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2.2. FLOWS 37

Figure 2.3: A trajectory of the Rössler flow
at time t = 250. (G. Simon)
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xq is an equilibrium point (often referred to as a stationary, fixed, or stagna-

tion point), and the trajectory remains forever stuck at xq. Otherwise the
trajectory passing through x0 at time t = 0 can be obtained by integrating
the equations (2.5):

x(t) = f t(x0) = x0 +

∫ t

0

dτ v(x(τ)) , x(0) = x0 . (2.8)

We shall consider here only autonomous flows, that is, flows for which the
velocity field vi is stationary, not explicitly dependent on time. A non-
autonomous system

dy

dτ
= w(y, τ) , (2.9)

can always be converted into a system where time does not appear explicitly.
To do so, extend (“suspend”) phase space to be (d + 1)-dimensional by
defining x = {y, τ}, with a stationary vector field

v(x) =

[

w(y, τ)
1

]

. (2.10)

✎ 2.5
page 41The new flow ẋ = v(x) is autonomous, and the trajectory y(τ) can be read

off x(t) by ignoring the last component of x.

Example 2.2 A flow with a strange attractor: The Duffing flow of figure 2.2 is
bit of a bore - every trajectory ends up in one of the two attractive equilibrium points.
Let’s construct a flow that does not die out, but exhibits a recurrent dynamics. Start
with a harmonic oscillator

ẋ = −y , ẏ = x . (2.11)

The solutions are Aeit, Ae−it, and the whole x-y plane rotates with constant angular
velocity θ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 . (2.12)
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38 CHAPTER 2. GO WITH THE FLOW

The plane is still rotating with constant angular velocity, but trajectories are now spi-
raling out. In general, any flow in the plane either escapes, falls into an attracting
equilibrium point, or converges to a limit cycle - richer dynamics requires at least one
more dimension. In order to prevent the trajectory from escaping to ∞, kick it into 3rd
dimension when x reaches some value c by adding

ż = b + z(x − c) , c > 0 . (2.13)

Now z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back, start
decreasing x by modifing its evolution equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler system (for definitiveness we fix
the parameters a, b, c in what follows):

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 . (2.14)

The system is as simple as they get - it would be linear, were it not for the sole bilinear✎ 2.8
page 42

term zx. Even for so “simple” a system the nature of long-time solutions is far from
obvious.

There are two repelling equilibrium points:

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )
(x+, y+, z+) = ( 5.6929, −28.464, 28.464 )

(2.15)

One is close to the origin by construction - the other, some distance away, must exist
because the equilibrium has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.3. As
we shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks
with time, so the flow is contracting. Trajectories that start out sufficiently close to
the origin seem to converge to a strange attractor. We say “seem”, as there exists no✎ 3.5

page 55
proof that such an attractor is asymptotically aperiodic - it might well be that what we
see is but a long transient on a way to an attractive periodic orbit. For now, accept
that figure 2.3 and similar figures in what follows are examples of “strange attractors”.
(continued in exercise 2.8) (Rytis Paškauskas)

fast track:

chapter 3, p. 45

2.3 Computing trajectories

On two occasions I have been asked [by members of
Parliament], ’Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come
out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

Charles Babbage

flows - 5jun2005 ChaosBook.org/version11.4, Aug 5 2005
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Figure 3.1: (Right:) a sequence of Poincaré sections of the Rössler strange attractor,
defined by planes through the z axis, oriented at angles (a) −60o (b) 0o, (c) 60o, (d)
120o, in the x-y plane. (Left:) side and x-y plane view of trajectory with Poincaré
sections superimposed. (Rytis Paškauskas)

point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.2. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a
piece of paper. The next example (as well as example ??) offers a better
illustration of the utility of visualization of dynamics by means of Poincaré
sections.

Example 3.3 Rössler attractor: Consider figure 2.3, a typical trajectory of the
3-dimensional Rössler flow (2.14). It wraps around the z axis, so a good choice for a
Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.1,
illustrates the “stretch & fold” action of the Rössler flow. To orient yourself, compare
this with figure 2.3, and note the different z-axis scales. Figure 3.1 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the x-y plane, and after the stretching (a) →
(b) followed by the folding (c) → (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

ChaosBook.org/version11.4, Aug 5 2005 maps - 15jun2005
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Figure 3.2: Return maps for the Rn → Rn+1 radial distance Poincaré sections of
figure 3.1. (Rytis Paškauskas)

Once a particular Poincaré section is picked, we can also exhibit the return map
(3.1), as in figure 3.2. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projections of
a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn → Rn+1. (continued in exercise 3.1)

fast track:

sect. 3.3, p. 49

The above examples illustrate why a Poincaré section gives a more in-
formative snapshot of the flow than the full flow portrait. For example,
while the full flow portrait of the Rössler flow figure 2.3 gives us no sense
of the thickness of the attractor, we see clearly in the Rössler Poincaré
sections figure 3.1 that even though the return map is 2-d → 2-d, the flow
contraction is so strong that for all practical purposes it renders the return
map 1-dimensional.

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not
available in analytic form. We describe here a numerical method for deter-
mining a Poincaré section.

☞ remark 3.1

Consider the system (2.5) of ordinary differential equations in the vector
variable x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.6)

where the flow velocity v is a vector function of the position in phase space
x and the time t. In general v cannot be integrated analytically and we
will have to resort to numerical integration to determine the trajectories of
the system. Our task is to determine the points at which the numerically
integrated trajectory traverses a given hypersurface. The hypersurface will

maps - 15jun2005 ChaosBook.org/version11.4, Aug 5 2005
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Example 4.4 Complex stability eigenvalues, diagonal: If A can be brought to
the diagonal form, the solution (4.13) to the differential equation (4.8) can be written
either as

(

x1(t)
x2(t)

)

=

(

etλ1 0
0 etλ2

) (

x1(0)
x2(0)

)

, (4.20)

or

(

x1(t)
x2(t)

)

= etλ

(

eitθ 0
0 e−itθ

) (

x1(0)
x2(0)

)

. (4.21)

In the case λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2 contracts
exponentially. This behavior, called a saddle, is sketched in figure 4.2(b), as are the
remaining possibilities: in/out nodes, inward/outward spirals, and the center. Spirals
arise from taking a real part of the action of Jt on a complex eigenvector. The
magnitude of |x(t)| diverges exponentially when λ > 0, and contracts toward 0 when
the λ < 0, whereas the imaginary phase θ controls its oscillations.

In general Jt is neither diagonal, nor diagonalizable, nor constant along
the trajectory. Still, any matrix, including Jt, can be expressed in the
singular value decomposition form

J = UDVT

where D is diagonal, and U, V are orthogonal matrices. The diagonal
elements Λ1, Λ2, . . ., Λd of D are called the stability eigenvalues.

Under the action of the flow an infinitesimally small ball of initial points
is deformed into an ellipsoid: Λi is the relative stretching of the ith principal
axis of the ellipsoid, the columns of the matrix V are the principal axes
ei of stretching in the Lagrangian coordinate frame, and the orthogonal
matrix U gives the orientation of the ellipse in the Eulerian coordinates.

Now that we have some feeling for the qualitative behavior of eigenvec-
tors and eigenvalues, we are ready to return to the general case: nonlinear
flows.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation
Jt for a general nonlinear smooth flow? The Jacobian matrix is computed
by integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = At(x0)δx(x0, 0) . (4.22)

The equations of variations are linear, so we should be able to integrate
them - but in order to make sense of the answer, we derive it step by step.

ChaosBook.org/version11.4, Aug 5 2005 stability - 5jun2005
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Figure 4.2: (a) Qualitatively distinct types of stability exponents of a [2×2] stability
matrix. (b) Streamlines for several typical 2-dimensional flows: saddle (hyperbolic), in
node (attracting), center (elliptic), in spiral.

4.3.1 Stability of equilibria

For a start, consider the case where xq is an equilibrium point (2.7). Ex-
panding around the equilibrium point xq, using the fact that the matrix
A = A(xq) in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x − xq) + · · · , (4.23)

we verify that the simple formula (4.13) applies also to the Jacobian matrix
of an equilibrium point,

Jt(xq) = eAt A = A(xq) . (4.24)

Example 4.5 Equilibria of the Rössler flow. The Rösler system (2.14) has two
equilibrium points

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )
(x+, y+, z+) = ( 5.6929, −28.4648, 28.4648 )

✎ 2.8
page 42

The two equilibria together their stability exponents now yield quite detailed information
about the flow. Figure 4.3 shows two trajectories which start in the neighborhood of the
“+” equilibrium point. Trajectories to the right of the “+” equilibrium point escape,
and those to the left spiral toward the “−” equilibrium point, where they seem to wander
chaoticaly for all times. The stable manifold of “+” equilibrium point thus serves as a
attraction basin boundary. Consider now the linearized stability exponents of the two
equilibria✎ 2.8

page 42
(λ−

1 , λ−

2 ± i θ−2 ) = (−5.686, 0.0970 ± i 0.9951 )
(λ+

1 , λ+
2 ± i θ+

2 ) = ( 0.1929, −4.596× 10−6 ± i 5.428 )
(4.25)

The λ+
2 ± i θ+

2 complex eigenvalue pair implies that that neighborhood of the outer
equilibrium point rotates with angular period T+ ≈

∣

∣2π/θ+
2

∣

∣ = 1.1575. The stability
multiplier by which a trajectory that starts near the “+” equilibrium point contracts in
the stable manifold plane is the excrutiatingly slow Λ+

2 ≈ exp(λ+
2 T+) = 0.9999947 per

rotation. For each period the point of the stable manifold moves away along the unstable

stability - 5jun2005 ChaosBook.org/version11.4, Aug 5 2005
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