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Rossler flow
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A typical numerically integrated
long—-time trajectory



A strange attractor?

Z()

A trajectory of the Rossler flow up
to time t = 250.

Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor.



Poincare sections

Successive trajectory intersections with a Poincare section, a
d-dimensional set of hypersurfaces P embedded in the (d+ 1)-
dimensional phase space /M,

define the Poincare return map

/= plx) = FT X)) | x x€ P.

first return function 7(x) — time of ﬂight to the next section



Henon map

Multinomial approximations

d+1
Prx) = oy + Z bigx) + Z ClpXiX +

to Poincare return maps

/X1,n+1 \

X2 n+1

\Xd,nﬂ )

Il

d+1

I,J"

/P](Xn) \

PZ(Xn)

\Px) /

x € P

Xn, Xn+1 - P

motivate model mappings such as the Henon map

Xn+1 = (e axﬁ + an

Yn+1 = Xn

(3)
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cycle of the Henon map,
a=14, b=0.3.

for vanishingly small b the Henon map — parabola:
Xn+1 = (e ax% . (4)

lose determinism : the inverse of map has two Preimages {X:H, x,}_1}
for most xy.
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tions, Rossler strange attractor:

planes at angles (a) -60° (b) 0°, (c) 60°, (d) 120°.
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Rossler stretch and mix

A line segment [A,B] starts close to the x—y plane,
stretching (a) — (b)

flow 18 exPandin9
followed by the folding (c) = (d):
the folded segment returns close to the x—y plane

C from the interior mapped into the outer edge
eclge point B lands in the interior

flow i1s mixing

In one Poincare return the [A, B] interval is stretched, folded and
mapped onto itself



A strange attractor???

no proof that this - or any attractor of interest — is asymptoti—
cally aperiodic -1t might well be that what we see is but a long
transient on a way to an attractive periodic orbit.

pragmatist: | accept that is a “strange attractor”



E quilibria of Rossler flow

Two trajectories of the
Rossler flow initiated in
the neighborhood of the
"+ equilibrium point

2 repelling equilibrium points (no dynamics therel)

(x~,y",27) = (0.0070, =0.0351, 0.0351)
(x*,y",2") = (5.6929, -28.464, 28.464)



Flows transport neighborhoods

X
O

so far: trajectory of a single next: transport the neighbor-
initial point hood of x(t)



E quations of variations

Flow transports displacement x(t) + §x(t)
along trajectory x(t) = f(xo).

ecLuations of variations for infinitesimal neighborahood:

. N
X; + 8x; = vilx + 8x) & vi(x) + Z léxj .
J (C)XJ‘

Together
= wiix), 8x = Z Aj(X)8x;
J

where matrix of variations

Iv;(x)
AU(X) = 9—><J

IS the instantaneous rate of shearing of x(t) neighborhood



Jacobian maps a spherical neighbor—
hood of x¢ into an ellipsoidal neigh—
borhood time t later

Neighbors Separate alon9 unstable directions,
approach each other alon9 stable directions,
Creep along the marginal directions



Stability of equilibria

Matrix of variations A = A(xCL) evaluated at an equilibrium point
Xq IS constant

t _ At,,
f(x)—xCL+e (x XCL)+ ,

Jt(xq) = AV A = A(XCL) .

For a constant A the Jacobian matrix
x(t) = e"Ax(0) .
is the solution of the linear equation
x=Ax.

so study linear flows first:



Linear flows

Stability eigenvalues, diagonal case: If A diagonal matrix Ap with
eigenvalues A, A2,..., )
T 0

e PP
Jt=etAD=< ) .
O et)\d

Ay = kth stability eigenvalue of the finite time Jacobian matrix J*
Ak = kth stability exponent

Ayl = etk |



Complex stability eigenvalues

A = (AH 7“\12) |
Az1 Az2

The eigenvalues A, A2 of A

1
N2 = 5 (trA +/(tr A)2 - 4 det A)

can form a complex Conjugate pair

A=A+, >\2=>\?=>\—T'\9.



Complex stability eigenvalues, diagonal example:
The Jacobian matrix J

() ) _ o (™ 0 x1(0)

X2 (1) 0 e ) \ x200) ) °

exponent A > O: trajectory x(t) spirals out
exponent A < O: it spirals in.

¥} — speed of rotation



Stability ot Rdossler flow equilibria

two equilibrium points
(x7,y7,27) X', y",2")
stable  manifold of
“+"  equilibrium  point
attraction basin
bOmelal’y:

Il

right of the "+" equilibrium trajectories escape,
left of the "+" spiral toward the "-" equilibrium point

— Seem to wander chaoticaly for all times.



linearized stability exponents

N, A5 £ 195) = (-5.686, 0.0970 + 10.9951)
AL +193) = (01929, -4.596 x 107° £15.428)

The A; + 19, eigenvectors span a plane
this plane rotates with angular period T- = }27T/«9§| =6.313

a trajectory that starts near the ~-" equilibrium point spirals away
per one rotation with multiplier A ygia) & expA;T-) = 1.84

each Poincare section return, contracted into the stable manifold
by amazing factor of Ay = exp(\jT-) = 10716 (1)
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(@) A recurrent flow that stretches and folds.



Return maps: Poincare sections projected onto radial distance
Rn — Rn+1
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(a) and (d) nice 1-to-1 return maps

(b) and (c) appear multimodal and non-invertible artifacts of
projections (Rp,zn) = (Rn+1,2zn+1) onto a T-dimensional subspace
Rn — Rn+1



A repeller after 1, 2 and 3 itera-
tions. Intervals marked s1S2--- S, are
unions of all points that do not es-
cape in n iterations, and follow the
itinerary S = 8182 -+ - sp.

spatial ordering does not respect
the binary ordering; for example
X00 < Xo1 < X171 < X10.

Also indicated: the fixed points xo,
X1, the 2-cycle 01, and the 3-cycle
O11.
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Rossler short cycles

(a) O ;Ym; P (b)

(@) y = Pyly,2) return map for x = 0, v > O Poincare section
(b) The 1-cycle found by taking the fixed point yy+n = yk as initial
guess (0, v(0),0) for the Newton—Raphson search

1-cycle: T = 5.88108845586
(Mg, Aim Aic) = (=2.40395353,1,-1.29 x 107'4)
O\Le/}\T,m/}\LC) = (0.149141556,0,-5.44) .
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(C) O E;Ym; FE— (cl)

(€) yk+3 = P?(yk, zy), the third iterate of Poincare return map is
used to pick starting guesses for the Newton-Raphson searches
for the two 3-cycles:

(d) the 001 cycle, and

(e) the O11 cycle.





