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Linear theory of Faraday instability
in viscous liquids

By KRISHNA KUMART

Laboratoire de Physique, Ecole Normale Supérieure de Lyon,
46 allée d’Italie, 69364 LYON Cedex 07, France

The linear stability of the plane free surface of a viscous liquid on a horizontal plate
under vertical sinusoidal oscillation is analysed theoretically. The free surface of a
laterally unbounded liquid of any depth h may always be excited to standing waves
if the external acceleration is raised above a critical value a.. For a fixed external
frequency w, solutions are possible only within certain bands of wave numbers k for
a given forcing amplitude above a., that is, within tongue-like stability zones in the
a—k plane. The analysis for a shallow layer of viscous fluids shows new qualitative
behaviours compared to the nearly inviscid theory. It predicts a series of bicritical
points, where both harmonic and subharmonic solutions exist for the same forcing
amplitude and forcing frequency. This makes harmonic solutions possible at the
onset in a laterally large container, which is qualitatively different from the results
of nearly inviscid theory. For a low viscosity fluid of small depths, the damping
coefficient may be considered proportional to (vw)'/?/h in contrast to vk? predicted
by the nearly inviscid theory. An approximate analytic expression is derived for the
lower part of the lowest marginal curve in cases when the depth of the liquid is much
larger than the thickness of the viscous boundary layer formed at the bottom plate.
This approximate threshold agrees well with that of recent experiments with viscous
liquids.

1. Introduction

The generation of standing waves at the plane free surface of a liquid subjected to
vertical oscillation has been known since the observations of Faraday (1831). Faraday
also noted that the resulting waves had fundamental frequency half the excitation
frequency, i.e. the response was subharmonic. Lord Rayleigh (1883) also performed
his own experiments and confirmed the experimental observations of Faraday. Recent
experiments with viscous liquids show stripes (Edwards & Fauve 1993), regular tri-
angular pattern (Miiller 1993), competing hexagons and equilateral triangles (Kumar
& Bajaj 1994) at the free surface in contrast to the earlier experiments with low vis-
cosity fluids (see, for instance, Ezerskii et al. 1986; Tuffilaro et al. 1989; Ciliberto al.
1991) showing square patterns at the onset. These experimental observations suggest
the importance of viscosity in pattern formation under parametric excitation.

On the theoretical front (see for a review Miles & Henderson 1990), Benjamin &
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1114 K. Kumar

Ursell (1954) analysed the linear problem for ideal liquids enclosed in a container,
vibrating sinusoidally in the vertical plane, and showed that the fluid dynamical
equations can be reduced to a system of Mathieu equations, which allow harmonic
as well as subharmonic responses. The free surface can be destabilized only in the
tongue-like zones in the plane of the forcing amplitude a and the selected wave num-
ber k. The tongues correspond alternately to subharmonic and harmonic responses.
For ideal liquids, the lowest points of all these tongues occur for vanishing forcing
amplitude a and, therefore, both kind of responses are possible at the onset. How-
ever, in presence of small viscous dissipation, all tongues move away from the k-axis
leading to finite a for the onset of standing waves. It turns out that the first tongue,
which is subharmonic, moves least. Therefore, the first instability is always subhar-
monic in a container of large lateral dimensions according to the nearly inviscid
theory. Harmonic responses cannot occur at onset in this situation. This result may
or may not apply to shallow layers of viscous fluids. In addition, the experimental
results for the critical acceleration a. even for small viscosities do not compare well
with the prediction of the nearly inviscid theory. This further emphasizes the need
to understand the role of viscosity.

This work is motivated to provide a quantitative linear theory of viscous liquids,
which is a necessay step to understand the basic mechanisms of pattern selection.
The purposes of this paper are twofold. The first is to provide a linear theory for
the stability of the plane free surface of a liquid of arbitrary viscosity and depth
under vertical vibration. It will be shown that the stability problem can be reduced
to finding eigenvalues and eigenvectors of a banded square matrix with non-zero
elements only in two subdiagonals. For liquids of depth A much larger than the size
of viscous boundary layers b(= 1/2v/w) due to the bottom plate, the lower part of
the lowest marginal curve a(k) can be predicted analytically. It is then sufficient to
compute the stability threshold a. and the critical wave number k. by minimizing
a(k) with respect to k.

The second purpose is to explore the possibility of harmonic response at the onset.
For the situations when the size of the viscous boundary layer b becomes comparable
with the depth h of the liquid layer, the harmonic as well as subharmonic responses
can coexist (see §4) at the onset leading to a series of bicritical points.

2. Hydrodynamic system

We consider an incompressible liquid of uniform density p and dynamic viscosity
71 resting on a horizontal plate, which is subjected to a vertical sinusoidal oscillation
of amplitude a and frequency w. In a frame of reference fixed with the oscillating
plate, the free surface is initially flat and stationary and the oscillation is equivalent
to a temporally modulated gravitational acceleration,

G(t) = g — acos (wt). (2.1)

Linearizing about the basic state of rest, which has time dependent pressure field
P(t) = Py — pG(t)z, the equations for the perturbation fields u, p in the the liquid
read:

pOyu = —=Vp + nV3u, (2.2)
Vou=0. (2.3)

Proc. R. Soc. Lond. A (1996)



Linear theory of Faraday instabiﬁty 1115
Taking curl twice of equation (2.2), we obtain for the vertical velocity w,
(0, — vV V2w = 0, (2.4)

where v (= n/p) is the kinematic viscosity of the liquid.
The fluid rests on a rigid plate at which all three components of the velocity field
must vanish.

w=0 at z=-—h, (2.5)
ug=0=—= —-Vyg-ug=0,w=0 at z=—h, (2.6)

and h is the depth of the liquid. In derivation of (2.6) the equation of continuity (2.3)
is used. :

The free surface is initially flat, stationary, and coincident with the z = 0 plane by
choice of the coordinate system. As soon as the instability sets in, the free surface is

located at z = {(x,t), where © = (z,y), and obeys the kinematic boundary condition
(Lamb 1932, §9),

[0 + (uw- V)¢ = w |.=, (2.7)

which states that the free surface is advected by the fluid motion.

Since we are interested in the linear stability of a free and flat surface, we may
Taylor-expand the fields and their z-derivatives around z = 0 and retain only the
lowest-order terms. It is then sufficient to compute the fields and their vertical deriva-
tives at z = 0. The kinematic condition (2.7), after linearization, simplifies to

6t< =w IZ:() . (28)

The boundary conditions at the free surface are determined by considering the stress
tensor given by

ik = —péjk + n(ajuk + akUj) -+ pG(t)C(SJZ(SkZ (29)

The last term above is the stress due to the surface deformation in the effective
gravitational acceleration. As there are no tangential stress components at the free
surface, we have

Mgz = Ty, = 0. (2.10)
Since these stress components vanish everywhere on the free surface, we may write
N(0pTgs) = n(Oymy,) = 0. (2.11)

Inserting the definition (2.9) in (2.11) and using the equation of continuity (2.3) lead
to

n(Vy — 8..)w = 0. (2.12)
On the other hand the normal component of the stress tensor at the free surface

must be equated to the surface tension o times the curvature of the free surface. For
small curvature, which is the case for the linear theory, this leads to

T2z |z=O: UV?’{( (213)

Substituting the definition (2.9) of the stress tensor into (2.13), we obtain the ex-
pression for the pressure at the free surface,

Plo=c = 20(0.w) =0 + pG(t)¢ — oV EHC. (2.14)

Proc. R. Soc. Lond. A (1996)



1116 K. Kumar

Another expression for the pressure can be derived by taking the horizontal diver-
gence of the equations (2.2) and applying (2.3):

Vap = (1V? = pd))Vi - up

= (pd; — nV?)0,w. (2.15)
Eliminating p from (2.14) and (2.15), we obtain at the free surface
[(p0, = 1V?)0:w].m0 = 20(VE0:w):—0 + pG(t) Vi — oV, (2.16)

which serves as an additional boundary condition for (2.4), and is the only equation
in which the external forcing G(t) appears explicitly.

Because of the infinite extension of the fluid in the horizontal direction we can
express the fields in the normal modes of the horizontal plane, i.e. sin(k - ), where
the horizontal wave number k (k? = k2+k2) can take any real and positive value. We
now replace w(x, z,t) by w(z, t) sin(k-x), ((x,t) by {(t) sin(k-x), and the differential
operator V% by a number —k?. The relevant equations then read:

[0 = (022 = k*))(0.. — k*)w =0, (2.17)
(022w + K*w) =9 = 0, (2.18)

W|,=—p =0, (2.19)

(0:w)o=—n =0, (2.20)

[(p0; — 10 + 3nk*)0,w),—0 = —[pG(t) + ok?|k*C, (2.21)
9i¢ = w).=o. (2.22)

The above set of equations (2.17)—(2.22) constitute the complete linear stability
problem for laterally unbounded viscous liquid, of arbitrary depth, under parametric
oscillation.

3. Linear stability analysis

(a) Liquids of finite depth
The stability problem (2.17)—(2.22) is analysed by applying Floquet theory. Be-
cause G(t), the effective gravitational acceleration in the moving frame, is a periodic
function, the solutions to (2.17)—(2.22) are assumed of Floquet form (see also Kumar
& Tuckerman 1994). The surface deformation ¢ is then expressed as

¢(t) = " Z(t mod 27 /w). (3.1)
The Floquet exponent u can be expressed as
©w=s+iow, (3.2)

where s and « can take any real and finite value. The function Z is periodic in time
with period 27 /w, and may therefore be expanded in the Fourier series

Z(tmod 2m/w) = »_ (ue™t. (3.3)
The reality condition for the field ¢ implies that
Cn=C for a=0 (34)

Proc. R. Soc. Lond. A (1996)



Linear theory of Faraday instability 1117

and

Cn=C¢C,y for a=1/2. (3.5)
For 0 < a < 1/2, the complex conjugate of the right-hand side in equation (3.1)
must be added to form a real {(t). However, all non-zero integer values of a can be
absorbed into the periodic function Z. In addition, for any a between 0 and 1/2,
the complex conjugate terms are equivalent to considering a between 1/2 and 1.
Therefore, it is sufficient to consider only the range 0 < o < 1/2. The solutions ((t)
corresponding to @ = 0 and o = 1/2 are referred to as harmonic and subharmonic
solutions respectively. Now from (2.22)

w(z = 0,t) = e i wp(z = 0)e™ (3.6)
where
Wz = 0) = (i + inw)G. (3.7)

The vertical velocity must reduce to this form at z = 0 for all ¢. We therefore assume
that w(z,t).may be expressed as

o0

w(z,t) = e z wy (2)e™! (3.8)

n=—oo

with the same reality condition on w,(z) as for (,. The choice of trial functions {(t)
as in (3.1)-(3.3) and for w(z,t) as in (3.8) reproduces the results for unforced (a = 0)
surface waves in viscous fluids (Chandrasekhar 1961) by setting n = 0.

Inserting (3.8) into (2.17) we obtain for each Fourier component n, a fourth-order
ordinary differential equation in z:

(0., — k2)(6zz — q,zl)wn(z) =0, (3.9)
where

[s +i(a + n)w]

C=k+ (3.10)

with the convention that g, is the root of (3.10) with positive real part.
The general solution of (3.9) is

wy(2) = P, cosh (kz) + Qn sinh (kz) + R, cosh (¢nz) + Sy, sinh (g,2). (3.11)
Inserting (3.11) in (2.18)—-(2.20) and using (2.22) leads to

R, = —2vk*(,, (3.13)
S - [kP, + R,{k cosh(g,h) cosh(kh) — g, sinh(g,h) sinh(kh)}] (3.14)

[gn cosh(g, h) sinh(kh) — k sinh(g,h) cosh(kh)]
Qn = Ry, [gn sinh(g,h) cosh(kh) — k cosh(g,h) cosh(kh)]
— Sy [gn cosh(g, h) cosh(kh) — k sinh(g,h) sinh(kh)]. (3.15)

Inserting (3.11) into (2.21) and using (3.12)—(3.15) we arrive at the following re-
cursion relation:

AnCn = a'(Cn—l + Cn-l—l)) (316)
Proc. R. Soc. Lond. A (1996)
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where
2 fo
A, == |gk+ —k
k p
5 (4q.k*(q% + k?) — C,, cosh(g,h) cosh(kh) + D, sinh(g,h) sinh(kh) (3.17)
v gn cosh(g,h) sinh(kh) — k sinh(g,,h) cosh(kh) ’

with
Ch = qu(qt + 262 k% + 5k*), (3.18)

D, = k(q: + 6q2k*> + k*). (3.19)

The condition (3.7) implies that wo(z = 0) = 0 when [ + inw] = 0, which, to-
gether with the boundary and continuity conditions, insures that wg(z) = 0 for all

z. Therefore, 9 o
Ao(p +inw =0) = Ab = % (gk + ;k3> . (3.20)

In absence of the external forcing (i.e. a = 0), there is no coupling of temporal
modes. We can then set n = 0 in (3.16)—(3.17) and the resulting equation,

4qok? (g2 + k?) — C, cosh(qoh) cosh(kh) + Dy sinh(goh) sinh(kh

0
[qo cosh(goh) sinh(kh) — ksinh(goh) cosh(kh)]

=0, (3.21)

M+3H—ﬁ(
P

is the dispersion relation for the surface waves in viscous liquids of finite depth (for a
historical reference, see Basset 1888, §523). The exponent u(= s+ i) is then simply
the complex decay rate of the surface waves.

The external forcing couples different temporal modes making the exact stability
analysis for arbitrary viscosities difficult. However, the stability of the free surface can
be determined with any preassigned accuracy by converting the recursion relation
(3.16) to a matrix equation:

A, 0 0 0 0 ¢y

0 A, 0 0 0 ¢y

0 0 Ay 0 0 Co

0 0 0 A 0 G

0 0 0 0 A G
01000 - (s
10100 - C_1

=a|l - --01010- G | (3.22)

00101 - G
00010 - Co

Proc. R. Soc. Lond. A (1996)



Linear theory of Faraday instability 1119

which can be written symbolically as
Al = aBB¢. (3.23)

A is a diagonal square matrix with complex elements and B is a banded square
matrix with with two sub-diagonals. An ordinary eigenvalue problem can easily be
constructed from (3.23) by inverting .A:

(A B)C = ¢ (320
The eigenvalues of A~1B are inverse of the forcing amplitudes. For a usual stability
analysis, the wave number k and the forcing amplitude a are fixed for given fluid
parameters, and the Floquet exponent ;1 = s+ iow is computed such that the corre-
sponding growth rate s is the largest. The marginal stability boundaries are defined
by the curves in a—k plane on which s(a, k) = 0. In the present method, p is fixed
instead, usually at s = 0 and at « = 0 or @ = 1/2. We then solve for the eigen-
values 1/a. Only real and positive values of 1/a are meaningful as complex values
of a do not corespond to a real forcing for given parameters. The largest, or several
largest, real positive eigenvalues of 1/a is selected for s = 0 and @ = 1/2 or a = 0.
These give the marginal stability curves a(k,s = 0, = 1/2) for subharmonic and
a(k,s = 0,a = 0) for harmonic instability without any interpolation. Any non-zero
real eigenvalue of A~!B implies a finite forcing amplitude a. The largest eigenvalues
of this matrix are the inverse of the lowest forcing amplitudes a for a preassigned k
and given fluid parameters. The matrix .A~1B is a banded matrix and its structure
is similar to that of the matrix B but with, in. general, complex elements. For the
harmonic case it is given by

0 1/A% 0 0 0
1/A% 0 1/A% 0 0
A7'B=| ... 0 1/4 0 1/AF 0 (3.25)
0 0 1/A; 0 1/A,
0 0 0 1/A, 0
and for the subharmonic case it reads
0 1/4; O 0
* 1 *
ATB = VA, 0 145 0 (3.26)
0 1/40 0 1/A¢
0 0 1/4A 0

Note that the complex conjugate of matrix A~!B, for harmonic and subharmonic
cases, can be constructed by interchanging its rows and columns even number of
times. Therefore, possible eigenvalues for these two cases must either be real or

Proc. R. Soc. Lond. A (1996)



1120 K. Kumar
150.0
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k / mm-1
Figure 1. Stability boundaries of glycerine-water mixture (v = 1.02 x 107*m?®S™!,

o = 67.6 x 1073 N'm™") of thickness 2.0 x 107 m at the external frequency w/27 = 60 Hz.
Subharmonic (SH) and harmonic (H) tongues alternate.

complex conjugate pairs. For the range 0 < o < 1/2, the matrix A~ B is still a banded
matrix of similar structure, but none of the elements is complex conjugate of other. It
is then not obvious that there might be a real eigenvalue. Numerically we see either
zero or infinitesimally small real eigenvalues in this case when the real part s of the
Floquet exponent p is set to zero. The corresponding forcing amplitude are infinitely
large. This suggests that the solutions corresponding to these Floquet exponents may
never be made unstable at any realizable forcing amplitudes. These cases then seem
to be irrelevant for the linear theory. For an exact statement about the solutions in
these cases, one needs to get the complete spectrum of all possible eigenvalues. We
shall consider in this paper only the harmonic and the subharmonic cases, which are
the most relevant ones. Eigenvalues of the matrix A~'B can be obtained numerically.
Thus one can predict the stability boundary as well as the stability threshold. If the
growth rate s is set to a negative (positive) value, the corresponding smallest values
of a fall on curves below (above) the marginal stability curves for the same fluid
parameters. So the meaning of these stability zones are precisely the same as in
usual stability analysis.

In figure 1, we show the inverse of the first two largest eigenvalues (for o = 1/2
as well as for a = 0) of the matrix A~'B with s = 0 for glycerine-water mixture,
subjected to vertical vibration at a fixed frequency, as a function of the wave number
k. There exist tongue-like zones in the a—k plane, within which the solutions of the
hydrodynamic system (3.9) with (3.10) are unstable, i.e. s is positive. As a is raised
above a critical value a. — the lowest value of a for the lowest tongue — the plane
free surface of the liquid becomes unstable to standing waves. For a liquid of depth
h much larger than the typical size b (= /2v/w) of the viscous boundary layer, the
lowest tongue corresponds to the subharmonic solutions (o = 1/2). Therefore, in
these circumstances the onset of the instability is always subharmonic.

As long as h > b, the first tongue, which also corresponds to the subharmonic
response, is the lowest. To compute the stability threshold a. and the critical wave
number k., one need only know the lower part of the first tongue. That is, only the

Proc. R. Soc. Lond. A (1996)



Linear theory of Faraday instability 1121

largest eigenvalue of the matrix A~'B for the subharmonic case is required. It is
then sufficient to truncate the matrix at n = 1, which means considering a 4 x 4
subdiagonal matrix only. The eigenvalues are then

a(k,w,v,o,h)
> —1/2
_ i(|Al|2 + (ApA; +c.c.) n PAlP + (AgA; + c.c.)] B 1 )
2| Ao|?| A1 ]2 2| Ao|?| Aq)? |Ao|?| A1]? ’

(3.27)
where A,s are given by (3.17). Note that, because of the severe truncation of the
Fourier expansion, the above formula is valid only for smaller ks. As the wave number
k becomes larger, the second minimum value of a diverges. This indicates that the
lowest value of a is no longer accurate and one needs to include more terms in the
expansion. If h > b, which is the case in most experiments, the above formula gives
the first tongue, up to the first turning point after the first minimum, within 1% of
the exact numerical result. Minimizing a(k,w) with respect to k yields critical value
k.(w) and, therefore, a.(w) for given values of the fluid parameters. Figure 2 shows a
comparison of the prediction of the above formula to experimental results obtained
with a glycerine-water mixture (Edwards, personal communication 1993) of thickness
h = 2.9 x 1073 m. The mixure had kinematic viscosity ¥ = 1074 m? s~! and surface
tension o = 65 x 1073 N m~!. In this experiment, the free surface was pinned using
brimful technique to avoid the effect due to variation of contact angles. The fluid
container was covered to minimize evaporation of water as well as contamination of
the free surface. The stability threshold a. as well as the critical wavelength \. are
in good agreement for entire range of forcing frequency. The dispersion relation for
shallow layers of ideal fluid is given by

1? = w§ = (gk + (o/p)k?) tanh(kh), (3.28)

and its prediction does not agree at all with the experimental results (see dashed
lines in figure 2).

Once the critical amplitude a. and critical wave number k. are known, the critical
modes can easily be computed. Again for cases when h > b, we can express the
deformation ¢ from the flat surface approximately by two temporal modes (y, ¢; and
their complex conjugates,

Co(t) = (Coe'/? + 1e¥“/% + c.c.), (3.29)
where (7 is related to (o by
i 1 1 1 \7!
‘= (AE‘)A’{> (a‘f - ASA”{) o (330

Af§ and A7 in the above expression are to be computed at the critical point. The
vertical velocity w¢(z,t) can be evaluated by inserting (3.29)-(3.30) into (3.11)-
(3.15).
(b) Liquids of infinite depth
For the case of liquids of infinite depth, the velocity field w(z, t) and its z-derivative
must vanish at 2 = —oo. The solution of (3.9)—(3.10) can be expressed as

wX(z) = PP exp (kz) + R exp (¢n2). (3.31)

Proc. R. Soc. Lond. A (1996)
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Figure 2. Comparison of the theoretical prediction (solid line) for the dispersion relation with the
experimental results (filled circles) with glycerine-water mixture of thickness h = 2.9 x 10 m.
The ideal fluid results for finite depth (dashed line) do not agree with the experimental obser-
vations. Inset: Stability threshold a. as a function of the external frequency w/2m. The fluid
parameters for the theoretical curve are as in figure 2.

Following the same procedure as before, we have

P = v(qh + k*)Cn, (3.32)
R® = —20k?(,. (3.33)
The equation (2.21) for the pressure at the free surface leads to the recursion relation
A G = a(Gur1 + Ca-1), (3.34)

where A% is defined as:
Ay = % gk + %1«”’ +07(gh + 202K% — 49 k% + k)| . (3.35)

In absence of external forcing, there is no coupling of the temporal modes and (3.34)—
(3.35) lead to the known dispersion relation (Chandrasekhar 1961, §94e) for the
surface waves in viscous liquids of infinite depth:

gk + %kS + %(q) + 2q5k* — 4qok® + k*) = 0. (3.36)

In the case of a liquid of infinite depth, the first tongue, which always corresponds
to the subharmonic response, is the lowest. The first instability is therefore always
subharmonic and the stability threshold can be evaluated, within less than 1%, by

minimizing the expression (3.27) with respect to k. In the above A,s are defined by
(3.35).

4. Bicritical points

As the depth h of the liquid layer becomes comparable with the size b of the
boundary layer formed due to the presence of the rigid plate, one expects distortion

Proc. R. Soc. Lond. A (1996)



Linear theory of Faraday instability 1123

30.0

250

1]
|
|
{
i
\
\
i
\
\
200 | \

alg

150

10.0 |

5.0 .
0.0 0.2 0.4 0.6 0.8 1.0

k/mm™

Figure 3. Stability boundaries of glycerine-water for w/2n = 6 Hz. All other parameters are
same as in figure 2.

of the critical modes. The approximate expression for a in (3.27) is no longer accurate
and one needs to retain more terms in the Fourier expansion of the fields. We then
find out the eigenvalues of the matrix (A~'B) numerically. Figure 3 shows the first
few tongues for the case when the thickness of the liquid layer is 2 mm and the forcing
frequency is 6 Hz. Comparing it with figure 1, we see that the allowed bands of the
wave number k are much narrower and all the tongues are shifted towards lower k
as the excitation frequency is decreased. The most important difference between the
two cases are at lower ks. The first tongue, which used to be the lowest is no longer
so as the frequency is lowered because the size of the boundary layer is now roughly
the same as that of the thickness of the liquid layer. The first tongue is pushed up
while all other tongues are pushed down. This leads to bicritical points, where the
subharmonic as well as the harmonic responses are possible for the same value of the
critical forcing amplitude a.. The first two bicritical points are shown in figure 4. As
the excitation frequency is lowered, the lowest points of all the tongues (see figure 4a,
for the first tongue this happens at larger excitation frequencies and is not shown
here) as well as the corresponding wave numbers ks (figure 4b) decrease first. When
the selected wavelength \. (= 27/k.) becomes comparable to the depth h of the
liquid layer, the effect of the bottom plate becomes strong and, consequently, the the
stability threshold rises. The lowest points of other tongues at relatively higher ks still
decrease because the excitation frequency decreases. This leads to a bicritical point.
As frequency is further lowered, the effect of the bottom plate becomes stronger. The
second tongue is pushed up while the third and higher tongues are still coming down.
Between the first and the second bicritical points, the first instabilty is harmonic. In
principle, there could be a series of bicritical points. This effect is purely due to the
viscosity of the liquid.

A qualitatively similar phenomenon occurs as the thickness h of the liquid is
decreased or the viscosity of the liquid is increased while other parameters are kept
constant. Interestingly, Lord Rayleigh (1883) conducted his experiments with thin
fluid layers and noted the strong influence of the lower plate. He used low-viscosity
fluid, for which the first instability is always subharmonic as he observed.

Proc. R. Soc. Lond. A (1996)
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Figure 4. The first two bicritical points (enclosed by boxes in figure 4a). As the frequency is
decreased, the first subharmonic (SH1) and the first harmonic (H1) response occur at the same
value ac. At these points the critical wave number k. jumps (figure 4b) to higher values.

5. Limit of small viscous dissipation

For vk? < w, the expression for A, in (3.16) can be expanded in the powers of
k/q, to compute the effect of viscosity perturbatively. The recursion relation (3.16)
then can, up to second order in k/gy,, be written as

2 o 2 k
. — Tk2) ktanh(kh) + 22 {1+ —— [~
k tanh(kh) [(g t3 ) anh(kh) + v q"{ + Sinh(2kh) (qn)

+ (1 + coth®(kh)) (qﬁ) H Co=a(Cor +Cupr),  (5.1)

n

which can be further simplified to

EtaTi(l’{ﬁj [(g + %1&) ktanh(kh) + [s +i(a + n)w]®
b 2Pk i m)l2 4 k3 + coth(kh)][s + o+ mw] | ¢
sinh(2kh) ’
= G(Cn—l + Cn+1)' (5.2)

In the limit of v — 0, the above recursion relation is equivalent to ideal fluid results
(see Appendix A). However, the lowest correction to the ideal fluid result is propor-
tional to (wv)'/2k/sin(2kh) rather than vk?, which is generally used in the nearly
inviscid models to take account of the viscous damping. For small k as well as h, the
correction is proportional to (vw)'/2/h. Since [s+i(n+ )] is equivalent to d, and the
first correction involves an exponent equal to 3/2, one finds fractional derivative of ¢
with respect to time. The recursion relation (5.2), therefore, is no longer equivalent
to the Mathieu equation with a traditional linear damping term. Only in the limit
of infinite depth (kh > 1), does the first viscous correction become proportional to
vk? and the resulting equation may be considered equivalent to a traditional linear
viscous damping term (= 4vk?() in the Mathieu equation for ¢ for a given mode of
wave number k.

6. Conclusions

The linear theory of the stability of the plane free surface of a viscous liquid of ar-
bitrary viscosity and depth under parametric excitation is presented. We showed that
a viscous liquid layer yields qualitatively different results when its depth becomes
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comparable with the thickness of the viscous boundary layer created at the bottom
plate. Only in the limit of small viscosity and infinite depth, the Mathieu equation
with a linear damping term may represent parametric instability in a viscous liquid.
For viscous liquids, the theory predicts the possibility of series of bicritical points
at the instability onset (figures 3 and 4). For liquids of depth large compared with
the size of viscous boundary layer, the lower part of the lowest marginal curve can
be predicted analytically within reasonable accuracy and the prediction of this ap-
proximate formula compares well quantitatively with the experimental data for the
stability thresholds as well as for the wavelengths observed experimentally. The vis-
cous boundary conditions are essential to get correct stability thresholds as well as,
in our opinion, to understand the mechanism of pattern formation in parametrically
excited viscous fluids from the first principles. The theory can easily be extended
for the study of the stability of the interface(s) of two (or more) fluids (Kumar &
Tuckerman 1994) under parametric excitation.

The author is thankful to S. Fauve, L. S. Tuckerman, H. W. Miiller and W. S. Edwards for
having fruitful discussions with them. This work has been supported by the CNES (Centre

National d’Etudes Spatiales) under Contract No. 92/0328. The recent experimental observations
of Bechhoefer et al. (1995) for viscous fluids agree well with the prediction of this theory.

Appendix A. Recursion relation for the Mathieu equation

Benjamin & Ursell (1954) showed that the hydrodynamic equations for inviscid
fluids can be written for every wave number k as

¢+ wi[l — acos(wt)]¢ =0, (A1)

where
wg = gk + ok?®/p, (A2)
a = ak/wj. (A3)

In the nearly inviscid theory, a linear damping is added to the Mathieu equation.
Following the argument of Landau & Lifshitz (1987, §25), the damping coefficient is
found to be v = 2vk?2. Therefore, the relevant equation now becomes

¢+ 29¢ + w21 — acos(wt)]¢ = 0. (A4)
Substituting the Floquet form for ¢ (3.1) in (A4), and using (A 2)—(A 3) we find the
required recursion relation

An(n = a(gn—l + Cn-l—l), (A 5)

A, = % {s+i(n+a)w}’ + wk*{s +i(n + a)w} + gk + %ks . (A6)
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