.
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§4.2. Projection Formulation of the Mac Scheme and the Pressure Poisson

Equation.

2



In actual computations, we decompose the MAC scheme into 2 steps. First we introduce

two intermediate values (u∗, v∗),

(4.2.1)



























u∗ − un

∆t
+ un D̃xu

n +ExEyv
n D̃yu

n = ν∆hu
n , at “4” points,

v∗ − vn

∆t
+ExEyu

n D̃xv
n + vnD̃yv

n = ν∆hv
n , at “©” points,

subtract (4.2.1) form (4.1.4) to get

(4.2.2)











































un+1 − u∗

∆t
+Dxp

n = 0 at “4” points,

vn+1 − v∗

∆t
+Dyp

n = 0 at “©” points,

Dxu
n+1 +Dyv

n+1 = 0 , at “∗” points.

We can then rewrite (4.2.2) in a projection form:

(4.2.3)



























u∗ = un+1 + ∆tDxp
n at “4” points,

v∗ = vn+1 + ∆tDyp
n at “©” points,

Dxu
n+1 +Dyv

n+1 = 0 , at “∗” points.

This formulation motivated Chorin to develop the projection method in late 60’s. We will

discuss the projection method in the next Chapter.

Now, back to the MAC scheme. In the first step, we can directly evaluate (u∗, v∗) at all

the interior grid points using (4.2.1).

To recover pn, we need first to derive the pressure Poisson equation using (4.2.2). Apply

Dx to the first equation of (4.2.2) and Dy to the the second equation of (4.2.2), and then

add them together. This will give

(4.2.4) ∆hp
n = − 1

∆t
(Dxu

∗ +Dyv
∗)

In the above we have also used the third equation of (4.2.2).

At the (1/2, j) points , we have

(4.2.5) δhp
n
1/2,j = − 1

∆t

(

u∗1,j − u∗0,j

h
+
v∗1/2,j+1/2 − u∗1/2,j−1/2

h

)
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To evaluate (4.2.5) we need the value of u∗0,j at the (0, j) grid point. However, as we will

see below, this unknown quantity can be arbitrarily prescribed.

From the first equation of (4.2.2) and the no-slip boundary condition for un+1, we have

along the boundary

(4.2.6) (Dxp
n)0,j =

u∗0,j

∆t

But moving this boundary condition (4.2.6) to the right hand side of (4.2.5),

δhp
n
1/2,j → δhp

n
1/2,j −

2

h
(Dxp

n)0,j

or

(4.2.7) δhp
n
1/2,j → − 1

∆t

(

u∗1,j − u∗0,j

h
+
v∗1/2,j+1/2 − u∗1/2,j−1/2

h

)

− 2

h

u∗0,j

∆t

we see that the arbitrary constant that we prescribed above, cancels. Since this is the case,

it is easiest to just take

(4.2.8) u∗0,j = 0

and the boundary condition for p becomes

(4.2.9) (Dxp
n)0,j = 0.

This is agree with the fact that there is no boundary condition for p in NSE.

§4.2. Proper Time-Stepping for the Mac scheme.

The original MAC scheme used Forward-Euler for the time discretization. Later Forward-

Euler was replaced with the Crank-Nicholson scheme. However, there is a severe cell

Reynolds number constraint associated with the convection term. This was discussed in

detail in §2.1.

The way of over coming these difficulties is by using a 3rd order, or higher, RK method

for the time discretization to eliminate the cell Reynolds number constraint. For simple

geometries this indeed result in a quite efficient 2nd order method.
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Chapter 2. Basic Numerics

In this chapter we will discuss some basic numerical issues in the computation of in-

compressible flow. These include such topics as stability, consistency, boundary conditions,

efficient time stepping, etc. We will focus on each of these issues individually, identify-

ing the main difficulties associated with each, which will be illustrated through the use

of simple model problems. This approach will result in a thorough and clean exposition

of the derivation, analysis, and implementation of numerical methods for the given model

problem. Once this is accomplished, hopefully more realistic problems can be tackled by

systematically applying the lessons we have learned. This will be exactly our approach in

later chapters when we examine the current state of the art methods for computing incom-

pressible flows. Also provided in each subsection is a set of exercises which are meant to

illustrate more technical aspects of the material, along with programming problems for one

to numerically examine the individual issues raised.

§2.1. Time Marching and Numerical Methods for ODE

The time marching in the fluids computations follows the simple techniques developed

for the following ODE:

(2.1.1) u′ = f(u)

More precisely, we shall explain that the issues raised in the development of numerical meth-

ods to approximate the solutions of ODEs actually are rooted in numerical approximations

of PDEs which describe some basic physical phenomena such as convection, diffusion, and

reactive sources. The main issue of stiffness associated with an ODE, and the stability

region analysis of a given numerical method, really comes from numerical PDEs. Indeed,

for the ODE (2.1.1), any consistent numerical discretization will converge as long as the

function f(u) is locally Lipschitz continuous, and the solution u is sufficiently smooth. More

over, if f(u) is smooth, any consistent method will give full accuracy1. However, when we

1See exercise 2.1.1.
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develop numerical methods for an ODE, we usually require that the numerical method is

stable for the following scalar linear ODE:

(2.1.2) u′ = λu

For this simple equation the idea of stiffness translates into a λ with both a large negative

real part and large imaginary part, negative or positive. The real part of λ represents the

dissipative effect, which is always negative, and usually falls in the region Reλ ∈ [−ν/h2, 0]

where ν is the diffusion coefficient and h is spatial grid size. The imaginary part of λ

represents the convective effect and is usually bounded by ah, where a is the wave speed

for the convection. This can be explained more clearly by the following convection diffusion

equation:

(2.1.3) ut = aux + νuxx

with a periodic boundary condition u(t, 0) = u(t, 2π). The solution can be expanded in a

Fourier series, u(x, t) =
∑

k ûk(t) exp(ikx). For each mode ûk(t) we have

∂tûk(t) = (iak − νk2)ûk(t)

with λ = iak − νk2. The same is true for the discrete system:

(2.1.4) ∂tuj = a
uj+1 − uj−1

2h
+ ν

uj+1 − 2uj + uj−1

h2

where uj(t) ∼ u(xj , t), xj = jh, for j = 1, · · · , n, and h = 2π/n is the grid size. Expand the

solution of (2.1.4) using a discrete Fourier series

uj(t) =
n
∑

k=0

ûk(t) exp(ikxj).

For each mode k, we have

(2.1.5) ∂tûk(t) = (i
a

h
sin(kh)− 4

ν

h2
sin2(kh/2))ûk(t)

where

(2.1.6) λ = i
a

h
sin(kh) − 4

ν

h2
sin2(kh/2), for k = 1, · · · , n
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There are basically two types of discretizations: implicit or explicit. Obviously, an explicit

scheme is (much) more efficient than an implicit one. The main purpose for using an

implicit scheme is to insure stability and the use of a large time step. Methods for time

dependent problems may be very different from methods used to solve steady state problems.

Sometimes in fluid computations, the convection term may be treated explicitly, while the

diffusion term is treated implicitly. This is the case in the projection method2.

Let us first review explicit schemes.

First order explicit scheme, – forward Euler

(2.1.7) un+1 = un + ∆tf(un)

To study the stability, we apply the above scheme to the linear equation (2.1.2) and write

it as a recursive formula

(2.1.8) un+1 = (1 + λ∆t)un

The stability is clearly given by

(2.1.9) |1 + λ∆t| < 1

The set of all λ that satisfy the above equation defines the stability region of the method.

Applying this to (2.1.6), we have

(2.1.10)

(

a∆t

h

)2

cos2(kh/2) +

(

2ν∆t

h2

)2

sin2(kh/2) ≤ 2ν∆t

h2

This basically requires that3

(2.1.11)
a∆t

h
≤ 2ν∆t

h2
≤ 1

The first inequality gives

(2.1.12) Rec ≡
ah

ν
≤ 2

2see exercise 2.1.2
3A better explanation is to use energy estimate or maximum principle, see exercise 2.1.3 and 2.2.2.
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Rec is known as the cell Reynolds number or numerical Peclet number. The inequality

(2.1.12) is known as the cell Reynolds number constraint and it imposes a very strong

restriction on the spatial grid size. For the convection equation itself(ν = 0), the forward

Euler scheme with central differencing is un-conditionally unstable. Thus we see that the

diffusion term plays the role of stabilizing the scheme. We will show later that the cell

Reynolds number constraint is an unnecessary one. It can be avoided by simply using a

high order explicit time discretization. The second inequality in (2.1.11) is the stability

condition coming from the diffusion term, which must always be enforced for an explicit

scheme.

Second order explicit schemes

Now we consider second order schemes for the time discretization. These corresponding

to either the mid-point rule or trapezoidal rule(which is better known as Heun’s method).

The mid-point rule gives:

(2.1.13)











u∗ = un + 1
2∆tf(un),

un+1 = un + ∆tf(u∗)

and Heun’s method gives:

(2.1.4)











u∗ = un + ∆tf(un),

un+1 = un + ∆t(f(u∗) + f(un))/2

For linear equation (2.1.2) both schemes reduce to

un+1 = (1 + β + (β)2/2)un

where β = λ∆t. The above formula comes from the Taylor expansion of exp(β) up to

second order accuracy. The stability region is given by

(2.1.15) |1 + β + (β)2/2| ≤ 1

The Runge-Kutta(RK) methods One possible third order RK method is given by
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Heun’s:

(2.1.16)



























u1 = un + 1
3∆tf(un),

u2 = un + 2
3∆tf(u1),

un+1 = 1
4 (un + 3u1) + 3

4∆f(u2)

For the linear ODE (2.1.2), the above scheme reduces to

un+1 = (1 + β +
1

2!
β2 +

1

3!
β3)un

(Just look at the Taylor expansion of exp(β)!). The stability region is given by

(2.1.17) |1 + β +
1

2!
β2 +

1

3!
β3| ≤ 1

Jameson proposed the following three stage RK method for the linear equation (2.1.2),

(2.1.18)



























u1 = un + 1
3∆tf(un)

u2 = un + 1
2∆tf(u1)

un+1 = un + ∆tf(u2)

This is a second order scheme for the nonlinear problem4. For the linear problem (2.1.16)

and (2.1.18) have identical stability regions. Nevertheless, (2.1.18) is easier to program (all

steps are forward euler) and requires less memory than (2.1.16). This scheme is especially

useful for steady state computations.

To minimize the stability restriction coming from the convection term, we seek a method

whose stability region encompasses as large a portion of the imaginary axis as possible5. If

one if willing to sacrifice accuracy, among all possible second order three-stage RK methods

the following scheme optimizes the stability region due to the convection term:

(2.1.19)



























u1 = un + 1
2∆tf(un)

u2 = un + 1
2∆tf(u1)

un+1 = un + ∆tf(u2)

4See exercise 2.1.4.
5See exercise 2.1.5

9



The stability region is given by

(2.1.20) |1 + β +
1

2
β2 +

1

4
β3| ≤ 1

One important fact is that the stability region in (2.1.20) covers i[−2, 2] along the imaginary

axis. Plugging into (2.1.6) for λ, this tells us that the convection term will be stable under

the standard CFL constraint a∆t ≤ 2h. Thus, no help is required from the diffusion term.

This is remarkable! It tells us that we can compute large Reynolds flow without having any

cell Reynolds number constraint6.

The fourth order classic Runge-Kutta method is given by,

(2.1.21)











































u1 = un + 1
2∆tf(un),

u2 = un + 1
2∆tf(u1),

u3 = un + ∆tf(u2),

un+1 = 1
3(−un + y1 + 2y2 + y3) + 1

6∆tf(u3)

for the linear ODE (2.1.2), it reduces to

un+1 = (1 + β +
1

2!
β2 +

1

3!
β3 +

1

4!
β4)un

The stability region is given by

(2.1.22) |1 + β +
1

2!
β2 +

1

3!
β3 +

1

4!
β4| ≤ 1

The stability region covers i[−2.7, 2.7] in the imaginary axis.

We shall also remark that the basic structure in all the above schemes is forward euler.

We can easily modify a code once have the forward euler version.

The multi-step method

There is much more to be said concerning optimizing the stability regions restrictions

coming from the convection term if one is willing to investigate multi-step methods. This

is very important for the unsteady fluids computation. We will only describe two ways to

design multi-step methods: Adams-Bashforth(A-B) approach and the backward differential

approach.

6See exercise 2.1.5, 2.1.6.
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In the Adams-Bashforth approach, we reformulate the ODE (2.1.1) in the following

integral form:

(2.1.23) un+1 = un +

∫ tn+1

tn
f(u(t)) dt

and extrapolate (f(u))(t) from the points tn, tn−1, · · ·. The second order A-B scheme is given

by:

(2.1.24) un+1 = un + ∆t(
3

2
f(un)− 1

2
f(un−1))

For the linear equation (2.1.2) the above equation reduces to

un+1 = un + β(
3

2
un − 1

2
un−1).

Letting un = zn gives the following characteristic equation:

(2.1.25) z2 − z = β(
3

2
z − 1

2
)

and the stability region is given by

(2.1.26) β =
2(z2 − z)

3z − 1
, |z| ≤ 1.

For the general explicit multi-step methods, the characteristic equation becomes

(2.1.27) σ(z) = βρ(z)

whose stability region is given by

β =
σ(z)

ρ(z)
, |z| ≤ 1.

where ρ(z) describes the approximation for the right side of (2.3), and σ(z) describes the

approximation of the left side of (2.3). In the Adams-Bashforth approach, σ(z) = zn −

zn−1 where n is the order of the method. In the backward differential approach, we use

un+1, un, · · · , to obtain a high order approximation of ∂tu in (2.1). The stability analysis is

effectively the same as that just outlined above for the A-B methods. See exercise 2.1.8.

Implicit Schemes and Predictor-Corrector methods

11



An easy way to solve the stability problems associated with fluids computations is to

blindly use implicit schemes. Unfortunately, this approach is widely used in the field. The

implicit treatment of the convection term results in a very large sparse nonlinear system

that we must solve. This is usually not too much more expensive to solve than solving a

very large sparse linear system by using Newton’s method. The second order convergence of

Newton’s method can usually be achieved since we have a very good initial guess, namely,

un. Nevertheless, one should only use this implicit approach when the cost of the time

stepping is the main issue. This is the case for steady state or low Reynolds number flow

computations.

The standard first and second order implicit schemes are backward Euler and the Crank-

Nicholson(C-N) scheme, respectively. They are as follows.

(2.1.28) un+1 = un + ∆tf(un+1)

(2.1.29) un+1 = un +
1

2
∆t(f(un+1) + f(un))

The stability regions for the above two schemes are given by

(2.1.30) |1− β| ≥ 1, |2− β| ≥ |2 + β|

respectively. Notice that both of them cover all the left half plane Reλ ≤ 0. A scheme with

this property is called A-stable scheme. Dahlquist showed that any A-stable scheme is at

most second order accuracy7.

A general way to obtain other implicit multi-step methods is through the Adams-

Moulton approach which uses the points tn+1, tn, · · · to interpolate f(u)(t) at the right

hand side of the integral (2.1.23). C-N is the second order A-M scheme, and the third order

scheme is given by

(2.1.31) un+1 = un +
1

12
∆t(5f(un+1) + 8f(un)− f(un−1))

We can sometimes solve the equation arising from the use of an implicit scheme by

iteration. An effective way of doing this is the so called predictor-corrector methods. We

7See exercise 2.1.7
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first use an explicit scheme, say A-B method, to obtain a good initial guess to ũn+1. We

then use it to evaluate f(ũn+1) in the implicit scheme, say an A-M method. You can gain

more stability by repeated iteration8. This kind of approach is known as Adams-Moulton

predictor-corrector methods. More detail discussion can be found in Gears book.

Exercise:

1. Suppose the function f(u) in ODE (2.1) is locally Lipschitz continuous. Show that any

consistent numerical method will converge when the solution is smooth. Furthermore,

if f(u) is smooth, then the numerical method will have full accuracy, that is you should

be able to obtain an error estimate up to the order of the truncation error.

2. Perform the stability analysis for (2.4) with the convection term discretized with the

second order A-B method, and the diffusion term discretized with the C-N method.

This treatment is used in the second order projection methods for NSE.

3. Using energy estimates, or the maximum principle, give a stability and error estimate

for the forward Euler discretization of (2.4) which satisfies the stability condition

(2.11). Could you get a better stability condition? Can you do the same analysis for

the mid-point rule?

4. Show that the three stage RK methods (2.18) and (2.19) are only second order ac-

curate. Perform an accuracy check and compare the results with a true third order

scheme (2.16).

5. Show that (2.19) gives the largest stability region along the imaginary axis among

all second order three stage RK methods. Show, by numerical computation, that

the scheme is stable under the standard CFL condition for the convection diffusion

problem (2.4), when the diffusion coefficient is zero. Compare it with the first and

second order explicit schemes.

8See exercise 2.1.9.

13



6. Show the second order accuracy, both in time and space, for the three stage RK (2.9)

for the convection diffusion problem (2.4) under the standard CFL condition |a|∆ ≤ h,

and diffusion stability condition 2ν∆ ≤ h2. Could you extend this result for case of

ν = 0 and the case of the variable convection speed a(x)?

7. Prove the Dahlquist theorem: An A-stable scheme is at most second order accuracy.

8. Derive the class of multi-step schemes using the backward differential approach and

find their stability regions.

9. Show, numerically, that the Adams-Moulton predictor-corrector methods have larger

stability regions compared with those of the A-B methods. Do you gain more stability

if you perform more iterations in the corrector step?
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§2.2. Issues concerning resolution, central or upwind discretization, Reynolds

Number, boundary Layer, shear layer and shock layer

Back to the convection diffusion equation:

(2.2.1) ut = aux + νuxx.

We analyzed in section (2.1) the stability restrictions that arise from both the spatial and

time discretizations of (2.2.1) in the case of periodic boundary conditions, u(t, 0) = u(t, 2π).

A cell Reynolds constraint results when we use a low order explicit time discretization along

with centered spatial differencing. This cell Reynolds constraint can easily be overcome by

using a higher order explicit time discretization, or more costly implicit time discretization.

The solution of (2.1.3) with periodic boundary conditions will be smooth if the initial

data is smooth. In this case we were able to easily analyze the stability region of the nu-

merical scheme. Similar conclusions can be reached in the case of variable coefficients, and

even a nonlinear problem, as long the solution is smooth. In the case of resolved computa-

tional solutions of practical incompressible flows, the analysis in the previous section can be

viewed as a basic guideline in examine the stability of the time discretization. By resolved

we mean that at least 8 to 10 points are present per wave structure in the true solution.

We should elaborate this point. Imagine a flow along a wall. Very near to the wall the flow

is considerably different in character from the flow away from the wall. This is due to the

effects of friction, whose magnitude you can think of as represented by, more or less, 1/Re.

The flow structure near the wall is referred to as the boundary layer, for obvious reasons. It

is physical! It’s thickness is typically on the order of 1/
√
Re, and one should have at least 8

to 10 computational points in this region if one is to say that we have computed a reliable

solution. So typically we must take h ≤ 1/10
√
Re. This is considerably less restrictive then

the cell Reynolds number constraint.

However, suppose we impose a fixed boundary condition for (2.1.3), say,

(2.2.2) u(0, t) = 1, u(1, t) = 0.
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The solution will reach the steady solution represented by the solution to

(2.2.3) aux + νuxx = 0, u(0) = 1, u(1) = 0.

This will occur on a time scale proportional to the typical length divided by the speed(a).

This is referred to as the convective time scale. We can easily solve the steady equation

(2.2.3) to obtain the solution

(2.2.4) u(x) = (1− e(1−x)a/ν)/(1 − ea/ν)

There is a boundary layer at right boundary if a < 0, a boundary layer at left boundary if

a > 0. The width of this boundary layer is of O(ν/a). This is not the same boundary layer

referred to above in conjunction with the typical incompressible flow.

Using central spatial differencing for the steady equation (2.2.3), we have

uj+1 − uj−1 +
2ν

ah
(uj+1 − 2uj + uj−1) = 0,

or

(2.2.5) uj =

(

1

2
+
ah

4ν

)

uj+1 +

(

1

2
− ah

4ν

)

uj−1.

When

(2.2.6) Rec = |a|h/ν ≤ 2

both of the coefficients in (2.2.5) are positive, which using the maximum principle, shows

that the solution is monotone9. This cell Reynolds constraint is essential. Without it oscil-

lations, and even instabilities, will occur in the numerical solution. Indeed, if we evaluate

the solution at grid point xn−1, next to the right boundary, we have

(2.2.7) u(xn−1) = (1− e−Rec)/(1 − e−Rec/h) ∼ 0.86, if Rec = 2

for the case a < 0. The same would occur at the left boundary if a > 0. Notice that in this

example

u(xn−1) =
u(xn−1)− u(xn)

u(x0)− u(xn)
.

9See exercise 2.2.1, 2.2.2.
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Hence, approximately 86% of the boundary layer transition is represented by one point.

In this case the boundary layer is clearly under-resolved. But we have satisfied the cell

Reynolds number constraint. This shows that stability and resolution are two different

issues.

Instead of using central differencing in space, one can use upwind differencing to improve

the stability. But the upwind differencing can not improve the accuracy, i.e., the resolution.

Indeed, in the upwind approach some numerical viscosity is added to the scheme so that

the effective cell Reynolds number is limited to 2 as we will explain below. The state of the

art modern shock capturing schemes rely on the fact that one can robustly and effectively

add numerical viscosity to a scheme so that a sharp monotone transition will be preserved

in the computed shock layer. Usually only a few computational points are present in the

shock transition. As we have seen above, this basically says that the effective cell Reynolds

number is less than, but close to 210. To explain this point more clearly, let us look at the

upwind scheme:

(2.2.8) uj − uj−1 +
ν

ah
(uj+1 − 2uj + uj−1) = 0

when a < 0. This gives

(2 + |a|h/ν)uj = uj+1 + (1 + |a|h/ν)uj−1

and we know that the profile is always monotone11. However, lets look at the modified

equation for (2.2.8),

(2.2.9) aux + (ν + |a|h/2)uxx = O(h2).

This comes from simple Taylor expansion of the upwinding scheme, upto O(h2). Our

computed solution using the upwinding scheme better approximates the solution to (2.2.9)

than (2.2.3). The effective viscosity in the modified equation is ν̄ ≡ ν+|a|h and the effective

cell Reynolds number is

(2.2.10) Rec =
|a|h
ν̄

= 2
|a|h

ν + |a|h ∼ 2, as ν ∼ 0

10See exercise 2.2.4.
11See exercise 2.2.3
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Thus, the effective cell Reynolds number is always less than 2. So while we gained better

stability, we have completely lost resolution.

Exercise:

1. Show numerically that the center differencing approximation (2.2.5) with boundary

condition (2.2.2) converges, and gives a monotone profile in the boundary layer when

the cell Reynolds constraint is satisfied. Also, show numerically that the scheme is

unstable when the cell Reynolds number is larger than 2.

2. Show that the central differencing scheme, applied to (2.2.1), is indeed a monotone

scheme when the diffusion stability condition 2ν∆t ≤ h2 and the cell Reynolds number

constraint are satisfied!

3. Show that the upwinding scheme is always stable and gives monotone profiles in the

boundary layer even when the diffusion coefficient ν is very small. Check the accuracy

in the computed steady state solution with the exact solution (2.35) in the maximum

norm. Compare it with the central differencing scheme at the same resolution when

the diffusion coefficient is chosen so that the cell Reynolds number is close to 2.

4. Use MUSCL scheme or ENO scheme to replace the upwind scheme in the above

exercise. Do you get the same result? Can you show that the effective cell Reynolds

number in MUSCL scheme is always less than 2? This is a very good research project

and is definitely publishable.
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§2.3. Numerical methods for the Poisson equation

For simplicity, we will consider the Poisson equation

(2.3.1) ∆u = f

on a unit square Ω = [0, 1]2, with Dirichlet boundary conditions:

(2.3.2) u |Γ= ub ,

or Neumann boundary condition:

(2.3.3)
∂u

∂n

= ub , on Γ .

where Γ is the boundary of Ω. Assume that the boundary data ub in (2.3.3) is consistent

with (2.3.1), i.e.,
∫

Ω
f dx dy =

∫

Γ
ub ds

The solution of (2.3.1)-(2.3.3) is unique up to to constant. For simplicity, we take the

constant to be zero.

We will use the following uniform computational grid:

(2.3.4) xi = ih, yj = jh, i, j = 0, 1, · · · , n, h = 1/n

Denote the standard second order centered difference operators as

(2.3.5) D2
xu =

ui+1,j − 2ui,j + ui−1,j

h2
, D2

yu =
ui,j+1 − 2ui,j + ui,j−1

h2

Then the standard second order approximation of (2.3.1) is given by

(2.3.6) ∆hu = f, ∆h = D2
x +D2

y.

We will discuss a 4th order compact difference in a later subsection.

Fast Poisson Solver for Dirichlet Problem

In the case of the Dirichlet boundary condition (2.3.2), the computational point are all

of the interior points, and the boundary values are given by the boundary data (2.3.2).
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The system (2.3.6) can be solved very efficiently via FFT, as we will see below. We first

move the boundary data to the right hand side of the system (2.3.6). For instance, along

x = 0 we would have

(2.3.7) f1,j → f1,j − u0,j/h
2

at the left side boundary. Similarly for other three sides of the boundary Γ. The resulting

system can be viewed as a system with homogeneous (zero) boundary data. Taking the

Sine transformation of both ui,j and fi,j, we have

(2.3.8) ui,j =
n−1
∑

k,`=1

ûk,` sin(kxiπ) sin(`yjπ) fi,j =
n−1
∑

k,`=1

f̂k,` sin(kxiπ) sin(`yjπ)

For each of the Fourier modes present above, one can easy verify that12

(2.3.9) D2
x sin(kxiπ) = λk sin(kxiπ), for i = 1, 2, · · · , n− 1

where

(2.3.10) λk = − 4

h2
sin2

(

kπ

2n

)

, for k = 1, 2, · · · , n− 1

is the Fourier multiplier for the D2
x operator. (2.3.6) is thus equivalent to

(2.3.11) (λk + λ`)ûk,` = f̂k,`

Note that the Fourier multiplier λk + λ` 6= 0 for k, ` = 1, · · · , n− 1.

The computation of the solution to (2.3.6) consists the following four steps:

1. Homogenizing the boundary condition as in (2.3.7)

2. Taking the Sine transformation of fi,j to obtain f̂k,`, for k, ` = 1, 2, · · · , n − 1, see

(2.3.8)

3. Obtaining ûk,` from f̂k,` by dividing by the Fourier multipliers, for k, ` = 1, 2, · · · , n−1,

see (2.3.11)

4. Taking the inverse Sine transformation of ûk,` to obtain ui,j , for i, j = 1, 2, · · · , n− 1,

see (2.3.8)

12See exercise 2.3.1
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The boundary value of u0,j shall then be restored from the given boundary data along

Γ.

Fast Poisson Solver for the Neumann Problem

In the case of the Neumann boundary condition, the computational grid consists of all

the interior points, as well as the grid points along Γ. The outside points, say x−1,j, next

to the boundary will be used as the “ghost points”. Their values can be determined by the

Neumann boundary and implemented as

(2.3.12)
u−1,j − u1,j

2h
= ub(0, yj), j = 0, 1, · · · , n

(out-normal direction divide difference!) for the left side boundary. Similarly for the other

three sides of the boundary Γ. We use the Cosine transformation to solve the resulting

system. Detailed steps are as follows:

1. Homogenizing the boundary condition by moving the boundary data to the right

hand side,

(2.3.13) f0,j → f0,j −
2

h
ub(yj),

at the left side boundary. Similarly for the other three sides the of boundary.

2. Take the Cosine transformation of fi,j to obtain f̂k,`, for k, ` = 0, 1, 2, · · · , n

(2.3.14) fi,j =
n
∑

k,`=0

f̂k,` cos(kxiπ) cos(`yjπ)

3. Obtain ûk,` from f̂k,` by dividing by the Fourier multipliers, for k, ` = 0, 2, · · · , n.

(2.3.15) ûk,` = f̂k,`/(λk + λ`)

where λk are same the as in (2.3.10). Notice that when k = ` = 0, the Fourier multiplier

is zero. That tells us that there is one degree of freedom (up to a constant). We fix this

freedom by setting (zero constant)13

(2.3.16) û0,0 = 0

13See exercise 2.3.2 for the issue of numerical consistence.
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4. Take inverse Cosine transformation of ûk,` to obtain ui,j, for i, j = 0, 1, · · · , n

(2.3.17) ui,j =
n
∑

k,`=0

ûk,` sin(kxiπ) sin(`yjπ)

Error estimate and accuracy checking

It is easy to use energy estimates or the Maximum principle to show that the scheme

has full 2nd order accuracy14

(2.3.18) ui,j = u(xi, yj) + h2v(xi, yj) +O(h4)

for some function v. In the finite difference case with a uniform grid, we are able to obtain

a sharp error estimate (equality) and perform a numerical accuracy check by computing

solutions on set of different grid sizes h15.

(2.3.19) ‖uh − u‖/h2 ∼ constant

where the norm ‖ · ‖ is usually taken as L1, L2 and L∞.

Fourth Order Compact Method for the Dirichlet Problem

Taylor expansion gives

(2.3.20) ∂2
x = D2

x −
h2

12
D4

x +O(h4), ∂2
y = D2

y −
h2

12
D4

y +O(h4).

Hence, we have

∆ = D2
x +D2

y −
h2

12
(D4

x +D4
y) +O(h4) = ∆h −

h2

12
∆2

h +
h2

6
D2

xD
2
y +O(h4).

We can decomposed the right hand side of the above equation into a product of two compact

operators (9-point stencil),

(2.3.21) ∆ = (∆h +
h2

6
D2

xD
2
y)(1−

h2

12
∆h) + (O(h4).

Using

1− h2

12
∆h = (1 +

h2

12
∆h)−1 +O(h4)

14See exercise 2.3.3
15See exercise 2.3.4.
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we obtain a 4th order compact operator

(2.3.22) ∆ = (1 +
h2

12
∆h)−1(∆h +

h2

6
D2

xD
2
y) +O(h4)

and a 4th order compact approximation to the Poisson equation (2.3.1)

(2.3.23) (∆h +
h2

6
D2

xD
2
y)u = (1 +

h2

12
∆h)f.

The computational grid points are still all the interior grid points, and the boundary value

of u is determined by the given boundary data. In this approach, we need to know the

boundary value of f . Just as in the 2nd order case we can use the Sine transformation to

obtain a fast solver. Using energy estimates and a high order expansion, one can obtain the

following error estimate:

(2.3.24) ui,j = u(xi, yj) + h4v(xi, yj) +O(h6)

for some function v. We can use the above estimate to check the accuracy16.

Poisson equation on a Staggered grid, Fast Solver and Boundary Condition.

The staggered grid in a unit square is given by

(2.3.25) xi+1/2 = (i+ 1/2)h, yj+1/2 = (j + 1/2)h, i, j = −1, 0, 1, · · · , n, h = 1/n

The boundary is located at the midpoint between two grid points. For instance, the left

boundary is

(2.3.26) x0 =
1

2
(x
−1/2 + x1/2).

The computational grid points will be all the interior points for both the Dirichlet problem

(2.3.1)-(2.3.2) and the Neumann problem (2.3.1)-(2.3.3). For a second order scheme

(2.3.27) ∆hu = f, on (xi+1/2, yj+1/2), i, j = 0, 1, · · · , n− 1

one need “ghost points” x−1/2 on the left boundary, and xn+1/2 on the right side boundary.

For the Dirichlet problem, the boundary condition is enforced as follows:

(2.3.28)
u−1/2,j + u1/2,j

2
= ub(yj) ,

16See exercise 2.3.5.
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on the left side boundary. Similarly for other the other three sides of the boundary. This is

usually referred as a reflection boundary condition.

For the Neumann problem, the boundary condition is enforced as follows:

(2.3.29)
u
−1/2,j − u1/2,j

h
= ub(yj) ,

(outward-normal direction) on the left side of boundary. Similarly for the other three sides

of the boundary.

The linear systems can be solved quite efficient by quarter-wave FFT transformation.

We leave it as an exercise17.

The accuracy of the reflection boundary condition is rather confusing. Let us explain

this with a simple example:

u′′ = f, u(0) = (1) = 0

approximated with the standard second order centered difference and reflection boundary

conditions as in (2.3.27) and (2.3.28). A simple truncation error analysis at x 1

2

gives

D2
xu(x 1

2

) =
3

4
u′′(x 1

2

) +
h

8
u′′′(0) +O(h2) .

suggesting that the operator D2
x is not consistent with the Laplacian near the boundary.

A more sophisticated error analysis reveals that the overall scheme still has second order

accuracy as we see below. Let

ūi+ 1

2

= u(xi+ 1

2

)− h2

8
[u′′(0) + (u′′(1)− u′′(0))xi+1/2] , for i = 0, 1, · · · n− 1

and

ū
−

1

2

= −ū 1

2

, ūn+ 1

2

= −ūn− 1

2

.

Clearly

D2
xūi+ 1

2

= u′′(xi+ 1

2

) +O(h2) , for i = 1, . . . , n− 2 .

17See exercise 2.3.6.
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At x 1

2

,

D2
xū 1

2

=
ū 3

2

− 3ū 3

2

h2
=
u(x 3

2

)− 3u(x 3

2

)

h2
+

1

4
u′′(0)

= 3
4u

′′(x 1

2

) + h
8u

′′′(0)− 1
4u

′′(0) +O(h2) = u′′(x 1

2

) +O(h2) .

Similarly, we have

D2
xūn− 1

2

=
u(xn− 3

2

)− 3u(xn− 3

2

)

h2
+

1

4
u′′(1) = u′′(xn− 1

2

) +O(h2) .

This gives

(2.3.30) u(xi+ 1

2

)− ui+ 1

2

= O(h2), for i = 0, 1, · · · , n− 1 .

Exercise:

1. Verify formula (2.3.9).

2. There are always issues concerning the numerical consistency for the Neumann prob-

lem even when the continuous problem is consistent. Show that the fast solver (2.3.13-

17) eliminates such problems in the discrete case even if inconsistencies are present in

the approximation.

3. Using energy estimates or the Maximum principle to show (2.3.18).

4. Write a code for both the Dirichlet problem and the Neumann problem. Check the

accuracy by using (2.3.19) for a different set of grids, n = 8, 16, 32, 64.

5. Using energy estimates and high order expansions, show (2.3.24) and write a code to

check the accuracy.

6. Derive a fast Poisson solver on staggered grid for both the Dirichlet problem and the

Neumann problem with Quarter-wave FFT.

7. Give a complete proof of (2.3.30) for the 2-d problem.
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§2.4. Numerical Methods for the Heat Equation

The standard second order approximation of the heat equation

(2.4.1) ∂tu = ν∆u ,

is given by

(2.4.2) ∂tu = ν∆hu .

As we discussed in §2.1, the time-stepping can be explicit or implicit. The choice usually

will depend on the the size of ν. For the explicit scheme, the following stability condition

must be satisfied:

(2.4.3) 4ν∆t ≤ h2.

The most commonly used implicit scheme is the C-N scheme, which is unconditional stable.

However, in this case one must solve a Poisson type equation at each time step.

There are typically two possible types of boundary conditions that one can prescribe for

u. The Dirichlet boundary condition

(2.4.4) u |Γ= ub ,

or the Neumann boundary condition

(2.4.5)
∂u

∂n

= ub , on Γ ,

where ub is a known function.

In the case of the Dirichlet boundary condition (2.4.4), the unknowns consists of all the

interior grid points, since the boundary values are given by the boundary data ub.

In the case of the Neumann boundary condition, the unknowns include all the interior

grid points as well as the boundary grid points. In order to solve the problem numerically

we must consider outside points, say x−1,j, next to the left-hand side boundary. We call

these the “ghost points”. Their values can be determined from the Neumann boundary

condition as shown below:

(2.4.6) u−1,j = u1,j + 2h ∗ ub(x0, yj)
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For either boundary condition the resulting numerical approximation is fully 2nd order

accurate in space.18.

Fourth Order Approximation for the Dirichlet problem: Long Stencil

For simplicity, we only consider a 1-d problem here. The standard 4th order long-stencil

approximations of ∂x and ∂2
x are given by

(2.4.7) ∂x = D̃x(1− h2

6
D2

x) +O(h4)

and

(2.4.8) ∂2
x = D2

x(1− h2

12
D2

x) +O(h4)

and using these, a fourth order spatial approximation of (2.4.1),(treating time continuously

for now), is given by

(2.4.9) ∂tu = ν(D2
x −

h2

12
D2

xD
2
x)u .

Formally this approximation looks like the hyper-diffusion equation

∂tu = ν(∂2
x −

h2

12
∂4

x)u.

Note that both the second and fourth order difference operators that appear above on the

right-hand side of (2.4.9) are well-posed. This is important since we must resort to using

one-sided approximations to D2
xD

2
x near the boundary of our domain. As we will see later,

the use of such one-sided approximations will not result in any stability concerns.

The unknown computational grid points consist only of the interior points since the

boundary values are given by the boundary data ub. However, to implement the numerical

method, we also need to know the value of u−1 at the outside grid points, say xi,−1, next

to the left-side boundary. These grid points are known as “ghost point”. The main issue is

prescribe appropriate values to these ”ghost points” such that the resulting method remains

stable and achieves high order numerical accuracy.

18See exercise 2.4.1 and 2.4.2.
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In deriving the value of u at the “ghost points”, one-sided approximations are usually

used. Shorter one-sided stencils usually result in better stability. Sometimes we can even

use information from the PDE, or derivatives of the PDE, near the boundary to reduce the

number of needed points in the stencil. As an illustration of this we will now derive a 4th

order approximation for the ”ghost points”. The Taylor expansion of u−1 centered at the

boundary point x0, gives to O(h4):

(2.4.10) u−1 = u0 − (hu′0) + (
h2

2!
u′′0)− (

h3

3!
u

(3)
0 ) + (

h4

4!
u

(4)
0 ) +O(h5)

We first need to identify the known quantities on the right hand side of the above expansion.

Clearly, u0 is known from the given boundary data ub. We can also exactly derive the value

of u′′0 using the PDE itself by evaluating the PDE (2.4.1) at the boundary points x0 to get

∂tu(x0, t) = ν∂2
xu(x0, t).

Hence,

(2.4.11) ∂2
xu0(t) =

1

ν
∂tub(t)

In order to eliminate the other three unknown quantities on the right hand side of

(2.4.10), we will generally need the value of u at u1, u2, and u3. Expanding each of these

in a Taylor series,again centered at x0, gives to O(h5):

(2.4.12)

u1 = u0 + (hu′0) + (h2

2! u
′′

0) + (h3

3! u
(3)
0 ) + (h4

4! u
(4)
0 ) +O(h5)

u2 = u0 + 2(hu′0) + 22(h2

2! u
′′

0) + 23(h3

3! u
(3)
0 ) + 24(h4

4! u
(4)
0 ) +O(h5)

u3 = u0 + 3(hu′0) + 32(h2

2! u
′′

0) + 33(h3

3! u
(3)
0 ) + 34(h4

4! u
(4)
0 ) +O(h5)

We now take a linear combination of the equations in (2.4.12), say with coefficients α, β, andγ.

We would like this linear combination to agree to high order with the remaining unknown

terms of (2.4.10), namely

−(hu′0)− (
h3

3!
u

(3)
0 ) + (

h4

4!
u

(4)
0 )
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This requires that

(2.4.13)

α+ 2β + 3γ = −1

α+ 23β + 33γ = −1

α+ 24β + 34γ = 1

Solving the above system (2.4.13), we obtain

(2.4.14) α = −6/11, β = −4/11, γ = 1/11

Subtracting (2.4.10) from the linear combination gives

αu1 + βu2 + γu3 − u−1 = (α+ β + γ − 1)u0 + (α+ 4β + 9γ − 1)(
h2

2!
u′′0) +O(h5)

We now plug in our values for u0, u
′′

0, and α, β, and γ that gives the desired one-sided

approximation of u−1:

(2.4.15) u−1 =
20

11
u0 −

6

11
u1 −

4

11
u2 +

1

11
u3 +

12h2

11ν
∂tub +O(h5) .

Now we show that the the use of (2.4.15) in the scheme is indeed stable. For simplicity, we

assume ub = 0. Using standard Energy estimates of (2.4.9) leads to

(2.4.16) ∂t

n−1
∑

i=1

u2
i + 2ν

n−1
∑

i=1

(D+
x ui)

2 +
νh2

6

(

n−1
∑

i=1

(D2
xui)

2 + u1D
2
xu0 + un−1D

2
xun

)

= 0.

We can rewrite the one-sided ”ghost point” boundary condition (2.4.15) as

(2.4.17) D2
xu0 =

1

h2

(

5

11
u1 −

4

11
u2 +

1

11
u3

)

This is very much like the vorticity boundary condition as we will see in next section. We

now rewrite (2.4.17) as

(2.4.18) D2
xu0 = − 2

11
D2

xu1 +
1

11
D2

xu2

Using the Cauchy-Schwartz inequality gives the estimate

(2.4.19) u1D
2
xu0 ≥ − 5

4× 112
u2

1 − (D2
xu1)

2 − (D2
xu2)

2.
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The first term on the right-hand side above can be controlled by one of terms in the second

summation appearing in (2.4.16). The next two terms on the right-hand side of (2.4.19) can

be controlled by terms appearing in the third summation of (2.4.16). We can take care of

the un−1D
2
xun term in (2.4.16) in a similar fashion. Using these estimates in (2.4.16) gives

(2.4.20) ∂t

n−1
∑

i=1

u2
i + ν

n−1
∑

i=1

(D+
x ui)

2 ≤ 0

Using standard error estimates, one can easily show that the scheme has full 4th order

accuracy19.

Fourth Order Approximation for the Neumann problem: Long Stencil

The main difference in the case of the Neumann problem is that the computational grid

points consist of all the interior points, as well as the boundary points. We will now need 2

”ghost points”, namely u−1 and u−2, for the 4th order approximations in (2.4.9). To obtain

a high order one-sided approximation of these “ghost” values, we expand both in a Taylor

expansion centered at x0:

(2.4.21) u−1 = u0 − (hu′0) + (
h2

2!
u′′0)− (

h3

3!
u

(3)
0 ) + (

h4

4!
u

(4)
0 ) +O(h5)

and

(2.4.22) u−2 = u0 − 2(hu′0) + 22(
h2

2!
u′′0)− 23(

h3

3!
u

(3)
0 ) + 24(

h4

4!
u

(4)
0 ) +O(h5)

Again, we first need to identify the known quantities on the right-hand side of each of the

above expansions. Clearly, u′0 is known form the boundary data. We can derive the value

of u′′′0 using the PDE in a similar fashion as was used above in the Dirichlet case. Take a

derivative of (2.4.1) and evaluate it at the boundary points to get

∂tux(x0, t) = ν∂3
xu(x0, t).

Hence,

(2.4.23) u′′′0 (t) =
1

ν
∂tub(t)

19See exercise 2.4.3 and 2.4.4
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To further eliminate the other unknown quantities, we will need the Taylor expansions of

u, centered at x0, at the two interior grid points x1 and x2

(2.4.24) u1 = u0 + (hu′0) + (
h2

2!
u′′0) + (

h3

3!
u

(3)
0 ) + (

h4

4!
u

(4)
0 ) +O(h5),

(2.4.25) u2 = u0 + 2(hu′0) + 22(
h2

2!
u′′0) + 23(

h3

3!
u

(3)
0 ) + 24(

h4

4!
u

(4)
0 ) +O(h5).

If we subtract (2.4.24) from (2.4.21), and use (2.4.23) we get:

(2.4.26) u−1 = u1 − 2hub −
h3

3ν
u′b

Similarly, subtracting (2.4.25) form (2.4.22) gives

(2.4.27) u−2 = u1 − 4hub −
8h3

3ν
u′b.

Compact Fourth Order Approximation: An Alternative

Using a one-sided formula such as (2.4.15) at the “ghost” point for the long stencil ap-

proach can be avoided if one uses a compact approach to discretizing the spatial operators..

The main disadvantage(and it is an important one!) is that one must now solve a Poisson-

like equation at each time step. Applying the 4th order compact approximation (2.3.22) to

(2.4.1), we have

(2.4.28)











∂tū = ν(∆h + h2

6 D
2
xD

2
y)u

(1 + h2

12∆h)u = ū

Using the energy estimates, it is easy to show that the above scheme is indeed stable and

obtains full 4th order accuracy20

The above system (2.4.28) can be solved quite efficiently if an explicit time stepping

dicretization is used for (2.4.1). In this case we don’t need to know the boundary values of

ū! This makes the scheme quite efficient.

Exercise:

20See exercise 2.4.7

31



1. Use energy estimates to show that the second order scheme (2.4.2) has full 2nd order

accuracy for both the Dirichlet and Neumann problems.

2. Construct an exact smooth solution for (2.4.1) by adding a force term to the right

side (2.4.1). Write a code for the second order scheme, and use your constructed exact

smooth solution to check the accuracy.

3. As in the previous exercise, write a code for the 4th order long stencil scheme (2.4.11)

and (2.4.15) and check the accuracy.

4. Derive a 3rd order one-sided formula in a similar way that (2.4.15) was derived. Then

replace (2.4.15) in the 4th order long stencil scheme (2.4.11) by your new 3rd order

approximation. Numerically check the accuracy of this new scheme. Does this new

scheme maintain 4th order accuracy.

5. Give an error estimate for the 4th order scheme (2.4.11)-(2.4.15).

6. Perform a stability analysis for the 4th order scheme (2.4.11) using the boundary

conditions (2.4.26) and (2.4.27) for the Neumann problem.

7. Use energy estimates to show that the 4th order compact scheme (2.4.28) is indeed a

stable scheme.
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§2.5. Convection Diffusion Equation in an Incompressible Velocity Field

The time evolution of many physical quantities, such as density or temperature(represented

by θ), can be described by a convection diffusion equation

(2.5.1) ∂tθ + (u·∇)θ = ν∆θ ,

where u is the velocity field. We will assume that u is smooth, and satisfies the incom-

pressibility condition

(2.5.2) div u = 0,

as well as the no-slip boundary condition

(2.5.3) u |Γ= 0.

Coupling between θ and u usually appears in momentum equation. For instance, this

coupling may occur in the form of a gravity effect. But from a computational point of view,

we can treat θ as a passive scalar since the coupling in the momentum equation can easily

be dealt with using explicit time discretizations for the terms involving θ. As usual, two

types of boundary conditions may be prescribed for θ. The Dirichlet boundary condition:

(2.5.4) θ |Γ= θb ,

where θb is a known function, or the Neumann boundary condition:

(2.5.5)
∂θ

∂n

= 0 , on Γ .

The numerical approximation of (2.5.1) is very similar to that of the heat equation, which

was discussed in §2.4. In the case of a second order spatial approximation, we can use

standard centered difference methods to approximate the convection term.

For the case of the Dirichlet boundary condition, all of the unknowns occur at the

interior grid points since the boundary values are equal to the given boundary data θb. The

4th order long-stencil approximation gives,

(2.5.6) ∂tθ+ uD̃x(1− h2

6
D2

x)θ+ vD̃y(1−
h2

6
D2

y)θ = ν
(

D2
x(1− h2

12
D2

x) +D2
y(1−

h2

12
D2

y)
)

θ .
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We need a “ghost value”for θ−1. The derivation is very similar to that for the heat equation.

When the non-slip boundary condition (2.5.3) for the velocity u holds, the resulting one-

sided formula is indeed exactly same as in (2.4.15),

(2.5.7) θi,−1 =
20

11
θi,0 −

6

11
θi,1 −

4

11
θi,2 +

1

11
θi,3 +

12

11
h2(

1

ν
∂tθb − ∂2

xθb) +O(h5) .

The stability analysis is also similar to that of heat equation, but the convection term will

make the analysis more complicated21.

In the case of Neumann boundary condition, the unknowns occur not only at the interior

grid points, but also at the boundary grid points. If we use a second order scheme to

discretize (2.5.1), we need one “ghost” point, whose value can be obtained from

(2.5.8)
θ−1,j − θ1,j

2h
= ub(yj)

(outward-normal direction).

For the 4th order long stencil approximation, we will need approximations for the value

of θ at two “ghost points”, θ−1 and θ−2. In the case of the heat equation we were able to use

information about u′′′0 directly form the PDe to reduce the number of points needed for our

one-sided approximations. In the case of the convection-diffusion equation we can perform

a similar trick, however it will require a bit more explanation. For now, Let proceed naively.

We now derive a 3rd order one-sided formula. Just as was done in §2.4 for u, we first

expand θ−1 in a Taylor series centered at x0:

θ−1 = θ0 − (hθ′0) + (
h2

2!
θ′′0)− (

h3

3!
θ′′′0 ) +O(h4)

Since the quantity θ′0 is known from the boundary data, we will need the value of θ at three

interior points to eliminate the other three unknowns. We omit the details. The resulting

one-sided formula is given by:

(2.5.9) θ−1 =
1

11
(6θ1 + 8θ2 − 3θ3 − 24hub).

21See exercise 2.4.3 and 2.4.4
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Similarly, for the other “ghost point”, we have

(2.5.10) θ−2 =
1

11
(−40θ1 + 75θ2 − 24θ3 − 60hub).

We will leave the derivation of the 4th order Neumann boundary condition as an exercise22.

Now we will briefly outline a different derivation for the values of θ at the ”ghost points”.

Recall that in the case of the heat equation (2.4.1), we differentiated the PDE to obtain a

value for u′′′(x0). See (2.4.23). For the convection-diffusion equation (2.5.1) we proceed in

a similar fashion. However, we will need a minor modification. First, take the derivative in

x of (2.5.1) and evaluate it at the boundary x = 0. (Note: u = v = 0 along the boundary

due to the no-slip condition). Since θx = θb on the boundary, we have

(2.5.10a) ∂t(θb) + uxθb + vx∂yθ = ν(∂3
xθ + ∂2

y(θb))

The only term that presents a possible problem is the evaluation of ∂yθ along the bound-

ary x = 0. But we can simply approximate ∂yθ by using a 4th order centered difference

approximation along the x = 0 boundary. We leave the details to you!

Compact Fourth Order Approximation.

We can use a compact approach to avoid one-sided formulas derived using exterior

“ghost” point. The disadvantage of compact schemes is now one has to solve a Poisson-

like equation at each time step. This approach is not recommended for the passive scalar

problem since the long stencil method is adequate. However, in the active scalar equa-

tion, such as one involving a vorticity transport equation, the compact approach is highly

recommenced as we will see in next section.

What is new here compared to the heat equation is the compact treatment of the

convection term. Let us first rewrite (2.5.1) in the form

(2.5.11) ∂tθ = ν∆θ − f, f = ∇·(uθ).

Applying the 4th order compact approximation (2.3.22), we have

(2.5.12) ∂tθ̄ = ν(∆h +
h2

6
D2

xD
2
y)θ − (1 +

h2

12
∆h)f,

22see exercise 2.4.5
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where

(2.5.13) θ̄ = (1 +
h2

12
∆h)θ.

Now we derive an essentially compact approximation for the convection term, which is the

last term in (2.5.12). Using a 4th order long stencil to approximate both derivatives in

∇ · (uθ), the last term of (2.5.12), which we denote by I, becomes

(2.5.14) I = (1 +
h2

12
∆h)

(

D̃x(1− h2

6
D2

x)(uθ) + D̃y(1−
h2

6
D2

y)(vθ)

)

+O(h4).

Simple algebra leads to

(2.5.15) I = D̃x(1 +
h2

6
D2

y)(uθ) + D̃y(1 +
h2

6
D2

x)(vθ)) − h2

12
∆h(uD̃xθ + vD̃yθ) +O(h4)

Notice that uD̃xθ+ vD̃yθ vanishes at the boundary due to the no-slip boundary condition.

Hence we don’t need any additional numerical boundary conditions for this term. We can

summarize the above as

(2.5.16)



























∂tθ̄ = ν(∆h + h2

6 D
2
xD

2
y)θ − D̃x(1 + h2

6 D
2
y)(uθ)− D̃y(1 + h2

6 D
2
x)(vθ))

+h2

12∆h(uD̃xθ + vD̃yθ)

(1 + h2

12 ∆h)θ = θ̄

Using energy estimates, it is easy to show that the above scheme is indeed stable, and

achieves full 4th order accuracy23

The above system (2.5.16) can be solved quite efficiently when one uses any of the high

order explicit time stepping schemes discussed in §2.1. This is the case as long as we know

the boundary values for θ. Notice that we don’t need to know the boundary values of θ̄!

Exercise:

1. Assume the velocity field u in (2.5.1) is smooth. Use energy estimates to show that

the 2nd scheme applied to (2.5.1) achieves full accuracy.

23See exercise 2.4.6
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2. Construct a smooth solution for (2.5.1) by adding a force term to the right side (2.5.1).

Write a code that implements the 2nd order scheme. Use your constructed smooth

solution to check the accuracy.

3. As in the previous exercise, write a code for the 4th order long stencil scheme (2.5.11)

and (2.5.17) and check the accuracy.

4. Derive a 3rd order one-sided formula in a similar way that (2.5.17) was derived. Then

replace (2.5.17) in the 4th order long stencil scheme (2.5.11) by your new 3rd order

approximation. Numerically check the accuracy of this new scheme. Does this new

scheme maintain 4th order accuracy.

5. Use energy estimates to show that (2.5.23) is indeed a stable scheme.
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